1
|
Aramendía-Vidaurreta V, Solís-Barquero SM, Vidorreta M, Ezponda A, Echeverria-Chasco R, Bastarrika G, Fernández-Seara MA. Comparison of Myocardial Blood Flow Quantification Models for Double ECG Gating Arterial Spin Labeling MRI: Reproducibility Assessment. J Magn Reson Imaging 2024; 60:1577-1588. [PMID: 38206090 DOI: 10.1002/jmri.29220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) allows non-invasive quantification of myocardial blood flow (MBF). Double-ECG gating (DG) ASL is more robust to heart rate variability than single-ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency-offset-corrected-inversion (FOCI) pulses provide sharper edge profiles than hyperbolic-secant (HS), which could benefit myocardial ASL. PURPOSE To assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses. STUDY TYPE Prospective. SUBJECTS Sixteen subjects (27 ± 8 years). FIELD STRENGTH/SEQUENCE 1.5 T/DG and SG flow-sensitive alternating inversion recovery ASL. ASSESSMENT Three models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal-to-noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects. STATISTICAL TESTS Within-subject coefficient of variation, analysis of variance. P-value <0.05 was considered significant. RESULTS MBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min). DATA CONCLUSION Reproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Verónica Aramendía-Vidaurreta
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sergio M Solís-Barquero
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | | | - Ana Ezponda
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Rebeca Echeverria-Chasco
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - María A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
2
|
Božić‐Iven M, Rapacchi S, Tao Q, Pierce I, Thornton G, Nitsche C, Treibel TA, Schad LR, Weingärtner S. Improved reproducibility for myocardial ASL: Impact of physiological and acquisition parameters. Magn Reson Med 2024; 91:118-132. [PMID: 37667643 PMCID: PMC10962577 DOI: 10.1002/mrm.29834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To investigate and mitigate the influence of physiological and acquisition-related parameters on myocardial blood flow (MBF) measurements obtained with myocardial Arterial Spin Labeling (myoASL). METHODS A Flow-sensitive Alternating Inversion Recovery (FAIR) myoASL sequence with bSSFP and spoiled GRE (spGRE) readout is investigated for MBF quantification. Bloch-equation simulations and phantom experiments were performed to evaluate how variations in acquisition flip angle (FA), acquisition matrix size (AMS), heart rate (HR) and bloodT 1 $$ {\mathrm{T}}_1 $$ relaxation time (T 1 , B $$ {\mathrm{T}}_{1,B} $$ ) affect quantification of myoASL-MBF. In vivo myoASL-images were acquired in nine healthy subjects. A corrected MBF quantification approach was proposed based on subject-specificT 1 , B $$ {\mathrm{T}}_{1,B} $$ values and, for spGRE imaging, subtracting an additional saturation-prepared baseline from the original baseline signal. RESULTS Simulated and phantom experiments showed a strong dependence on AMS and FA (R 2 $$ {R}^2 $$ >0.73), which was eliminated in simulations and alleviated in phantom experiments using the proposed saturation-baseline correction in spGRE. Only a very mild HR dependence (R 2 $$ {R}^2 $$ >0.59) was observed which was reduced when calculating MBF with individualT 1 , B $$ {\mathrm{T}}_{1,B} $$ . For corrected spGRE, in vivo mean global spGRE-MBF ranged from 0.54 to 2.59 mL/g/min and was in agreement with previously reported values. Compared to uncorrected spGRE, the intra-subject variability within a measurement (0.60 mL/g/min), between measurements (0.45 mL/g/min), as well as the inter-subject variability (1.29 mL/g/min) were improved by up to 40% and were comparable with conventional bSSFP. CONCLUSION Our results show that physiological and acquisition-related factors can lead to spurious changes in myoASL-MBF if not accounted for. Using individualT 1 , B $$ {\mathrm{T}}_{1,B} $$ and a saturation-baseline can reduce these variations in spGRE and improve reproducibility of FAIR-myoASL against acquisition parameters.
Collapse
Affiliation(s)
- Maša Božić‐Iven
- Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | | | - Qian Tao
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Iain Pierce
- Barts Heart CentreSt Bartholomew's HospitalLondonUK
| | - George Thornton
- Barts Heart CentreSt Bartholomew's HospitalLondonUK
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
| | - Christian Nitsche
- Barts Heart CentreSt Bartholomew's HospitalLondonUK
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
- Division of CardiologyMedical University of ViennaViennaAustria
| | - Thomas A. Treibel
- Barts Heart CentreSt Bartholomew's HospitalLondonUK
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
| | - Lothar R. Schad
- Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | | |
Collapse
|
3
|
Taso M, Aramendía-Vidaurreta V, Englund EK, Francis S, Franklin S, Madhuranthakam AJ, Martirosian P, Nayak KS, Qin Q, Shao X, Thomas DL, Zun Z, Fernández-Seara MA. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn Reson Med 2023; 89:1754-1776. [PMID: 36747380 DOI: 10.1002/mrm.29609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Erin K Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Francis
- Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham, UK
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ananth J Madhuranthakam
- Department of Radiology, Advanced Imaging Research Center, and Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Petros Martirosian
- Section on Experimental Radiology, Department of Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
4
|
Henningsson M, Carlhäll CJ, Ebbers T, Kihlberg J. Non-contrast myocardial perfusion in rest and exercise stress using systolic flow-sensitive alternating inversion recovery. MAGMA (NEW YORK, N.Y.) 2022; 35:711-718. [PMID: 34958438 PMCID: PMC9463284 DOI: 10.1007/s10334-021-00992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To evaluate systolic flow-sensitive alternating inversion recovery (FAIR) during rest and exercise stress using 2RR (two cardiac cycles) or 1RR intervals between inversion pulse and imaging. MATERIALS AND METHODS 1RR and 2RR FAIR was implemented on a 3T scanner. Ten healthy subjects were scanned during rest and stress. Stress was performed using an in-bore ergometer. Heart rate, mean myocardial blood flow (MBF) and temporal signal-to-noise ratio (TSNR) were compared using paired t tests. RESULTS Mean heart rate during stress was higher than rest for 1RR FAIR (85.8 ± 13.7 bpm vs 63.3 ± 11.1 bpm; p < 0.01) and 2RR FAIR (83.8 ± 14.2 bpm vs 63.1 ± 10.6 bpm; p < 0.01). Mean stress MBF was higher than rest for 1RR FAIR (2.97 ± 0.76 ml/g/min vs 1.43 ± 0.6 ml/g/min; p < 0.01) and 2RR FAIR (2.8 ± 0.96 ml/g/min vs 1.22 ± 0.59 ml/g/min; p < 0.01). Resting mean MBF was higher for 1RR FAIR than 2RR FAIR (p < 0.05), but not during stress. TSNR was lower for stress compared to rest for 1RR FAIR (4.52 ± 2.54 vs 10.12 ± 3.69; p < 0.01) and 2RR FAIR (7.36 ± 3.78 vs 12.41 ± 5.12; p < 0.01). 2RR FAIR TSNR was higher than 1RR FAIR for rest (p < 0.05) and stress (p < 0.001). DISCUSSION We have demonstrated feasibility of systolic FAIR in rest and exercise stress. 2RR delay systolic FAIR enables non-contrast perfusion assessment during stress with relatively high TSNR.
Collapse
Affiliation(s)
- Markus Henningsson
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Carl-Johan Carlhäll
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Clinical Physiology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Johan Kihlberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Aramendía-Vidaurreta V, Gordaliza PM, Vidorreta M, Echeverría-Chasco R, Bastarrika G, Muñoz-Barrutia A, Fernández-Seara MA. Reduction of motion effects in myocardial arterial spin labeling. Magn Reson Med 2021; 87:1261-1275. [PMID: 34644410 DOI: 10.1002/mrm.29038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To evaluate the accuracy and reproducibility of myocardial blood flow measurements obtained under different breathing strategies and motion correction techniques with arterial spin labeling. METHODS A prospective cardiac arterial spin labeling study was performed in 12 volunteers at 3 Tesla. Perfusion images were acquired twice under breath-hold, synchronized-breathing, and free-breathing. Motion detection based on the temporal intensity variation of a myocardial voxel, as well as image registration based on pairwise and groupwise approaches, were applied and evaluated in synthetic and in vivo data. A region of interest was drawn over the mean perfusion-weighted image for quantification. Original breath-hold datasets, analyzed with individual regions of interest for each perfusion-weighted image, were considered as reference values. RESULTS Perfusion measurements in the reference breath-hold datasets were in line with those reported in literature. In original datasets, prior to motion correction, myocardial blood flow quantification was significantly overestimated due to contamination of the myocardial perfusion with the high intensity signal of blood pool. These effects were minimized with motion detection or registration. Synthetic data showed that accuracy of the perfusion measurements was higher with the use of registration, in particular after the pairwise approach, which probed to be more robust to motion. CONCLUSION Satisfactory results were obtained for the free-breathing strategy after pairwise registration, with higher accuracy and robustness (in synthetic datasets) and higher intrasession reproducibility together with lower myocardial blood flow variability across subjects (in in vivo datasets). Breath-hold and synchronized-breathing after motion correction provided similar results, but these breathing strategies can be difficult to perform by patients.
Collapse
Affiliation(s)
- Verónica Aramendía-Vidaurreta
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Pedro M Gordaliza
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Rebeca Echeverría-Chasco
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Arrate Muñoz-Barrutia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
6
|
Aramendía-Vidaurreta V, Echeverría-Chasco R, Vidorreta M, Bastarrika G, Fernández-Seara MA. Quantification of Myocardial Perfusion With Vasodilation Using Arterial Spin Labeling at 1.5T. J Magn Reson Imaging 2020; 53:777-788. [PMID: 33063433 DOI: 10.1002/jmri.27396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Myocardial perfusion is evaluated in first-pass MRI using a gadolinium-based contrast agent, which limits its repeatability and restricts its use in patients with abnormal kidney function. Arterial spin labeling (ASL) is a promising technique for measuring myocardial perfusion without contrast injection. The ratio of stress to rest perfusion, termed myocardial perfusion reserve (MPR), is an indicator of the severity of stenosis in patients with coronary artery disease (CAD). PURPOSE To quantify perfusion increases with pharmacological vasodilation, explore MPR differences between segments with and without perfusion defects, and examine the correlations between quantitative ASL and semiquantitative first-pass measurements. STUDY TYPE Prospective. SUBJECTS Sixteen patients with suspected CAD: 10 classified as "healthy," having normal perfusion on first-pass and no enhancement on late gadolinium enhancement (LGE), and six as "nonhealthy," having hypoperfused segments including ischemic and infarcted. FIELD STRENGTH/SEQUENCE Flow-sensitive alternating inversion recovery (FAIR) rest-stress cardiac ASL with balanced steady-state free precession (bSSFP), rest-stress first-pass imaging using gradient-echo and LGE using a phase-sensitive inversion-recovery bSSFP at 1.5T. ASSESSMENT For healthy subjects, rest-stress perfusion data were compared in global, coronary artery territory, and segment regions of interest (ROIs). A segmental MPR comparison was performed between normal segments from healthy subjects and abnormal segments from nonhealthy subjects. Correlations between ASL and first-pass parameters were explored. STATISTICAL TESTS Wilcoxon-signed-rank test, nonparametric factorial analysis of variance (ANOVA), and Pearson's/Spearman's correlations. RESULTS Perfusion increases were significant globally (P = 0.005), per coronary artery territory (P = 0.015), and per segment (P = 0.03 for all segments in ASL and first-pass, except anteroseptal in ASL P = 0.04). MPR differences between normal and abnormal segments were significant (P = 0.0028: ASL, P = 0.033: first-pass). ASL and first-pass measurements were correlated (MPR: r = 0.64, P = 0.008 and perfusion: rho = 0.47, P = 0.007). DATA CONCLUSION This study demonstrates the feasibility of ASL to detect hyperemia, the potential to differentiate segments with and without perfusion defects, and significant correlations between ASL and semiquantitative first-pass. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Verónica Aramendía-Vidaurreta
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Rebeca Echeverría-Chasco
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | | | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - María A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|