1
|
Combes BF, Kalva SK, Benveniste PL, Tournant A, Law MH, Newton J, Krüger M, Weber RZ, Dias I, Noain D, Dean-Ben XL, Konietzko U, Baumann CR, Gillberg PG, Hock C, Nitsch RM, Cohen-Adad J, Razansky D, Ni R. Spiral volumetric optoacoustic tomography of reduced oxygen saturation in the spinal cord of M83 mouse model of Parkinson's disease. Eur J Nucl Med Mol Imaging 2025; 52:427-443. [PMID: 39382580 PMCID: PMC11732882 DOI: 10.1007/s00259-024-06938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Metabolism and bioenergetics in the central nervous system play important roles in the pathophysiology of Parkinson's disease (PD). Here, we employed a multimodal imaging approach to assess oxygenation changes in the spinal cord of the transgenic M83 murine model of PD overexpressing the mutated A53T alpha-synuclein form in comparison with non-transgenic littermates. METHODS In vivo spiral volumetric optoacoustic tomography (SVOT) was performed to assess oxygen saturation (sO2) in the spinal cords of M83 mice and non-transgenic littermates. Ex vivo high-field T1-weighted (T1w) magnetic resonance imaging (MRI) at 9.4T was used to assess volumetric alterations in the spinal cord. 3D SVOT analysis and deep learning-based automatic segmentation of T1w MRI data for the mouse spinal cord were developed for quantification. Immunostaining for phosphorylated alpha-synuclein (pS129 α-syn), as well as vascular organization (CD31 and GLUT1), was performed after MRI scan. RESULTS In vivo SVOT imaging revealed a lower sO2SVOT in the spinal cord of M83 mice compared to non-transgenic littermates at sub-100 μm spatial resolution. Ex vivo MRI-assisted by in-house developed deep learning-based automatic segmentation (validated by manual analysis) revealed no volumetric atrophy in the spinal cord of M83 mice compared to non-transgenic littermates at 50 μm spatial resolution. The vascular network was not impaired in the spinal cord of M83 mice in the presence of pS129 α-syn accumulation. CONCLUSION We developed tools for deep-learning-based analysis for the segmentation of mouse spinal cord structural MRI data, and volumetric analysis of sO2SVOT data. We demonstrated non-invasive high-resolution imaging of reduced sO2SVOT in the absence of volumetric structural changes in the spinal cord of PD M83 mouse model.
Collapse
Affiliation(s)
- Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sandeep Kumar Kalva
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Pierre-Louis Benveniste
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Agathe Tournant
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Man Hoi Law
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Joshua Newton
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maik Krüger
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Inês Dias
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Per-Göran Gillberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Gao J, Jiang M, Erricolo D, Magin RL, Morfini G, Royston T, Larson AC, Li W. Identifying potential imaging markers for diffusion property changes in a mouse model of amyotrophic lateral sclerosis: Application of the continuous time random walk model to ultrahigh b-value diffusion-weighted MR images of spinal cord tissue. NMR IN BIOMEDICINE 2024; 37:e5037. [PMID: 37721118 DOI: 10.1002/nbm.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Diffusion MRI (dMRI) explores tissue microstructures by analyzing diffusion-weighted signal decay measured at different b-values. While relatively low b-values are used for most dMRI models, high b-value diffusion-weighted imaging (DWI) techniques have gained interest given that the non-Gaussian water diffusion behavior observed at high b-values can yield potentially valuable information. In this study, we investigated anomalous diffusion behaviors associated with degeneration of spinal cord tissue using a continuous time random walk (CTRW) model for DWI data acquired across an extensive range of ultrahigh b-values. The diffusion data were acquired in situ from the lumbar level of spinal cords of wild-type and age-matched transgenic SOD1G93A mice, a well-established animal model of amyotrophic lateral sclerosis (ALS) featuring progressive degeneration of axonal tracts in this tissue. Based on the diffusion decay behaviors at low and ultrahigh b-values, we applied the CTRW model using various combinations of b-values and compared diffusion metrics calculated from the CTRW model between the experimental groups. We found that diffusion-weighted signal decay curves measured with ultrahigh b-values (up to 858,022 s/mm2 in this study) were well represented by the CTRW model. The anomalous diffusion coefficient obtained from lumbar spinal cords was significantly higher in SOD1G93A mice compared with control mice (14.7 × 10-5 ± 5.54 × 10-5 vs. 7.87 × 10-5 ± 2.48 × 10-5 mm2 /s, p = 0.01). We believe this is the first study to illustrate the efficacy of the CTRW model for analyzing anomalous diffusion regimes at ultrahigh b-values. The CTRW modeling of ultrahigh b-value dMRI can potentially present a novel approach for noninvasively evaluating alterations in spinal cord tissue associated with ALS pathology.
Collapse
Affiliation(s)
- Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois, USA
| | - Mingchen Jiang
- Department of Physiology, Northwestern University, Chicago, Illinois, USA
| | - Danilo Erricolo
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Richard L Magin
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Thomas Royston
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Andrew C Larson
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Liu M, Zhang C, Shen S, Shao J, Wang Y, Jiao S, Guo C. Magnetic Resonance Diffusion Tensor Imaging Characterize the Hepatic Ischemia-Reperfusion Injury in an Animal Study. Transplant Proc 2023; 55:1739-1746. [PMID: 37393167 DOI: 10.1016/j.transproceed.2023.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is the main cause of morbidity and mortality after hepatectomy; thus, new methods for reducing I/R injury are required. The aim of this study is to evaluate changes in the average apparent diffusion coefficient (ADCavg) and fractional anisotropy (FA) in rabbits with partial hepatic I/R injury with magnetic resonance diffusion tensor imaging (DTI). METHODS The left lobe of the rabbit liver underwent 60 minutes of ischemia followed by 0.5, 2, 6, 12, 24, and 48 hours of reperfusion. T2-weighted images (T2WI), T1-weighted images (T1WI), DTI, and contrast-enhanced T1WI were performed; 6 b values were used for DTI on 6 diffusion directions. The serum levels of transaminases and liver histopathology findings were examined. RESULTS In the early stage of I/R (0.5 hour), ADCavg decreased significantly and increased sharply to 2 hours, then increased from 6 hours to 48 hours of reperfusion, except for a transient decrease (24 hours). Meanwhile, FA showed almost the opposite trend, drastically increasing during the first 0.5 hour and then slightly decreasing until 48 hours of reperfusion, except for an obvious decrease in the 2-hours group. The serum levels of liver markers and the pathologic scores were sharply increased in the I/R group after reperfusion and correlated with DTI of hepatic tissue after I/R. CONCLUSIONS Diffusion tensor imaging is feasible for imaging I/R-induced liver damage and can discriminate isotropic properties of the liver after I/R injury with objective changes in the ADCavg and FA. Diffusion tensor imaging can be a promising novel approach for use in clinical management after liver surgery.
Collapse
Affiliation(s)
- Minglu Liu
- Department of Medical Oncology, the First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China; Outpatient Department, Jingnan Medical Area, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Cheng Zhang
- Outpatient Department, Jingnan Medical Area, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Sandi Shen
- Thoracic Surgery, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jiakang Shao
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Ying Wang
- Outpatient Department, Jingnan Medical Area, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shunchang Jiao
- Department of Medical Oncology, the First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Chengwei Guo
- Department of Radiology, 82 Group Hospital of Chinese People's Liberation Army, Baoding, China.
| |
Collapse
|
4
|
Wang N, Maharjan S, Tsai AP, Lin PB, Qi Y, Wallace A, Jewett M, Liu F, Landreth GE, Oblak AL. Integrating multimodality magnetic resonance imaging to the Allen Mouse Brain Common Coordinate Framework. NMR IN BIOMEDICINE 2023; 36:e4887. [PMID: 36454009 PMCID: PMC10106385 DOI: 10.1002/nbm.4887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/07/2023]
Abstract
High-resolution magnetic resonance imaging (MRI) affords unique image contrasts to nondestructively probe the tissue microstructure; validation of MRI findings with conventional histology is essential to better understand the MRI contrasts. However, the dramatic difference in the spatial resolution and image contrast of these two techniques impedes accurate comparison between MRI metrics and traditional histology. To better validate various MRI metrics, we acquired whole mouse brain multigradient recalled-echo and multishell diffusion MRI datasets at 25-μm isotropic resolution. The recently developed Allen Mouse Brain Common Coordinate Framework (CCFv3) provides opportunities to integrate multimodal and multiscale datasets of the whole mouse brain in a common three-dimensional (3D) space. The T2*, quantitative susceptibility mapping, diffusion tensor imaging, and neurite orientation dispersion and density imaging parameters were compared with both serial two-photon tomography images and 3D Nissl staining images in the CCFv3 at the same spatial resolution. The correlation between MRI and Nissl staining strongly depends on different metrics and different regions of the brain. Integrating different imaging modalities to the same space may substantially improve our understanding of the complexity of the brain at different scales.
Collapse
Affiliation(s)
- Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Abigail Wallace
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Megan Jewett
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
6
|
Sarwar T, Ramamohanarao K, Zalesky A. A critical review of connectome validation studies. NMR IN BIOMEDICINE 2021; 34:e4605. [PMID: 34516016 DOI: 10.1002/nbm.4605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Diffusion MRI tractography is the most widely used macroscale method for mapping connectomes in vivo. However, tractography is prone to various errors and biases, and thus tractography-derived connectomes require careful validation. Here, we critically review studies that have developed or utilized phantoms and tracer maps to validate tractography-derived connectomes, either quantitatively or qualitatively. We identify key factors impacting connectome reconstruction accuracy, including streamline seeding, propagation and filtering methods, and consider the strengths and limitations of state-of-the-art connectome phantoms and associated validation studies. These studies demonstrate the inherent limitations of current fiber orientation models and tractography algorithms and their impact on connectome reconstruction accuracy. Reconstructing connectomes with both high sensitivity and high specificity is challenging, given that some tractography methods can generate an abundance of spurious connections, while others can overlook genuine fiber bundles. We argue that streamline filtering can minimize spurious connections and potentially improve the biological plausibility of connectomes derived from tractography. We find that algorithmic choices such as the tractography seeding methodology, angular threshold, and streamline propagation method can substantially impact connectome reconstruction accuracy. Hence, careful application of tractography is necessary to reconstruct accurate connectomes. Improvements in diffusion MRI acquisition techniques will not necessarily overcome current tractography limitations without accompanying modeling and algorithmic advances.
Collapse
Affiliation(s)
- Tabinda Sarwar
- School of Computing Technologies, RMIT University, Melbourne, Victoria, Australia
| | - Kotagiri Ramamohanarao
- Department of Computing and Information Systems, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
8
|
Gatto RG, Weissmann C, Amin M, Angeles-López QD, García-Lara L, Castellanos LCS, Deyoung D, Segovia J, Mareci TH, Uchitel OD, Magin RL. Evaluation of early microstructural changes in the R6/1 mouse model of Huntington's disease by ultra-high field diffusion MR imaging. Neurobiol Aging 2021; 102:32-49. [PMID: 33765430 DOI: 10.1016/j.neurobiolaging.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Diffusion MRI (dMRI) has been able to detect early structural changes related to neurological symptoms present in Huntington's disease (HD). However, there is still a knowledge gap to interpret the biological significance at early neuropathological stages. The purpose of this study is two-fold: (i) establish if the combination of Ultra-High Field Diffusion MRI (UHFD-MRI) techniques can add a more comprehensive analysis of the early microstructural changes observed in HD, and (ii) evaluate if early changes in dMRI microstructural parameters can be linked to cellular biomarkers of neuroinflammation. Ultra-high field magnet (16.7T), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) techniques were applied to fixed ex-vivo brains of a preclinical model of HD (R6/1 mice). Fractional anisotropy (FA) was decreased in deep and superficial grey matter (GM) as well as white matter (WM) brain regions with well-known early HD microstructure and connectivity pathology. NODDI parameters associated with the intracellular and extracellular compartment, such as intracellular ventricular fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fractions (IsoVF) were altered in R6/1 mice GM. Further, histological studies in these areas showed that glia cell markers associated with neuroinflammation (GFAP & Iba1) were consistent with the dMRI findings. dMRI can be used to extract non-invasive information of neuropathological events present in the early stages of HD. The combination of multiple imaging techniques represents a better approach to understand the neuropathological process allowing the early diagnosis and neuromonitoring of patients affected by HD.
Collapse
Affiliation(s)
- Rodolfo G Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Carina Weissmann
- Insituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-CONICET, Universidad de Buenos, Aires, Argentina
| | - Manish Amin
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Quetzalli D Angeles-López
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Lucia García-Lara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Libia C Salinas Castellanos
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Daniel Deyoung
- Department of Biochemistry, National High Magnetic Field Laboratory, Gainesville, FL, USA
| | - Jose Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
| | - Thomas H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Osvaldo D Uchitel
- Insituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-CONICET, Universidad de Buenos, Aires, Argentina
| | - Richard L Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Lawson CM, Rentrup KFG, Cai X, Kulkarni PP, Ferris CF. Using multimodal MRI to investigate alterations in brain structure and function in the BBZDR/Wor rat model of type 2 diabetes. Animal Model Exp Med 2020; 3:285-294. [PMID: 33532703 PMCID: PMC7824967 DOI: 10.1002/ame2.12140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This is an exploratory study using multimodal magnetic resonance imaging (MRI) to interrogate the brain of rats with type 2 diabetes (T2DM) as compared to controls. It was hypothesized there would be changes in brain structure and function that reflected the human disorder, thus providing a model system by which to follow disease progression with noninvasive MRI. METHODS The transgenic BBZDR/Wor rat, an animal model of T2MD, and age-matched controls were studied for changes in brain structure using voxel-based morphometry, alteration in white and gray matter microarchitecture using diffusion weighted imaging with indices of anisotropy, and functional coupling using resting-state BOLD functional connectivity. Images from each modality were registered to, and analyzed, using a 3D MRI rat atlas providing site-specific data on over 168 different brain areas. RESULTS There was an overall reduction in brain volume focused primarily on the somatosensory cortex, cerebellum, and white matter tracts. The putative changes in white and gray matter microarchitecture were pervasive affecting much of the brain and not localized to any region. There was a general increase in connectivity in T2DM rats as compared to controls. The cerebellum presented with strong functional coupling to pons and brainstem in T2DM rats but negative connectivity to hippocampus. CONCLUSION The neuroradiological measures collected in BBBKZ/Wor rats using multimodal imaging methods did not reflect those reported for T2DB patients in the clinic. The data would suggest the BBBKZ/Wor rat is not an appropriate imaging model for T2DM.
Collapse
Affiliation(s)
| | | | - Xuezhu Cai
- Center for Translational NeuroImagingNortheastern UniversityBostonMAUSA
| | | | - Craig F. Ferris
- Center for Translational NeuroImagingNortheastern UniversityBostonMAUSA
| |
Collapse
|
10
|
Gatto RG, Weissmann C. Diffusion Tensor Imaging in Preclinical and Human Studies of Huntington's Disease: What Have we Learned so Far? Curr Med Imaging 2020; 15:521-542. [PMID: 32008561 DOI: 10.2174/1573405614666181115113400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Huntington's Disease is an irreversible neurodegenerative disease characterized by the progressive deterioration of specific brain nerve cells. The current evaluation of cellular and physiological events in patients with HD relies on the development of transgenic animal models. To explore such events in vivo, diffusion tensor imaging has been developed to examine the early macro and microstructural changes in brain tissue. However, the gap in diffusion tensor imaging findings between animal models and clinical studies and the lack of microstructural confirmation by histological methods has questioned the validity of this method. OBJECTIVE This review explores white and grey matter ultrastructural changes associated to diffusion tensor imaging, as well as similarities and differences between preclinical and clinical Huntington's Disease studies. METHODS A comprehensive review of the literature using online-resources was performed (Pub- Med search). RESULTS Similar changes in fractional anisotropy as well as axial, radial and mean diffusivities were observed in white matter tracts across clinical and animal studies. However, comparative diffusion alterations in different grey matter structures were inconsistent between clinical and animal studies. CONCLUSION Diffusion tensor imaging can be related to specific structural anomalies in specific cellular populations. However, some differences between animal and clinical studies could derive from the contrasting neuroanatomy or connectivity across species. Such differences should be considered before generalizing preclinical results into the clinical practice. Moreover, current limitations of this technique to accurately represent complex multicellular events at the single micro scale are real. Future work applying complex diffusion models should be considered.
Collapse
Affiliation(s)
- Rodolfo Gabriel Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - Carina Weissmann
- Insituto de Fisiología Biologia Molecular y Neurociencias-IFIBYNE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Gatto RG, Weissmann C, Amin M, Finkielsztein A, Sumagin R, Mareci TH, Uchitel OD, Magin RL. Assessing neuraxial microstructural changes in a transgenic mouse model of early stage Amyotrophic Lateral Sclerosis by ultra-high field MRI and diffusion tensor metrics. Animal Model Exp Med 2020; 3:117-129. [PMID: 32613171 PMCID: PMC7323706 DOI: 10.1002/ame2.12112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/28/2020] [Accepted: 03/22/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the use of diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS. METHODS Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice. RESULTS Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased. In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL and CS values were unchanged or slightly smaller. Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI. CONCLUSIONS Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CS as imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALS.
Collapse
Affiliation(s)
- Rodolfo G. Gatto
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoILUSA
| | - Carina Weissmann
- Instituto de Fisiología Biologia Molecular y Neurociencias‐IFIBYNE‐CONICETUniversity of Buenos AiresBuenos AiresArgentina
| | - Manish Amin
- Department of BiochemistryNational High Magnetic Field LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Ariel Finkielsztein
- Department of PathologySchool of MedicineNorthwestern UniversityChicagoILUSA
| | - Ronen Sumagin
- Department of PathologySchool of MedicineNorthwestern UniversityChicagoILUSA
| | - Thomas H. Mareci
- Department of BiochemistryNational High Magnetic Field LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Osvaldo D. Uchitel
- Instituto de Fisiología Biologia Molecular y Neurociencias‐IFIBYNE‐CONICETUniversity of Buenos AiresBuenos AiresArgentina
| | - Richard L. Magin
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoILUSA
| |
Collapse
|
13
|
Gao J, Jiang M, Magin RL, Gatto RG, Morfini G, Larson AC, Li W. Multicomponent diffusion analysis reveals microstructural alterations in spinal cord of a mouse model of amyotrophic lateral sclerosis ex vivo. PLoS One 2020; 15:e0231598. [PMID: 32310954 PMCID: PMC7170503 DOI: 10.1371/journal.pone.0231598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
The microstructure changes associated with degeneration of spinal axons in amyotrophic lateral sclerosis (ALS) may be reflected in altered water diffusion properties, potentially detectable with diffusion-weighted (DW) MRI. Prior work revealed the classical mono-exponential model fails to precisely depict decay in DW signal at high b-values. In this study, we aim to investigate signal decay behaviors at ultra-high b-values for non-invasive assessment of spinal cord alterations in the transgenic SOD1G93A mouse model of ALS. A multiexponential diffusion analysis using regularized non-negative least squares (rNNLS) algorithm was applied to a series of thirty DW MR images with b-values ranging from 0 to 858,022 s/mm2 on ex vivo spinal cords of transgenic SOD1G93A and age-matched control mice. We compared the distributions of measured diffusion coefficient fractions between the groups. The measured diffusion weighted signals in log-scale showed non-linear decay behaviors with increased b-values. Faster signal decays were observed with diffusion gradients applied parallel to the long axis of the spinal cord compared to when oriented in the transverse direction. Multiexponential analysis at the lumbar level in the spinal cord identified ten subintervals. A significant decrease of diffusion coefficient fractions was found in the ranges of [1.63×10−8,3.70×10−6] mm2/s (P = 0.0002) and of [6.01×10−6,4.20×10−5] mm2/s (P = 0.0388) in SOD1G93A mice. Anisotropic diffusion signals persisted at ultra-high b-value DWIs of the mouse spinal cord and multiexponential diffusion analysis offers the potential to evaluate microstructural alterations of ALS-affected spinal cord non-invasively.
Collapse
Affiliation(s)
- Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Research Resource Center, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mingchen Jiang
- Department of Physiology, Northwestern University, Chicago, IL, United States of America
| | - Richard L. Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rodolfo G. Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Andrew C. Larson
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
| | - Weiguo Li
- Research Resource Center, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
14
|
Qiao J, Zhao X, Wang S, Li A, Wang Z, Cao C, Wang Q. Functional and Structural Brain Alterations in Encephalitis With LGI1 Antibodies. Front Neurosci 2020; 14:304. [PMID: 32317923 PMCID: PMC7146067 DOI: 10.3389/fnins.2020.00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/16/2020] [Indexed: 01/17/2023] Open
Abstract
Objective: The purpose of this study was to examine the neural substrates and mechanisms that generate memory deficits, seizures and neuropsychiatric abnormalities in encephalitis with LGI1 antibodies using a data-driven, multimodal magnetic resonance imaging (MRI) approach. Methods: Functional MRI data were acquired from 14 anti-LGI1 encephalitis patients and 14 age and gender matched normal controls. Independent component analysis with hierarchical partner matching (HPM-ICA) was used to assess the whole-brain intrinsic functional connectivity. Granger causality (GC) was applied to investigate the effective connectivity among the brain regions that identified by HPM-ICA. Diffusion tensor imaging (DTI) was utilized to investigate white matter microstructural changes of the patients. Results: Participants with LGI1 antibodies encephalitis presented reduced functional connectivity in the brain areas associated with memory, cognition and motion circuits, while increased functional connectivity in putamen and caudate in comparison to the normal controls. Moreover, the effective connectivity in patients was decreased from the frontal cortex to supplementary motor area. Finally, patients had significant reductions in fractional anisotropy (FA) for the corpus callosum, internal capsule, corona radiata and superior longitudinal fasciculus, accompanied by increases in mean diffusivity (MD) for these regions as compared to controls. Conclusion: Our findings suggest that the neural disorder and behavioral deficits of anti-LGI1 encephalitis may be associated with extensive changes in brain connectivity and microstructure. These pathological alterations affect the basal ganglia and limbic system besides the temporal and frontal lobe.
Collapse
Affiliation(s)
- Jianping Qiao
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Data Science and Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xiuhe Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengjun Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhishun Wang
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Chongfeng Cao
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
15
|
Gatto RG, Amin M, Finkielsztein A, Weissmann C, Barrett T, Lamoutte C, Uchitel O, Sumagin R, Mareci TH, Magin RL. Unveiling early cortical and subcortical neuronal degeneration in ALS mice by ultra-high field diffusion MRI. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:549-561. [DOI: 10.1080/21678421.2019.1620285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rodolfo G. Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| | - Manish Amin
- Department of Biochemistry and Molecular Biology, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA,
| | - Ariel Finkielsztein
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,
| | - Carina Weissmann
- Institute for Physiology, Molecular Biology and Neurosciences (IFIBYNE CONICET-UBA), Buenos Aires, Argentina,
| | - Thomas Barrett
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA, and
| | - Caroline Lamoutte
- Department of Microbiology, University of Florida, Gainesville, FL, USA
| | - Osvaldo Uchitel
- Institute for Physiology, Molecular Biology and Neurosciences (IFIBYNE CONICET-UBA), Buenos Aires, Argentina,
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,
| | - Thomas H. Mareci
- Department of Biochemistry and Molecular Biology, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA,
| | - Richard L. Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| |
Collapse
|