1
|
de Godoy LL, Rajan A, Banihashemi A, Patel T, Desai A, Bagley S, Brem S, Chawla S, Mohan S. Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model. Brain Sci 2025; 15:146. [PMID: 40002479 PMCID: PMC11852837 DOI: 10.3390/brainsci15020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose: Early treatment response assessments are crucial, and the results are known to better correlate with prognosis and survival outcomes. The present study was conducted to differentiate true progression (TP) from pseudoprogression (PsP) in long-term-surviving glioblastoma patients using our previously established multiparametric MRI-based predictive model, as well as to identify clinical factors impacting survival outcomes in these patients. Methods: We report six patients with glioblastoma that had an overall survival longer than 5 years. When tumor specimens were available from second-stage surgery, histopathological analyses were used to classify between TP (>25% characteristics of malignant neoplasms; n = 2) and PsP (<25% characteristics of malignant neoplasms; n = 2). In the absence of histopathology, modified RANO criteria were assessed to determine the presence of TP (n = 1) or PsP (n = 1). The predictive probabilities (PPs) of tumor progression were measured from contrast-enhancing regions of neoplasms using a multiparametric MRI-based prediction model. Subsequently, these PP values were used to define each lesion as TP (PP ≥ 50%) or PsP (PP < 50%). Additionally, detailed clinical information was collected. Results: Our predictive model correctly identified all patients with TP (n = 3) and PsP (n = 3) cases, reflecting a significant concordance between histopathology/modified RANO criteria and PP values. The overall survival varied from 5.1 to 12.3 years. Five of the six glioblastoma patients were MGMT promoter methylated. All patients were female, with a median age of 56 years. Moreover, all six patients had a good functional status (KPS ≥ 70), underwent near-total/complete resection, and received alternative therapies. Conclusions: Multiparametric MRI can aid in assessing treatment response in long-term-surviving glioblastoma patients.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Archith Rajan
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Amir Banihashemi
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Thara Patel
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (T.P.); (S.B.)
| | - Arati Desai
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Bagley
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Brem
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (T.P.); (S.B.)
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanjeev Chawla
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Suyash Mohan
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| |
Collapse
|
2
|
Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int J Mol Sci 2025; 26:917. [PMID: 39940686 PMCID: PMC11817476 DOI: 10.3390/ijms26030917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemoradiotherapy, the prognosis for glioblastoma multiforme (GBM) and brain metastases remains poor, underscoring the need for innovative diagnostic strategies. This review highlights recent advancements in imaging techniques, liquid biopsies, and artificial intelligence (AI) applications addressing current diagnostic challenges. Advanced imaging techniques, including diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS), improve the differentiation of tumor progression from treatment-related changes. Additionally, novel positron emission tomography (PET) radiotracers, such as 18F-fluoropivalate, 18F-fluoroethyltyrosine, and 18F-fluluciclovine, facilitate metabolic profiling of high-grade gliomas. Liquid biopsy, a minimally invasive technique, enables real-time monitoring of biomarkers such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), circulating tumor cells (CTCs), and tumor-educated platelets (TEPs), enhancing diagnostic precision. AI-driven algorithms, such as convolutional neural networks, integrate diagnostic tools to improve accuracy, reduce interobserver variability, and accelerate clinical decision-making. These innovations advance personalized neuro-oncological care, offering new opportunities to improve outcomes for patients with central nervous system tumors. We advocate for future research integrating these tools into clinical workflows, addressing accessibility challenges, and standardizing methodologies to ensure broad applicability in neuro-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (J.R.); (N.G.); (S.K.); (A.N.-T.); (R.S.)
| |
Collapse
|
3
|
Feng Q, Xiang W, Fan Y, Li J, Jing X, Ji X, Han T, Xia S. Enhancement of the nontumor component in newly diagnosed glioblastoma as a more accurate predictor of local recurrence location: a multicenter study. Quant Imaging Med Surg 2025; 15:299-313. [PMID: 39839007 PMCID: PMC11744104 DOI: 10.21037/qims-24-1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
Background Although the spatial heterogeneity of glioblastoma (GBM) can be clearly mapped by the habitats generated by magnetic resonance imaging (MRI), the means to accurately predicting the spatial location of local recurrence (SLLR) remains a significant challenge. The aim of this study was to identify the different degrees enhancement of GBM, including the nontumor component and tumor component, and determine their relationship with SLLR. Methods A retrospective analysis was performed from three tertiary medical centers, totaling 728 patients with 109 radiation-induced temporal lobe necrosis (TLN) of nasopharyngeal carcinoma (NPC) and 619 with GBM. The spatial location of nontumor component enhancement (SLNTE) and the spatial location of tumor component enhancement (SLTE) for the preoperative images of patients with GBM were identified using TLN as the nontumor component reference by clustering analysis, and then their relationship with the SLLR was analyzed. Decision tree models of 10-fold cross-validation based on SLNTE and SLTE built to predict the SLLR. The area under the curve (AUC) was used to evaluate the predictive efficacy of these models. Results The SLNTE had a stronger spatial relationship with SLLR than did SLTE (χ2=4.77; P=0.029). In data set 3, both the SLNTE and SLTE were associated with the SLLR (rSLNTE=0.70, P<0.001; rSLTE=0.34, P=0.005). In data set 4, the SLLR was correlated with SLNTE but not with SLTE (rSLNTE=0.59, P=0.029; rSLTE=0.20, P=0.50). In data sets 3 and 4, the SLNTE-based decision tree models predicted the SLLR with 81% and 79% accuracy, respectively, and the AUC values were greater than 0.80 and 0.75, respectively. Meanwhile, the SLTE-based decision tree models predicted the SLLR with 72% and 50% accuracy, respectively, with AUC values of 0.70 and 0.60, respectively. Conclusions Radiation-induced TLN of NPC is a highly effective reference indicator for detecting nontumor components. The tumor periphery adjacent to the nontumor component enhancement of GBM may be associated with a higher risk of local recurrence, which may provide a more accurate imaging basis for performing supertotal resection.
Collapse
Affiliation(s)
- Quanzhi Feng
- Department of Radiology, The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, China
| | - Wang Xiang
- Department of Radiology, The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhan Fan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Xiyue Jing
- Institute of Neurosurgery, Tianjin Huanhu Hospital, Tianjin University, Tianjin, China
| | - Xiaodong Ji
- Department of Radiology, Medical Imaging Institute of Tianjin, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, China
| | - Shuang Xia
- Department of Radiology, Medical Imaging Institute of Tianjin, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Sanchez I, Rahman R. Radiogenomics as an Integrated Approach to Glioblastoma Precision Medicine. Curr Oncol Rep 2024; 26:1213-1222. [PMID: 39009914 PMCID: PMC11480134 DOI: 10.1007/s11912-024-01580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW Isocitrate dehydrogenase wild-type glioblastoma is the most aggressive primary brain tumour in adults. Its infiltrative nature and heterogeneity confer a dismal prognosis, despite multimodal treatment. Precision medicine is increasingly advocated to improve survival rates in glioblastoma management; however, conventional neuroimaging techniques are insufficient in providing the detail required for accurate diagnosis of this complex condition. RECENT FINDINGS Advanced magnetic resonance imaging allows more comprehensive understanding of the tumour microenvironment. Combining diffusion and perfusion magnetic resonance imaging to create a multiparametric scan enhances diagnostic power and can overcome the unreliability of tumour characterisation by standard imaging. Recent progress in deep learning algorithms establishes their remarkable ability in image-recognition tasks. Integrating these with multiparametric scans could transform the diagnosis and monitoring of patients by ensuring that the entire tumour is captured. As a corollary, radiomics has emerged as a powerful approach to offer insights into diagnosis, prognosis, treatment, and tumour response through extraction of information from radiological scans, and transformation of these tumour characteristics into quantitative data. Radiogenomics, which links imaging features with genomic profiles, has exhibited its ability in characterising glioblastoma, and determining therapeutic response, with the potential to revolutionise management of glioblastoma. The integration of deep learning algorithms into radiogenomic models has established an automated, highly reproducible means to predict glioblastoma molecular signatures, further aiding prognosis and targeted therapy. However, challenges including lack of large cohorts, absence of standardised guidelines and the 'black-box' nature of deep learning algorithms, must first be overcome before this workflow can be applied in clinical practice.
Collapse
Affiliation(s)
- Isabella Sanchez
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ruman Rahman
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
5
|
Li K, Zhu Q, Yang J, Zheng Y, Du S, Song M, Peng Q, Yang R, Liu Y, Qi L. Imaging and Liquid Biopsy for Distinguishing True Progression From Pseudoprogression in Gliomas, Current Advances and Challenges. Acad Radiol 2024; 31:3366-3383. [PMID: 38614827 DOI: 10.1016/j.acra.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China.; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qihui Zhu
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Junyi Yang
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yin Zheng
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Siyuan Du
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Meihui Song
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qian Peng
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Ling Qi
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
6
|
Ungan G, Pons-Escoda A, Ulinic D, Arús C, Ortega-Martorell S, Olier I, Vellido A, Majós C, Julià-Sapé M. Early pseudoprogression and progression lesions in glioblastoma patients are both metabolically heterogeneous. NMR IN BIOMEDICINE 2024; 37:e5095. [PMID: 38213096 DOI: 10.1002/nbm.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
The standard treatment in glioblastoma includes maximal safe resection followed by concomitant radiotherapy plus chemotherapy and adjuvant temozolomide. The first follow-up study to evaluate treatment response is performed 1 month after concomitant treatment, when contrast-enhancing regions may appear that can correspond to true progression or pseudoprogression. We retrospectively evaluated 31 consecutive patients at the first follow-up after concomitant treatment to check whether the metabolic pattern assessed with multivoxel MRS was predictive of treatment response 2 months later. We extracted the underlying metabolic patterns of the contrast-enhancing regions with a blind-source separation method and mapped them over the reference images. Pattern heterogeneity was calculated using entropy, and association between patterns and outcomes was measured with Cramér's V. We identified three distinct metabolic patterns-proliferative, necrotic, and responsive, which were associated with status 2 months later. Individually, 70% of the patients showed metabolically heterogeneous patterns in the contrast-enhancing regions. Metabolic heterogeneity was not related to the regions' size and only stable patients were less heterogeneous than the rest. Contrast-enhancing regions are also metabolically heterogeneous 1 month after concomitant treatment. This could explain the reported difficulty in finding robust pseudoprogression biomarkers.
Collapse
Affiliation(s)
- Gülnur Ungan
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Albert Pons-Escoda
- Grup de Neuro-oncologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Daniel Ulinic
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Ivan Olier
- Data Science Research Centre, Liverpool John Moores University (LJMU), Liverpool, UK
| | - Alfredo Vellido
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- IDEAI-UPC Research Center, UPC BarcelonaTech, Barcelona, Spain
| | - Carles Majós
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Grup de Neuro-oncologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
7
|
Kong Z, Li Z, Chen J, Shi Y, Li N, Ma W, Wang Y, Yang Z, Liu Z. A histogram of [ 18F]BBPA PET imaging differentiates non-neoplastic lesions from malignant brain tumors. EJNMMI Res 2024; 14:12. [PMID: 38305994 PMCID: PMC10837405 DOI: 10.1186/s13550-024-01069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Junyi Chen
- National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, BeijingBeijing, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Zhibo Liu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
- National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, BeijingBeijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
8
|
Yadav VK, Mohan S, Agarwal S, de Godoy LL, Rajan A, Nasrallah MP, Bagley SJ, Brem S, Loevner LA, Poptani H, Singh A, Chawla S. Distinction of pseudoprogression from true progression in glioblastomas using machine learning based on multiparametric magnetic resonance imaging and O 6-methylguanine-methyltransferase promoter methylation status. Neurooncol Adv 2024; 6:vdae159. [PMID: 39502470 PMCID: PMC11535496 DOI: 10.1093/noajnl/vdae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Background It is imperative to differentiate true progression (TP) from pseudoprogression (PsP) in glioblastomas (GBMs). We sought to investigate the potential of physiologically sensitive quantitative parameters derived from diffusion and perfusion magnetic resonance imaging (MRI), and molecular signature combined with machine learning in distinguishing TP from PsP in GBMs in the present study. Methods GBM patients (n = 93) exhibiting contrast-enhancing lesions within 6 months after completion of standard treatment underwent 3T MRI. Final data analyses were performed on 75 patients as O6-methylguanine-DNA-methyltransferase (MGMT) status was available only from these patients. Subsequently, patients were classified as TP (n = 55) or PsP (n = 20) based on histological features or mRANO criteria. Quantitative parameters were computed from contrast-enhancing regions of neoplasms. PsP datasets were artificially augmented to achieve balanced class distribution in 2 groups (TP and PsP). A random forest algorithm was applied to select the optimized features. The data were randomly split into training and testing subsets in an 8:2 ratio. To develop a robust prediction model in distinguishing TP from PsP, several machine-learning classifiers were employed. The cross-validation and receiver operating characteristic (ROC) curve analyses were performed to determine the diagnostic performance. Results The quadratic support vector machine was found to be the best classifier in distinguishing TP from PsP with a training accuracy of 91%, cross-validation accuracy of 86%, and testing accuracy of 85%. Additionally, ROC analysis revealed an accuracy of 85%, sensitivity of 70%, and specificity of 100%. Conclusions Machine learning using quantitative multiparametric MRI may be a promising approach to distinguishing TP from PsP in GBMs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumeet Agarwal
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
- Department of Electical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Archith Rajan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Bagley
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Young JS, Al-Adli N, Scotford K, Cha S, Berger MS. Pseudoprogression versus true progression in glioblastoma: what neurosurgeons need to know. J Neurosurg 2023; 139:748-759. [PMID: 36790010 PMCID: PMC10412732 DOI: 10.3171/2022.12.jns222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 02/16/2023]
Abstract
Management of patients with glioblastoma (GBM) is complex and involves implementing standard therapies including resection, radiation therapy, and chemotherapy, as well as novel immunotherapies and targeted small-molecule inhibitors through clinical trials and precision medicine approaches. As treatments have advanced, the radiological and clinical assessment of patients with GBM has become even more challenging and nuanced. Advances in spatial resolution and both anatomical and physiological information that can be derived from MRI have greatly improved the noninvasive assessment of GBM before, during, and after therapy. Identification of pseudoprogression (PsP), defined as changes concerning for tumor progression that are, in fact, transient and related to treatment response, is critical for successful patient management. These temporary changes can produce new clinical symptoms due to mass effect and edema. Differentiating this entity from true tumor progression is a major decision point in the patient's management and prognosis. Providers may choose to start an alternative therapy, transition to a clinical trial, consider repeat resection, or continue with the current therapy in hopes of resolution. In this review, the authors describe the invasive and noninvasive techniques neurosurgeons need to be aware of to identify PsP and facilitate surgical decision-making.
Collapse
Affiliation(s)
- Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Nadeem Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California
- School of Medicine, Texas Christian University, Fort Worth, Texas
| | - Katie Scotford
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Soonmee Cha
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
10
|
Özdemir İ, Kamson DO, Etyemez S, Blair L, Lin DDM, Barker PB. Downfield Proton MRSI at 3 Tesla: A Pilot Study in Human Brain Tumors. Cancers (Basel) 2023; 15:4311. [PMID: 37686587 PMCID: PMC10486526 DOI: 10.3390/cancers15174311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE To investigate the use of 3D downfield proton magnetic resonance spectroscopic imaging (DF-MRSI) for evaluation of tumor recurrence in patients with glioblastoma (GBM). METHODS Seven patients (4F, age range 44-65 and mean ± standard deviation 59.3 ± 7.5 years) with previously treated GBM were scanned using a recently developed 3D DF-MRSI sequence at 3T. Short TE 3D DF-MRSI and water reference 3D-MRSI scans were collected with a nominal spatial resolution of 0.7 cm3. DF volume data in eight slices covered 12 cm of brain in the cranio-caudal axis. Data were analyzed using the 'LCModel' program and a basis set containing nine peaks ranging in frequency between 6.83 to 8.49 ppm. The DF8.18 (assigned to amides) and DF7.90 peaks were selected for the creation of metabolic images and statistical analysis. Longitudinal MR images and clinical history were used to classify brain lesions as either recurrent tumor or treatment effect, which may include necrosis. DF-MRSI data were compared between lesion groups (recurrent tumor, treatment effect) and normal-appearing brain. RESULTS Of the seven brain tumor patients, two were classified as having recurrent tumor and the rest were classified as treatment effect. Amide metabolite levels from recurrent tumor regions were significantly (p < 0.05) higher compared to both normal-appearing brain and treatment effect regions. Amide levels in lesion voxels classified as treatment effect were significantly lower than normal brain. CONCLUSIONS 3D DF-MRSI in human brain tumors at 3T is feasible and was well tolerated by all patients enrolled in this preliminary study. Amide levels measured by 3D DF-MRSI were significantly different between treatment effect and tumor regrowth.
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David O. Kamson
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsay Blair
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris D. M. Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Center for Functional Brain MRI, The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
de Godoy LL, Chawla S, Brem S, Mohan S. Taming Glioblastoma in "Real Time": Integrating Multimodal Advanced Neuroimaging/AI Tools Towards Creating a Robust and Therapy Agnostic Model for Response Assessment in Neuro-Oncology. Clin Cancer Res 2023; 29:2588-2592. [PMID: 37227179 DOI: 10.1158/1078-0432.ccr-23-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The highly aggressive nature of glioblastoma carries a dismal prognosis despite aggressive multimodal therapy. Alternative treatment regimens, such as immunotherapies, are known to intensify the inflammatory response in the treatment field. Follow-up imaging in these scenarios often mimics disease progression on conventional MRI, making accurate evaluation extremely challenging. To this end, revised criteria for assessment of treatment response in high-grade gliomas were successfully proposed by the RANO Working Group to distinguish pseudoprogression from true progression, with intrinsic constraints related to the postcontrast T1-weighted MRI sequence. To address these existing limitations, our group proposes a more objective and quantifiable "treatment agnostic" model, integrating into the RANO criteria advanced multimodal neuroimaging techniques, such as diffusion tensor imaging (DTI), dynamic susceptibility contrast-perfusion weighted imaging (DSC-PWI), dynamic contrast enhanced (DCE)-MRI, MR spectroscopy, and amino acid-based positron emission tomography (PET) imaging tracers, along with artificial intelligence (AI) tools (radiomics, radiogenomics, and radiopathomics) and molecular information to address this complex issue of treatment-related changes versus tumor progression in "real-time", particularly in the early posttreatment window. Our perspective delineates the potential of incorporating multimodal neuroimaging techniques to improve consistency and automation for the assessment of early treatment response in neuro-oncology.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
de Godoy LL, Mohan S, Wang S, Nasrallah MP, Sakai Y, O'Rourke DM, Bagley S, Desai A, Loevner LA, Poptani H, Chawla S. Validation of multiparametric MRI based prediction model in identification of pseudoprogression in glioblastomas. J Transl Med 2023; 21:287. [PMID: 37118754 PMCID: PMC10142504 DOI: 10.1186/s12967-023-03941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/30/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Accurate differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastomas (GBMs) is essential for appropriate clinical management and prognostication of these patients. In the present study, we sought to validate the findings of our previously developed multiparametric MRI model in a new cohort of GBM patients treated with standard therapy in identifying PsP cases. METHODS Fifty-six GBM patients demonstrating enhancing lesions within 6 months after completion of concurrent chemo-radiotherapy (CCRT) underwent anatomical imaging, diffusion and perfusion MRI on a 3 T magnet. Subsequently, patients were classified as TP + mixed tumor (n = 37) and PsP (n = 19). When tumor specimens were available from repeat surgery, histopathologic findings were used to identify TP + mixed tumor (> 25% malignant features; n = 34) or PsP (< 25% malignant features; n = 16). In case of non-availability of tumor specimens, ≥ 2 consecutive conventional MRIs using mRANO criteria were used to determine TP + mixed tumor (n = 3) or PsP (n = 3). The multiparametric MRI-based prediction model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI derived parameters from contrast enhancing regions. In the next step, PP values were used to characterize each lesion as PsP or TP+ mixed tumor. The lesions were considered as PsP if the PP value was < 50% and TP+ mixed tumor if the PP value was ≥ 50%. Pearson test was used to determine the concordance correlation coefficient between PP values and histopathology/mRANO criteria. The area under ROC curve (AUC) was used as a quantitative measure for assessing the discriminatory accuracy of the prediction model in identifying PsP and TP+ mixed tumor. RESULTS Multiparametric MRI model correctly predicted PsP in 95% (18/19) and TP+ mixed tumor in 57% of cases (21/37) with an overall concordance rate of 70% (39/56) with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.56; p < 0.001). The ROC analyses revealed an accuracy of 75.7% in distinguishing PsP from TP+ mixed tumor. Leave-one-out cross-validation test revealed that 73.2% of cases were correctly classified as PsP and TP + mixed tumor. CONCLUSIONS Our multiparametric MRI based prediction model may be helpful in identifying PsP in GBM patients.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumei Wang
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Sakai
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Bagley
- Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Desai
- Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laurie A Loevner
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Sanjeev Chawla
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Cruz N, Herculano-Carvalho M, Roque D, Faria CC, Cascão R, Ferreira HA, Reis CP, Matela N. Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15030928. [PMID: 36986790 PMCID: PMC10054750 DOI: 10.3390/pharmaceutics15030928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains a challenging disease, as it is the most common and deadly brain tumour in adults and has no curative solution and an overall short survival time. This incurability and short survival time means that, despite its rarity (average incidence of 3.2 per 100,000 persons), there has been an increased effort to try to treat this disease. Standard of care in newly diagnosed glioblastoma is maximal tumour resection followed by initial concomitant radiotherapy and temozolomide (TMZ) and then further chemotherapy with TMZ. Imaging techniques are key not only to diagnose the extent of the affected tissue but also for surgery planning and even for intraoperative use. Eligible patients may combine TMZ with tumour treating fields (TTF) therapy, which delivers low-intensity and intermediate-frequency electric fields to arrest tumour growth. Nonetheless, the blood–brain barrier (BBB) and systemic side effects are obstacles to successful chemotherapy in GBM; thus, more targeted, custom therapies such as immunotherapy and nanotechnological drug delivery systems have been undergoing research with varying degrees of success. This review proposes an overview of the pathophysiology, possible treatments, and the most (not all) representative examples of the latest advancements.
Collapse
Affiliation(s)
- Nuno Cruz
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manuel Herculano-Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Diogo Roque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| | - Nuno Matela
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| |
Collapse
|
14
|
Jiang S, Guo P, Heo HY, Zhang Y, Wu J, Jin Y, Laterra J, Eberhart CG, Lim M, Blakeley JO. Radiomics analysis of amide proton transfer-weighted and structural MR images for treatment response assessment in malignant gliomas. NMR IN BIOMEDICINE 2023; 36:e4824. [PMID: 36057449 PMCID: PMC10502874 DOI: 10.1002/nbm.4824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to evaluate the value of amide proton transfer-weighted (APTw) MRI radiomic features for the differentiation of tumor recurrence from treatment effect in malignant gliomas. Eighty-six patients who had suspected tumor recurrence after completion of chemoradiation or radiotherapy, and who had APTw-MRI data acquired at 3 T, were retrospectively analyzed. Using a fluid-attenuated inversion recovery (FLAIR) image-based mask, radiomics analysis was applied to the processed APTw and structural MR images. A chi-square automatic interaction detector decision tree was used for classification analysis. Models with and without APTw features were built using the same strategy. Tenfold cross-validation was applied to obtain the overall classification performance of each model. Sixty patients were confirmed as having tumor recurrence, and the remainder were confirmed as having treatment effect, at median time points of 190 and 171 days after therapy, respectively. There were 525 radiomic features extracted from each of the processed APTw and structural MR images. Based on these, the APTw-based model yielded the highest accuracy (86.0%) for the differentiation of tumor recurrence from treatment effect, compared with 74.4%, 76.7%, 83.7%, and 76.7% for T1 w, T2 w, FLAIR, and Gd-T1 w, respectively. Model classification accuracy was 82.6% when using the combined structural MR images (T1 w, T2 w, FLAIR, Gd-T1 w), and increased to 89.5% when using these structural plus APTw images. The corresponding sensitivity and specificity were 85.0% and 76.9% for the combination of structural MR images, and 85.0% and 100% after adding APTw image features. Adding APTw-based radiomic features increased MRI accuracy in the assessment of the treatment response in post-treatment malignant gliomas.
Collapse
Affiliation(s)
- Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pengfei Guo
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yi Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jingpu Wu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuecen Jin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - John Laterra
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neurosurgery, Stanford University, Palo Alto, California, USA
| | | |
Collapse
|
15
|
Muthukumar S, Darden J, Crowley J, Witcher M, Kiser J. A Comparison of PET Tracers in Recurrent High-Grade Gliomas: A Systematic Review. Int J Mol Sci 2022; 24:ijms24010408. [PMID: 36613852 PMCID: PMC9820099 DOI: 10.3390/ijms24010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Humans with high-grade gliomas have a poor prognosis, with a mean survival time of just 12-18 months for patients who undergo standard-of-care tumor resection and adjuvant therapy. Currently, surgery and chemoradiotherapy serve as standard treatments for this condition, yet these can be complicated by the tumor location, growth rate and recurrence. Currently, gadolinium-based, contrast-enhanced magnetic resonance imaging (CE-MRI) serves as the predominant imaging modality for recurrent high-grade gliomas, but it faces several drawbacks, including its inability to distinguish tumor recurrence from treatment-related changes and its failure to reveal the entirety of tumor burden (de novo or recurrent) due to limitations inherent to gadolinium contrast. As such, alternative imaging modalities that can address these limitations, including positron emission tomography (PET), are worth pursuing. To this end, the identification of PET-based markers for use in imaging of recurrent high-grade gliomas is paramount. This review will highlight several PET radiotracers that have been implemented in clinical practice and provide a comparison between them to assess the efficacy of these tracers.
Collapse
Affiliation(s)
| | - Jordan Darden
- Carilion Clinic Neurosurgery, Roanoke, VA 24016, USA
| | | | - Mark Witcher
- Carilion Clinic Neurosurgery, Roanoke, VA 24016, USA
| | - Jackson Kiser
- Carilion Clinic Radiology, Roanoke, VA 24016, USA
- Correspondence:
| |
Collapse
|
16
|
Filippi L, Spanu A, Bagni O, Schillaci O, Palumbo B. Imaging Findings of 18F-Choline and 18F-DOPA PET/MRI in a Case of Glioblastoma Multiforme Pseudoprogression: Correlation with Clinical Outcome. Nucl Med Mol Imaging 2022; 56:245-251. [PMID: 36310833 PMCID: PMC9508299 DOI: 10.1007/s13139-022-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
We describe the case of 74-year-old-male, previously treated with fronto-parietal craniotomy due to primary glioblastoma multiforme (GBM), followed by concurrent radiation therapy (RT) and temozolomide (TMZ) chemotherapy. Magnetic resonance imaging (MRI) of the brain, at 1 month after completing RT + TMZ, depicted partial response. Three months later, the patient was submitted to a further brain MRI, that resulted doubtful for therapy induced changes (i.e., pseudoprogression). The patient, who had been previously treated with prostatectomy for prostate cancer (PC), underwent a positron emission tomography/computed tomography (PET/CT) scan with 18F-choline for PC biochemical recurrence. 18F-choline whole body PET/CT resulted negative for PC relapse, while segmental brain PET, co-registered with MRI, demonstrated increased tracer uptake corresponding to tumor boundaries. In order to solve differential diagnosis between pseudoprogression and GBM recurrence, brain PET/CT with 18F-L-dihydroxy-phenil-alanine (18F-DOPA) was subsequently performed: fused axial PET/MRI images showed increased 18F-DOPA incorporation in the peri-tumoral edema, but not in tumor boundaries, consistent with the suspicion of GBM pseudoprogression, as then confirmed by clinical and radiological follow-up.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova 3, 04100 Latina, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova 3, 04100 Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università Degli Studi Di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
17
|
Qin D, Yang G, Jing H, Tan Y, Zhao B, Zhang H. Tumor Progression and Treatment-Related Changes: Radiological Diagnosis Challenges for the Evaluation of Post Treated Glioma. Cancers (Basel) 2022; 14:cancers14153771. [PMID: 35954435 PMCID: PMC9367286 DOI: 10.3390/cancers14153771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Glioma is the most common primary malignant tumor of the adult central nervous system. Despite aggressive multimodal treatment, its prognosis remains poor. During follow-up, it remains challenging to distinguish treatment-related changes from tumor progression in treated patients with gliomas due to both share clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions). The early effective identification of tumor progression and treatment-related changes is of great significance for the prognosis and treatment of gliomas. We believe that advanced neuroimaging techniques can provide additional information for distinguishing both at an early stage. In this article, we focus on the research of magnetic resonance imaging technology and artificial intelligence in tumor progression and treatment-related changes. Finally, it provides new ideas and insights for clinical diagnosis. Abstract As the most common neuro-epithelial tumors of the central nervous system in adults, gliomas are highly malignant and easy to recurrence, with a dismal prognosis. Imaging studies are indispensable for tracking tumor progression (TP) or treatment-related changes (TRCs). During follow-up, distinguishing TRCs from TP in treated patients with gliomas remains challenging as both share similar clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions) and fulfill criteria for progression. Thus, the early identification of TP and TRCs is of great significance for determining the prognosis and treatment. Histopathological biopsy is currently the gold standard for TP and TRC diagnosis. However, the invasive nature of this technique limits its clinical application. Advanced imaging methods (e.g., diffusion magnetic resonance imaging (MRI), perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), amide proton transfer (APT) and artificial intelligence (AI)) provide a non-invasive and feasible technical means for identifying of TP and TRCs at an early stage, which have recently become research hotspots. This paper reviews the current research on using the abovementioned advanced imaging methods to identify TP and TRCs of gliomas. First, the review focuses on the pathological changes of the two entities to establish a theoretical basis for imaging identification. Then, it elaborates on the application of different imaging techniques and AI in identifying the two entities. Finally, the current challenges and future prospects of these techniques and methods are discussed.
Collapse
Affiliation(s)
- Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Hui Jing
- Department of MRI, The Six Hospital, Shanxi Medical University, Taiyuan 030008, China;
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Bin Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
18
|
Kumar M, Nanga RPR, Chawla S. Editorial: Structural, Metabolic, and Physiologic MR Imaging to Study Glioblastomas. Front Neurol 2022; 13:887027. [PMID: 35432174 PMCID: PMC9005642 DOI: 10.3389/fneur.2022.887027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Manoj Kumar
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
- *Correspondence: Manoj Kumar
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Sanjeev Chawla
| |
Collapse
|