1
|
Wang S, Wang Y, Li Z, Zhao Y, Zhang Y, Varray F. Investigating the three-dimensional myocardial micro-architecture in the laminar structure using X-ray phase-contrast microtomography. Sci Rep 2024; 14:14329. [PMID: 38907041 PMCID: PMC11192766 DOI: 10.1038/s41598-024-65371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
A comprehensive grasp of the myocardial micro-architecture is essential for understanding diverse heart functions. This study aimed to investigate three-dimensional (3D) cardiomyocyte arrangement in the laminar structure using X-ray phase-contrast microtomography. Using the ID-19 beamline at the European Synchrotron Radiation Facility, we imaged human left ventricular (LV) wall transparietal samples and reconstructed them with an isotropic voxel edge length of 3.5 μm. From the reconstructed volumes, we extracted different regions to analyze the orientation distribution of local cardiomyocyte aggregates, presenting findings in terms of helix and intrusion angles. In regions containing one sheetlet population, we observed cardiomyocyte aggregates running along the local LV wall's radial direction at the border of sheetlets, branching and merging into a complex network around connecting points of different sheetlets, and bending to accommodate vessel passages. In regions with two sheetlet populations, the helix angle of local cardiomyocyte aggregates experiences a nonmonotonic change, and some cardiomyocyte aggregates run along the local radial direction. X-ray phase-contrast microtomography is a valuable technique for investigating the 3D local myocardial architecture at microscopic level. The arrangement of local cardiomyocyte aggregates in the LV wall proves to be both regional and complex, intricately linked to the local laminar structure.
Collapse
Affiliation(s)
- Shunli Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology (HIT), Harbin, 150080, China.
| | - Yan Wang
- Department of Medical Engineering, Strategic Support Force Xingcheng Special Duty Sanatorium, Xingcheng, 125100, China
| | - Zhaorui Li
- School of Instrumentation Science and Engineering, Harbin Institute of Technology (HIT), Harbin, 150080, China
| | - Yifei Zhao
- System Engineering Research Department, Beijing Institute of Aerospace Automatic Controls, Beijing, 100070, China
| | - Ying Zhang
- System Engineering Research Department, Beijing Institute of Aerospace Automatic Controls, Beijing, 100070, China
| | - François Varray
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1206, INSA-Lyon, Université Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
2
|
Wang S, Li Z, Yuan F, Varray F. Use of the intrusion angle to describe the radial orientation of local cardiomyocytes in the left ventricle. J Morphol 2023; 284:e21650. [PMID: 37990764 DOI: 10.1002/jmor.21650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 11/23/2023]
Abstract
The projected transverse angle and the nonprojected intrusion angle can be used to describe the radial orientation of local cardiomyocytes in the left ventricle wall, although to date their descriptive relevance has not been demonstrated. This paper compares the evolution of the transverse angle and the intrusion angle in five left ventricle wall samples, and investigates in more detail their respective behaviors when the nonprojected helical angle varies. We show that the intrusion angle avoids the "projection" effect, and contrary to the transverse angle, it remains stable whatever the values taken by the nonprojected helical angle, even when this approaches 90°. The intrusion angle is the better choice, rather than the transverse angle, in describing the radial orientation of local cardiomyocytes. Furthermore, the oscillation of the intrusion angle in the samples is assessed, whose results indicate that the intrusion angle's oscillation amplitude and period are regional and related to the local tissue architecture.
Collapse
Affiliation(s)
- Shunli Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Precision Instrument Research Institute, Harbin, China
| | - Zhaorui Li
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Precision Instrument Research Institute, Harbin, China
| | - Feng Yuan
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Precision Instrument Research Institute, Harbin, China
| | - François Varray
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220 U1294, CREATIS (Centre de Researche en Acquisition et Traitement de I'Image pour la Santé), Lyon, France
| |
Collapse
|
3
|
Dileep D, Syed TA, Sloan TFW, Dhandapany PS, Siddiqi K, Sirajuddin M. Cardiomyocyte orientation recovery at micrometer scale reveals long-axis fiber continuum in heart walls. EMBO J 2023; 42:e113288. [PMID: 37671467 PMCID: PMC10548172 DOI: 10.15252/embj.2022113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
Coordinated cardiomyocyte contraction drives the mammalian heart to beat and circulate blood. No consensus model of cardiomyocyte geometrical arrangement exists, due to the limited spatial resolution of whole heart imaging methods and the piecemeal nature of studies based on histological sections. By combining microscopy and computer vision, we produced the first-ever three-dimensional cardiomyocyte orientation reconstruction across mouse ventricular walls at the micrometer scale, representing a gain of three orders of magnitude in spatial resolution. We recovered a cardiomyocyte arrangement aligned to the long-axis direction of the outer ventricular walls. This cellular network lies in a thin shell and forms a continuum with longitudinally arranged cardiomyocytes in the inner walls, with a complex geometry at the apex. Our reconstruction methods can be applied at fine spatial scales to further understanding of heart wall electrical function and mechanics, and set the stage for the study of micron-scale fiber remodeling in heart disease.
Collapse
Affiliation(s)
- Drisya Dileep
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
- The University of Trans‐Disciplinary Health Sciences and Technology (TDU)BengaluruIndia
| | - Tabish A Syed
- School of Computer Science and Centre for Intelligent MachinesMcGill University, and MILA – Québec AI InstituteMontréalQCCanada
| | | | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
| | - Kaleem Siddiqi
- School of Computer Science and Centre for Intelligent MachinesMcGill University, and MILA – Québec AI InstituteMontréalQCCanada
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
| |
Collapse
|
4
|
Xu X, Hu J, Zheng Y, Liu Y, Cui Z, Liang D, Zhu Y. Slice-specific tracking for free-breathing diffusion tensor cardiac MRI. NMR IN BIOMEDICINE 2023:e4922. [PMID: 36914257 DOI: 10.1002/nbm.4922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Diffusion tensor cardiac magnetic resonance (DT-CMR) imaging has great potential to characterize myocardial microarchitecture. However, its accuracy is limited by respiratory and cardiac motion and long scan times. Here, we develop and evaluate a slice-specific tracking method to improve the efficiency and accuracy of DT-CMR acquisition during free breathing. METHODS Coronal images were obtained along with signals from a diaphragmatic navigator. Respiratory and slice displacements were obtained from the navigator signals and coronal images, respectively, and these displacements were fitted with a linear model to obtain the slice-specific tracking factors. This method was evaluated in DT-CMR examinations of 17 healthy subjects, and the results were compared with those obtained using a fixed tracking factor of 0.6. DT-CMR with breath-holding was used for reference. Quantitative and qualitative evaluation methods were used to analyze the performance of the slice-specific tracking method and the consistency between the obtained diffusion parameters. RESULTS In the study, the slice-specific tracking factors showed an upward trend from the basal to the apical slice. Residual in-plane movements were lower in slice-specific tracking than in fixed-factor tracking (RMSE: 2.748 ± 1.171 versus 5.983 ± 2.623, P < 0.001). The diffusion parameters obtained using slice-specific tracking were not significantly different from those obtained from breath-holding acquisition (P > 0.05). CONCLUSION In free-breathing DT-CMR imaging, the slice-specific tracking method reduced misalignment of the acquired slices. The diffusion parameters obtained using this approach were consistent with those obtained with the breath-holding technique.
Collapse
Affiliation(s)
- Xi Xu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Junpu Hu
- United Imaging Healthcare, Shanghai, China
| | - Yijia Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyuan Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhuoxu Cui
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Wang S, Cui J, Jing Y, Varray F. Oscillation of the orientation of cardiomyocyte aggregates in human left ventricle free wall. J Anat 2023; 242:373-386. [PMID: 36395157 PMCID: PMC9919520 DOI: 10.1111/joa.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Orientation of local cardiomyocyte aggregates in the human left ventricle free wall experiences an oscillation in the laminar structure regions, besides its gradual change trend. We described this oscillation using five transmural samples imaged at the European Synchrotron Radiation Facility with an isotropic voxel size of 3.5 × 3.5 × 3.5 μm3 . In the reconstructed volume of each sample, we manually selected a region containing a regular laminar structure as the region of interest and measured the distribution of the orientation of local cardiomyocyte aggregates inside using a Fourier-based method. Then, we extracted the gradual change part of the orientation of cardiomyocyte aggregates with a three-dimensional centered Gaussian filter and measured the angle between the original orientation vector of local cardiomyocyte aggregates and its gradual change part. Further, we assessed the measured angles in different local coordinates. The results indicate that the oscillation amplitude of the orientation of cardiomyocyte aggregates is regional in the left ventricle wall, which may promote our understanding of the rearrangement mechanism of the cardiomyocyte aggregates and provide a new biomarker to study the heart physiological status.
Collapse
Affiliation(s)
- Shunli Wang
- Center of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China
| | - Junning Cui
- Center of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China
| | - Yuhan Jing
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220 U1294, Lyon, France
| | - François Varray
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220 U1294, Lyon, France
| |
Collapse
|
6
|
Wang S, Varray F, Liu W, Clarysse P, Magnin IE. Measurement of local orientation of cardiomyocyte aggregates in human left ventricle free wall samples using X-ray phase-contrast microtomography. Med Image Anal 2021; 75:102269. [PMID: 34775279 DOI: 10.1016/j.media.2021.102269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022]
Abstract
Most cardiomyocytes in the left ventricle wall are grouped in aggregates of four to five units that are quasi-parallel to each other. When one or more "cardiomyocyte aggregates" are delimited by two cleavage planes, this defines a "sheetlet" that can be considered as a "work unit" that contributes to the thickening of the wall during the cardiac cycle. In this paper, we introduce the skeleton method to measure the local three-dimensional (3D) orientation of cardiomyocyte aggregates in the sheetlets in three steps: data segmentation; extraction of the skeleton of the sheetlets; and calculation of the local orientation of the cardiomyocyte aggregates inside the sheetlets. These data include a series of virtual tissue volumes and five transmural human left ventricle free wall samples, imaged with 3D synchrotron radiation phase-contrast microtomography, and reconstructed with a 3.5×3.5×3.5μm3 voxel size. We computed the local orientation of the cardiomyocyte aggregates inside the sheetlets with a working window of 112×112×112μm3 in size. These data demonstrate that the skeleton method can provide accurate 3D measurements and reliable screening of the 3D evolution of the orientation of cardiomyocyte aggregates within the sheetlets. We showed that in regions that contain one population of quasi-parallel sheetlets, the orientation of the cardiomyocyte aggregates undergo "oscillations" along the perpendicular direction of the sheetlets. In regions that contain two populations of sheetlets with a different angular range, we demonstrate some discontinuity of the helix angle of the cardiomyocyte aggregates at the interface between the two populations.
Collapse
Affiliation(s)
- Shunli Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
| | - François Varray
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
| | - Wanyu Liu
- Sino European School of Technology, Shanghai University, Shanghai 200444, China.
| | - Patrick Clarysse
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
| | - Isabelle E Magnin
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France.
| |
Collapse
|
7
|
Sharifi H, Mann CK, Rockward AL, Mehri M, Mojumder J, Lee LC, Campbell KS, Wenk JF. Multiscale simulations of left ventricular growth and remodeling. Biophys Rev 2021; 13:729-746. [PMID: 34777616 PMCID: PMC8555068 DOI: 10.1007/s12551-021-00826-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocytes can adapt their size, shape, and orientation in response to altered biomechanical or biochemical stimuli. The process by which the heart undergoes structural changes-affecting both geometry and material properties-in response to altered ventricular loading, altered hormonal levels, or mutant sarcomeric proteins is broadly known as cardiac growth and remodeling (G&R). Although it is likely that cardiac G&R initially occurs as an adaptive response of the heart to the underlying stimuli, prolonged pathological changes can lead to increased risk of atrial fibrillation, heart failure, and sudden death. During the past few decades, computational models have been extensively used to investigate the mechanisms of cardiac G&R, as a complement to experimental measurements. These models have provided an opportunity to quantitatively study the relationships between the underlying stimuli (primarily mechanical) and the adverse outcomes of cardiac G&R, i.e., alterations in ventricular size and function. State-of-the-art computational models have shown promise in predicting the progression of cardiac G&R. However, there are still limitations that need to be addressed in future works to advance the field. In this review, we first outline the current state of computational models of cardiac growth and myofiber remodeling. Then, we discuss the potential limitations of current models of cardiac G&R that need to be addressed before they can be utilized in clinical care. Finally, we briefly discuss the next feasible steps and future directions that could advance the field of cardiac G&R.
Collapse
Affiliation(s)
- Hossein Sharifi
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
| | - Charles K. Mann
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
| | - Alexus L. Rockward
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
| | - Mohammad Mehri
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
| | - Joy Mojumder
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI USA
| | - Lik-Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI USA
| | - Kenneth S. Campbell
- Department of Physiology & Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY USA
| | - Jonathan F. Wenk
- Department of Mechanical Engineering, University of Kentucky, 269 Ralph G. Anderson Building, Lexington, KY 40506-0503 USA
- Department of Surgery, University of Kentucky, Lexington, KY USA
| |
Collapse
|
8
|
Tornifoglio B, Stone AJ, Johnston RD, Shahid SS, Kerskens C, Lally C. Diffusion tensor imaging and arterial tissue: establishing the influence of arterial tissue microstructure on fractional anisotropy, mean diffusivity and tractography. Sci Rep 2020; 10:20718. [PMID: 33244026 PMCID: PMC7693170 DOI: 10.1038/s41598-020-77675-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
This study investigates diffusion tensor imaging (DTI) for providing microstructural insight into changes in arterial tissue by exploring how cell, collagen and elastin content effect fractional anisotropy (FA), mean diffusivity (MD) and tractography. Five ex vivo porcine carotid artery models (n = 6 each) were compared-native, fixed native, collagen degraded, elastin degraded and decellularised. Vessels were imaged at 7 T using a DTI protocol with b = 0 and 800 s/mm2 and 10 isotopically distributed directions. FA and MD were evaluated in the vessel media and compared across models. FA values measured in native (p < 0.0001), fixed native (p < 0.0001) and collagen degraded (p = 0.0018, p = 0.0016, respectively) were significantly higher than those in elastin degraded and decellularised arteries. Native and fixed native had significantly lower MD values than elastin degraded (p < 0.0001) and decellularised tissue (p = 0.0032, p = 0.0003, respectively). Significantly lower MD was measured in collagen degraded compared with the elastin degraded model (p = 0.0001). Tractography yielded helically arranged tracts for native and collagen degraded vessels only. FA, MD and tractography were found to be highly sensitive to changes in the microstructural composition of arterial tissue, specifically pointing to cell, not collagen, content as the dominant source of the measured anisotropy in the vessel wall.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A J Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R D Johnston
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - S S Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - C Kerskens
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Agger P, Stephenson RS. Assessing Myocardial Architecture: The Challenges and Controversies. J Cardiovasc Dev Dis 2020; 7:jcdd7040047. [PMID: 33137874 PMCID: PMC7711767 DOI: 10.3390/jcdd7040047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
In recent decades, investigators have strived to describe and quantify the orientation of the cardiac myocytes in an attempt to classify their arrangement in healthy and diseased hearts. There are, however, striking differences between the investigations from both a technical and methodological standpoint, thus limiting their comparability and impeding the drawing of appropriate physiological conclusions from the structural assessments. This review aims to elucidate these differences, and to propose guidance to establish methodological consensus in the field. The review outlines the theory behind myocyte orientation analysis, and importantly has identified pronounced differences in the definitions of otherwise widely accepted concepts of myocytic orientation. Based on the findings, recommendations are made for the future design of studies in the field of myocardial morphology. It is emphasised that projection of myocyte orientations, before quantification of their angulation, introduces considerable bias, and that angles should be assessed relative to the epicardial curvature. The transmural orientation of the cardiomyocytes should also not be neglected, as it is an important determinant of cardiac function. Finally, there is considerable disagreement in the literature as to how the orientation of myocardial aggregates should be assessed, but to do so in a mathematically meaningful way, the normal vector of the aggregate plane should be utilised.
Collapse
Affiliation(s)
- Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, 8220 Aarhus N, Denmark
- Department of Pediatrics, Randers Regional Hospital, Skovlyvej 15, 8930 Randers NE, Denmark
- Correspondence:
| | - Robert S. Stephenson
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
10
|
Jensen B, Christoffels VM, Moorman AFM. An Appreciation of Anatomy in the Molecular World. J Cardiovasc Dev Dis 2020; 7:E44. [PMID: 33076272 PMCID: PMC7712948 DOI: 10.3390/jcdd7040044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
Robert H. Anderson is one of the most important and accomplished cardiac anatomists of the last decades, having made major contributions to our understanding of the anatomy of normal hearts and the pathologies of acquired and congenital heart diseases. While cardiac anatomy as a research discipline has become largely subservient to molecular biology, anatomists like Professor Anderson demonstrate anatomy has much to offer. Here, we provide cases of early anatomical insights on the heart that were rediscovered, and expanded on, by molecular techniques: migration of neural crest cells to the heart was deduced from histological observations (1908) and independently shown again with experimental interventions; pharyngeal mesoderm is added to the embryonic heart (1973) in what is now defined as the molecularly distinguishable second heart field; chambers develop from the heart tube as regional pouches in what is now considered the ballooning model by the molecular identification of regional differentiation and proliferation. The anatomical discovery of the conduction system by Purkinje, His, Tawara, Keith, and Flack is a special case because the main findings were never neglected in later molecular studies. Professor Anderson has successfully demonstrated that sound knowledge of anatomy is indispensable for proper understanding of cardiac development.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands; (V.M.C.); (A.F.M.M.)
| | | | | |
Collapse
|