1
|
Almodóvar-Payá C, Guardiola-Ripoll M, Giralt-López M, Oscoz-Irurozqui M, Canales-Rodríguez EJ, Madre M, Soler-Vidal J, Ramiro N, Callado LF, Arias B, Gallego C, Pomarol-Clotet E, Fatjó-Vilas M. NRN1 epistasis with BDNF and CACNA1C: mediation effects on symptom severity through neuroanatomical changes in schizophrenia. Brain Struct Funct 2024; 229:1299-1315. [PMID: 38720004 PMCID: PMC11147852 DOI: 10.1007/s00429-024-02793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024]
Abstract
The expression of Neuritin-1 (NRN1), a neurotrophic factor crucial for neurodevelopment and synaptic plasticity, is enhanced by the Brain Derived Neurotrophic Factor (BDNF). Although the receptor of NRN1 remains unclear, it is suggested that NRN1's activation of the insulin receptor (IR) pathway promotes the transcription of the calcium voltage-gated channel subunit alpha1 C (CACNA1C). These three genes have been independently associated with schizophrenia (SZ) risk, symptomatology, and brain differences. However, research on how they synergistically modulate these phenotypes is scarce. We aimed to study whether the genetic epistasis between these genes affects the risk and clinical presentation of the disorder via its effect on brain structure. First, we tested the epistatic effect of NRN1 and BDNF or CACNA1C on (i) the risk for SZ, (ii) clinical symptoms severity and functionality (onset, PANSS, CGI and GAF), and (iii) brain cortical structure (thickness, surface area and volume measures estimated using FreeSurfer) in a sample of 86 SZ patients and 89 healthy subjects. Second, we explored whether those brain clusters influenced by epistatic effects mediate the clinical profiles. Although we did not find a direct epistatic impact on the risk, our data unveiled significant effects on the disorder's clinical presentation. Specifically, the NRN1-rs10484320 x BDNF-rs6265 interplay influenced PANSS general psychopathology, and the NRN1-rs4960155 x CACNA1C-rs1006737 interaction affected GAF scores. Moreover, several interactions between NRN1 SNPs and BDNF-rs6265 significantly influenced the surface area and cortical volume of the frontal, parietal, and temporal brain regions within patients. The NRN1-rs10484320 x BDNF-rs6265 epistasis in the left lateral orbitofrontal cortex fully mediated the effect on PANSS general psychopathology. Our study not only adds clinical significance to the well-described molecular relationship between NRN1 and BDNF but also underscores the utility of deconstructing SZ into biologically validated brain-imaging markers to explore their mediation role in the path from genetics to complex clinical manifestation.
Collapse
Affiliation(s)
- Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERER (Biomedical Research Network in Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Giralt-López
- Department of Child and Adolescent Psychiatry, Germans Trias i Pujol University Hospital (HUGTP), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Red de Salud Mental de Gipuzkoa, Osakidetza-Basque Health Service, Gipuzkoa, Spain
| | - Erick Jorge Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mercè Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Mental Health, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Joan Soler-Vidal
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Benito Menni, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - Núria Ramiro
- Hospital San Rafael, Germanes Hospitalàries, Barcelona, Spain
| | - Luis F Callado
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
| | - Bárbara Arias
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Carme Gallego
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Nagappan-Chettiar S, Yasuda M, Johnson-Venkatesh EM, Umemori H. The molecular signals that regulate activity-dependent synapse refinement in the brain. Curr Opin Neurobiol 2023; 79:102692. [PMID: 36805716 PMCID: PMC10023433 DOI: 10.1016/j.conb.2023.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
The formation of appropriate synaptic connections is critical for the proper functioning of the brain. Early in development, neurons form a surplus of immature synapses. To establish efficient, functional neural networks, neurons selectively stabilize active synapses and eliminate less active ones. This process is known as activity-dependent synapse refinement. Defects in this process have been implicated in neuropsychiatric disorders such as schizophrenia and autism. Here we review the manner and mechanisms by which synapse elimination is regulated through activity-dependent competition. We propose a theoretical framework for the molecular mechanisms of synapse refinement, in which three types of signals regulate the refinement. We then describe the identity of these signals and discuss how multiple molecular signals interact to achieve appropriate synapse refinement in the brain.
Collapse
Affiliation(s)
- Sivapratha Nagappan-Chettiar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/sivapratha
| | - Masahiro Yasuda
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Murillo-García N, Barrio-Martínez S, Setién-Suero E, Soler J, Papiol S, Fatjó-Vilas M, Ayesa-Arriola R. Overlap between genetic variants associated with schizophrenia spectrum disorders and intelligence quotient: a systematic review. J Psychiatry Neurosci 2022; 47:E393-E408. [PMID: 36414327 PMCID: PMC9710545 DOI: 10.1503/jpn.220026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To study whether there is genetic overlap underlying the risk for schizophrenia spectrum disorders (SSDs) and low intelligence quotient (IQ), we reviewed and summarized the evidence on genetic variants associated with both traits. METHODS We performed this review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and preregistered it in PROSPERO. We searched the Medline databases via PubMed, PsycInfo, Web of Science and Scopus. We included studies in adults with a diagnosis of SSD that explored genetic variants (single nucleotide polymorphisms [SNPs], copy number variants [CNVs], genomic insertions or genomic deletions), estimated IQ and studied the relationship between genetic variability and both traits (SSD and IQ). We synthesized the results and assessed risk of bias using the Quality of Genetic Association Studies (Q-Genie) tool. RESULTS Fifty-five studies met the inclusion criteria (45 case-control, 9 cross-sectional, 1 cohort), of which 55% reported significant associations for genetic variants involved in IQ and SSD. The SNPs more frequently explored through candidate gene studies were in COMT, DTNBP1, BDNF and TCF4. Through genome-wide association studies, 2 SNPs in CHD7 and GATAD2A were associated with IQ in patients with SSD. The studies on CNVs suggested significant associations between structural variants and low IQ in patients with SSD. LIMITATIONS Overall, primary studies used heterogeneous IQ measurement tools and had small samples. Grey literature was not screened. CONCLUSION Genetic overlap between SSD and IQ supports the neurodevelopmental hypothesis of schizophrenia. Most of the risk polymorphisms identified were in genes relevant to brain development, neural proliferation and differentiation, and synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosa Ayesa-Arriola
- From the Research Unit in Mental Illness, Valdecilla Biomedical Research Institute, Santander, Cantabria, Spain (Murillo-García, Barrio-Martínez, Ayesa-Arriola); the Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain (Murillo-García, Ayesa-Arriola); the Faculty of Psychology, University Complutense of Madrid, Madrid, Spain (Barrio-Martínez); the Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Basque Country, Spain (Setién-Suero); the Biomedical Research Networking Center for Mental Health (CIBERSAM), Madrid, Madrid, Spain (Soler, Papiol, Fatjó-Vilas, Ayesa-Arriola); the Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain (Soler, Fatjó-Vilas); the Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain (Soler); the Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany (Papiol); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Papiol); the FIDMAG Sisters Hospitallers Research Foundation, Sant Boi de Llobregat, Barcelona, Spain (Fatjó-Vilas)
| |
Collapse
|
4
|
Sato H, Hatakeyama J, Iwasato T, Araki K, Yamamoto N, Shimamura K. Thalamocortical axons control the cytoarchitecture of neocortical layers by area-specific supply of VGF. eLife 2022; 11:67549. [PMID: 35289744 PMCID: PMC8959604 DOI: 10.7554/elife.67549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/12/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal abundance and thickness of each cortical layer are specific to each area, but how this fundamental feature arises during development remains poorly understood. While some of area-specific features are controlled by intrinsic cues such as morphogens and transcription factors, the exact influence and mechanisms of action by cues extrinsic to the cortex, in particular the thalamic axons, have not been fully established. Here, we identify a thalamus-derived factor, VGF, which is indispensable for thalamocortical axons to maintain the proper amount of layer 4 neurons in the mouse sensory cortices. This process is prerequisite for further maturation of the primary somatosensory area, such as barrel field formation instructed by a neuronal activity-dependent mechanism. Our results provide an actual case in which highly site-specific axon projection confers further regional complexity upon the target field through locally secreting signaling molecules from axon terminals.
Collapse
Affiliation(s)
- Haruka Sato
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
| | - Kimi Araki
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Utsunomiya S, Kishi Y, Tsuboi M, Kawaguchi D, Gotoh Y, Abe M, Sakimura K, Maeda K, Takemoto H. Ezh1 regulates expression of Cpg15/Neuritin in mouse cortical neurons. Drug Discov Ther 2021; 15:55-65. [PMID: 33678755 DOI: 10.5582/ddt.2021.01017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immature neurons undergo morphological and physiological maturation in order to establish neuronal networks. During neuronal maturation, a large number of genes change their transcriptional levels, and these changes may be mediated by chromatin modifiers. In this study, we found that the level of Ezh1, a component of Polycomb repressive complex 2 (PRC2), increases during neuronal maturation in mouse neocortical culture. In addition, conditional knockout of Ezh1 in post-mitotic excitatory neurons leads to downregulation of a set of genes related to neuronal maturation. Moreover, the locus encoding Cpg15/Neuritin (Nrn1), which is regulated by neuronal activity and implicated in stabilization and maturation of excitatory synapses, is a direct target of Ezh1 in cortical neurons. Together, these results suggest that elevated expression of Ezh1 contributes to maturation of cortical neurons.
Collapse
Affiliation(s)
- Shun Utsunomiya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masafumi Tsuboi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuma Maeda
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takemoto
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
CPG15/Neuritin Mimics Experience in Selecting Excitatory Synapses for Stabilization by Facilitating PSD95 Recruitment. Cell Rep 2020; 28:1584-1595.e5. [PMID: 31390571 PMCID: PMC6740334 DOI: 10.1016/j.celrep.2019.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 11/24/2022] Open
Abstract
A key feature of brain plasticity is the experience-dependent selection of optimal connections· implemented by a set of activity-regulated genes that dynamically adjust synapse strength and number. The activity-regulated gene cpg15/neuritin has been previously implicated in stabilization and maturation of excitatory synapses. Here· we combine two-photon microscopy with genetic and sensory manipulations to dissect excitatory synapse formation in vivo and examine the role of activity and CPG15 in dendritic spine formation, PSD95 recruitment, and synapse stabilization. We find that neither visual experience nor CPG15 is required for spine formation. However, PSD95 recruitment to nascent spines and their subsequent stabilization requires both. Further, cell-autonomous CPG15 expression is sufficient to replace experience in facilitating PSD95 recruitment and spine stabilization. CPG15 directly interacts with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on immature dendritic spines, suggesting a signaling mode for this small extracellular molecule acting as an experience-dependent “selector” for spine stabilization and synapse maturation. Experience plays a key role in formation and continuous optimization of brain circuits. Subramanian et al. show that the molecule CPG15/neuritin can replace experience in selecting which nascent contacts between neurons are retained, facilitating the recruitment of proteins that promote synapse maturation and stabilization.
Collapse
|
7
|
Yap EL, Greenberg ME. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 2019; 100:330-348. [PMID: 30359600 DOI: 10.1016/j.neuron.2018.10.013] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Gene transcription is the process by which the genetic codes of organisms are read and interpreted as a set of instructions for cells to divide, differentiate, migrate, and mature. As cells function in their respective niches, transcription further allows mature cells to interact dynamically with their external environment while reliably retaining fundamental information about past experiences. In this Review, we provide an overview of the field of activity-dependent transcription in the vertebrate brain and highlight contemporary work that ranges from studies of activity-dependent chromatin modifications to plasticity mechanisms underlying adaptive behaviors. We identify key gaps in knowledge and propose integrated approaches toward a deeper understanding of how activity-dependent transcription promotes the refinement and plasticity of neural circuits for cognitive function.
Collapse
Affiliation(s)
- Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Yao JJ, Zhao QR, Lu JM, Mei YA. Functions and the related signaling pathways of the neurotrophic factor neuritin. Acta Pharmacol Sin 2018; 39:1414-1420. [PMID: 29595190 PMCID: PMC6289377 DOI: 10.1038/aps.2017.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Neuritin is a member of the neurotrophic factor family, which is activated by neural activity and neurotrophins, and promotes neurite growth and branching. It has shown to play an important role in neuronal plasticity and regeneration. It is also involved in other biological processes such as angiogenesis, tumorigenesis and immunomodulation. Thus far, however, the primary mechanisms of neuritin, including whether or not it acts through a receptor or which downstream signals might be activated following binding, are not fully understood. Recent evidence suggests that neuritin may be a potential therapeutic target in several neurodegenerative diseases. This review focuses on the recent advances in studies regarding the newly identified functions of neuritin and the signaling pathways related to these functions. We also discuss current hot topics and difficulties in neuritin research.
Collapse
Affiliation(s)
- Jin-Jing Yao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qian-Ru Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun-Mei Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yan-Ai Mei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Leijon SC, Peyda S, Magnusson AK. Temporal processing capacity in auditory-deprived superior paraolivary neurons is rescued by sequential plasticity during early development. Neuroscience 2016; 337:315-330. [DOI: 10.1016/j.neuroscience.2016.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
|
10
|
Fatjó-Vilas M, Prats C, Pomarol-Clotet E, Lázaro L, Moreno C, González-Ortega I, Lera-Miguel S, Miret S, Muñoz MJ, Ibáñez I, Campanera S, Giralt-López M, Cuesta MJ, Peralta V, Ortet G, Parellada M, González-Pinto A, McKenna PJ, Fañanás L. Involvement of NRN1 gene in schizophrenia-spectrum and bipolar disorders and its impact on age at onset and cognitive functioning. World J Biol Psychiatry 2016; 17:129-39. [PMID: 26700405 DOI: 10.3109/15622975.2015.1093658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Neuritin 1 gene (NRN1) is involved in neurodevelopment processes and synaptic plasticity and its expression is regulated by brain-derived neurotrophic factor (BDNF). We aimed to investigate the association of NRN1 with schizophrenia-spectrum disorders (SSD) and bipolar disorders (BPD), to explore its role in age at onset and cognitive functioning, and to test the epistasis between NRN1 and BDNF. METHODS The study was developed in a sample of 954 SSD/BPD patients and 668 healthy subjects. Genotyping analyses included 11 SNPs in NRN1 and one functional SNP in BDNF. RESULTS The frequency of the haplotype C-C (rs645649-rs582262) was significantly increased in patients compared to controls (P = 0.0043), while the haplotype T-C-C-T-C-A (rs3763180-rs10484320-rs4960155-rs9379002-rs9405890-rs1475157) was more frequent in controls (P = 3.1 × 10(-5)). The variability at NRN1 was nominally related to changes in age at onset and to differences in intelligence quotient, in SSD patients. Epistasis between NRN1 and BDNF was significantly associated with the risk for SSD/BPD (P = 0.005). CONCLUSIONS Results suggest that: (i) NRN1 variability is a shared risk factor for both SSD and BPD, (ii) NRN1 may have a selective impact on age at onset and intelligence in SSD, and (iii) the role of NRN1 seems to be not independent of BDNF.
Collapse
Affiliation(s)
- Mar Fatjó-Vilas
- a Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain;,b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain
| | - Claudia Prats
- a Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain;,b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain
| | - Edith Pomarol-Clotet
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,c FIDMAG Germanes Hospitalàries, Research Foundation , Barcelona , Spain
| | - Luisa Lázaro
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,d Servei de Psiquiatria i Psicologia Infantil i Juvenil, Hospital Clínic de Barcelona , Barcelona , Spain ;,e Institut d'investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Departament de Psiquiatria i Psicobiologia Clínica, Facultat de Medicina, Universitat de Barcelona , Barcelona , Spain
| | - Carmen Moreno
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,f Servicio de Psiquiatría del Niño y del Adolescente , Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM); Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense , Madrid , Spain
| | - Itxaso González-Ortega
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,g Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune , Vitoria , Spain
| | - Sara Lera-Miguel
- d Servei de Psiquiatria i Psicologia Infantil i Juvenil, Hospital Clínic de Barcelona , Barcelona , Spain
| | - Salvador Miret
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,h Centre de Salut Mental d'Adults de Lleida, Servei de Psiquiatria, Salut Mental i Addiccions, Hospital Universitari Santa Maria de Lleida , Lleida , Spain
| | - Ma José Muñoz
- i Àrea d'Adolescents, Complex Assistencial en Salut Mental Benito Menni, Sant Boi De Llobregat , Spain
| | - Ignacio Ibáñez
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,j Departament de Psicologia Bàsica , Clínica i Psicobiologia, Facultat de Ciències de la Salut, Universitat Jaume I , Castelló , Spain
| | - Sílvia Campanera
- h Centre de Salut Mental d'Adults de Lleida, Servei de Psiquiatria, Salut Mental i Addiccions, Hospital Universitari Santa Maria de Lleida , Lleida , Spain
| | - Maria Giralt-López
- i Àrea d'Adolescents, Complex Assistencial en Salut Mental Benito Menni, Sant Boi De Llobregat , Spain
| | - Manuel J Cuesta
- k Servicio de Psiquiatría, Complejo Hospitalario de Navarra, Pamplona Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Victor Peralta
- k Servicio de Psiquiatría, Complejo Hospitalario de Navarra, Pamplona Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Generós Ortet
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,j Departament de Psicologia Bàsica , Clínica i Psicobiologia, Facultat de Ciències de la Salut, Universitat Jaume I , Castelló , Spain
| | - Mara Parellada
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,f Servicio de Psiquiatría del Niño y del Adolescente , Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM); Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense , Madrid , Spain
| | - Ana González-Pinto
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,g Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune , Vitoria , Spain
| | - Peter J McKenna
- b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain ;,c FIDMAG Germanes Hospitalàries, Research Foundation , Barcelona , Spain
| | - Lourdes Fañanás
- a Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain;,b Instituto De Salud Carlos III, Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Madrid , Spain
| |
Collapse
|
11
|
Pratt KG, Hiramoto M, Cline HT. An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development. Front Neural Circuits 2016; 10:79. [PMID: 27818623 PMCID: PMC5073143 DOI: 10.3389/fncir.2016.00079] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/26/2016] [Indexed: 12/01/2022] Open
Abstract
Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells (RGCs) by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review, we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds and mammals) could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish), do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus (SC) and the lateral geniculate nucleus.
Collapse
Affiliation(s)
- Kara G Pratt
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Masaki Hiramoto
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| | - Hollis T Cline
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
12
|
Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci 2014; 37:399-407. [PMID: 24910262 PMCID: PMC4113564 DOI: 10.1016/j.tins.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
Abstract
The nervous system has the amazing capacity to transform sensory experience from the environment into changes in neuronal activity that, in turn, cause long-lasting alterations in neuronal morphology. Recent findings indicate that, surprisingly, sensory experience concurrently activates molecular signaling pathways that both promote and inhibit dendritic complexity. Historically, a number of positive regulators of activity-dependent dendritic complexity have been described, whereas the list of identified negative regulators of this process is much shorter. In recent years, there has been an emerging appreciation of the importance of the Rad/Rem/Rem2/Gem/Kir (RGK) GTPases as mediators of activity-dependent structural plasticity. In the following review, we discuss the traditional view of RGK proteins, as well as our evolving understanding of the role of these proteins in instructing structural plasticity.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
13
|
Shimada T, Sugiura H, Yamagata K. Neuritin: A therapeutic candidate for promoting axonal regeneration. World J Neurol 2013; 3:138-143. [DOI: 10.5316/wjn.v3.i4.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/09/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Following injury, the axons of the mammalian central nervous system do not regenerate. Many studies have aimed at understanding the mechanisms that prevent axonal regeneration and at designing ways to overcome the obstacles preventing axonal regrowth. These studies have identified numerous proteins as promoters of axonal regeneration. In this minireviews, we focus on neuritin as a therapeutic candidate for promoting axonal regeneration. Neuritin was first identified as a neuronal-activity-inducible gene product in the rat brain. The overexpression of neuritin in neurons or the application of neuritin to neurons induces neuritogenesis, neurite arborization, and axonal elongation both in vitro and in vivo. These morphological changes are often observed during the first step of axonal regeneration. Indeed, neuritin expression increases during axonal regeneration in the peripheral nervous system (PNS). Conversely, in a mouse model of diabetes mellitus, neuritin expression decreases in the PNS, and this reduced expression may result in deficient axonal regeneration. Neuritin is induced in the hippocampal dentate gyrus after temporal lobe epilepsy or brain ischemia; however, in these conditions, neuritin induction may exacerbate brain dysfunction through mossy fiber sprouting. Together, these findings support the hypothesis that tightly controlled regulation of neuritin may be required for the treatment of each unique axonal pathology.
Collapse
|
14
|
Yao JJ, Gao XF, Chow CW, Zhan XQ, Hu CL, Mei YA. Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K+ current in rat cerebellar granule neurons. J Biol Chem 2012; 287:41534-45. [PMID: 23066017 PMCID: PMC3510849 DOI: 10.1074/jbc.m112.390260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neuritin is a new neurotrophic factor discovered in a screen to identify genes involved in activity-dependent synaptic plasticity. Neuritin also plays multiple roles in the process of neural development and synaptic plasticity. The receptors for binding neuritin and its downstream signaling effectors, however, remain unclear. Here, we report that neuritin specifically increases the densities of transient outward K(+) currents (I(A)) in rat cerebellar granule neurons (CGNs) in a time- and concentration-dependent manner. Neuritin-induced amplification of I(A) is mediated by increased mRNA and protein expression of Kv4.2, the main α-subunit of I(A). Exposure of CGNs to neuritin markedly induces phosphorylation of ERK (pERK), Akt (pAkt), and mammalian target of rapamycin (pmTOR). Neuritin-induced I(A) and increased expression of Kv4.2 are attenuated by ERK, Akt, or mTOR inhibitors. Unexpectedly, pharmacological blockade of insulin receptor, but not the insulin-like growth factor 1 receptor, abrogates the effect of neuritin on I(A) amplification and Kv4.2 induction. Indeed, neuritin activates downstream signaling effectors of the insulin receptor in CGNs and HeLa. Our data reveal, for the first time, an unanticipated role of the insulin receptor in previously unrecognized neuritin-mediated signaling.
Collapse
Affiliation(s)
- Jin-Jing Yao
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
15
|
Leslie JH, Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol 2011; 94:223-37. [PMID: 21601615 DOI: 10.1016/j.pneurobio.2011.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring.
Collapse
Affiliation(s)
- Jennifer H Leslie
- Department of Biology, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | |
Collapse
|
16
|
Vallès A, Boender AJ, Gijsbers S, Haast RAM, Martens GJM, de Weerd P. Genomewide analysis of rat barrel cortex reveals time- and layer-specific mRNA expression changes related to experience-dependent plasticity. J Neurosci 2011; 31:6140-58. [PMID: 21508239 PMCID: PMC6632955 DOI: 10.1523/jneurosci.6514-10.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/26/2011] [Accepted: 02/26/2011] [Indexed: 12/12/2022] Open
Abstract
Because of its anatomical organization, the rodent whisker-to-barrel system is an ideal model to study experience-dependent plasticity. Manipulation of sensory input causes changes in the properties of the barrels at the physiological, structural, and functional levels. However, much less is known about the molecular events underlying these changes. To explore such molecular events, we have used a genomewide approach to identify key genes and molecular pathways involved in experience-induced plasticity in the barrel cortex of adult rats. Given the natural tendency of rats to explore novel objects, exposure to an enriched environment (EE) was used to stimulate the activity of the whisker-to-barrel cortex in vivo. Microarray analysis at two different time points after EE revealed differential expression of genes encoding transcription factors, including nuclear receptors, as well as of genes involved in the regulation of synaptic plasticity, cell differentiation, metabolism, and, surprisingly, blood vessel morphogenesis. These expression differences reflect changes in somatosensory information processing because unilateral whisker clipping showed EE-induced differential expression patterns in the spared versus deprived barrel cortex. Finally, in situ hybridization revealed cortical layer patterns specific for each selected gene. Together, the present study offers the first genomewide exploration of the key genes regulated by somatosensory stimulation in the barrel cortex and thus provides a solid experimental framework for future in-depth analysis of the mechanisms underlying experience-dependent plasticity.
Collapse
Affiliation(s)
- Astrid Vallès
- Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands, and
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Arjen J. Boender
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Steef Gijsbers
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Roy A. M. Haast
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Peter de Weerd
- Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands, and
| |
Collapse
|
17
|
Loebrich S, Nedivi E. The function of activity-regulated genes in the nervous system. Physiol Rev 2009; 89:1079-103. [PMID: 19789377 DOI: 10.1152/physrev.00013.2009] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mammalian brain is plastic in the sense that it shows a remarkable capacity for change throughout life. The contribution of neuronal activity to brain plasticity was first recognized in relation to critical periods of development, when manipulating the sensory environment was found to profoundly affect neuronal morphology and receptive field properties. Since then, a growing body of evidence has established that brain plasticity extends beyond development and is an inherent feature of adult brain function, spanning multiple domains, from learning and memory to adaptability of primary sensory maps. Here we discuss evolution of the current view that plasticity of the adult brain derives from dynamic tuning of transcriptional control mechanisms at the neuronal level, in response to external and internal stimuli. We then review the identification of "plasticity genes" regulated by changes in the levels of electrical activity, and how elucidating their cellular functions has revealed the intimate role transcriptional regulation plays in fundamental aspects of synaptic transmission and circuit plasticity that occur in the brain on an every day basis.
Collapse
Affiliation(s)
- Sven Loebrich
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
18
|
Fox K. Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortex. Philos Trans R Soc Lond B Biol Sci 2009; 364:369-81. [PMID: 19038777 PMCID: PMC2674476 DOI: 10.1098/rstb.2008.0252] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional rehabilitation of the cortex following peripheral or central nervous system damage is likely to be improved by a combination of behavioural training and natural or therapeutically enhanced synaptic plasticity mechanisms. Experience-dependent plasticity studies in the somatosensory cortex have begun to reveal those synaptic plasticity mechanisms that are driven by sensory experience and might therefore be active during behavioural training. In this review the anatomical pathways, synaptic plasticity mechanisms and structural plasticity substrates involved in cortical plasticity are explored, focusing on work in the somatosensory cortex and the barrel cortex in particular.
Collapse
Affiliation(s)
- Kevin Fox
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
19
|
Park KW, Kim IH, Sun W, Kim H. Sustained Expression of Neuritin mRNA After Repeated Electroconvulsive Stimulations in the Rat Hippocampal Formation. Exp Neurobiol 2009. [DOI: 10.5607/en.2009.18.1.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Kun Woo Park
- Department of Neurology, College of Medicine, Korea University, Seoul 136-705, Korea
| | - Il Hwan Kim
- Department of Anatomy, Brain Korea 21, College of Medicine, Korea University, Seoul 136-705, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21, College of Medicine, Korea University, Seoul 136-705, Korea
| | - Hyun Kim
- Department of Anatomy, Brain Korea 21, College of Medicine, Korea University, Seoul 136-705, Korea
| |
Collapse
|
20
|
Fujino T, Wu Z, Lin WC, Phillips MA, Nedivi E. cpg15 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survival. J Comp Neurol 2008; 507:1831-45. [PMID: 18265009 DOI: 10.1002/cne.21649] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many ligands that affect nervous system development are members of gene families that function together to coordinate the assembly of complex neural circuits. cpg15/neuritin encodes an extracellular ligand that promotes neurite growth, neuronal survival, and synaptic maturation. Here we identify cpg15-2 as the only paralogue of cpg15 in the mouse and human genome. Both genes are expressed predominantly in the nervous system, where their expression is regulated by activity. cpg15-2 expression increases by more than twofold in response to kainate-induced seizures and nearly fourfold in the visual cortex in response to 24 hours of light exposure following dark adaptation. cpg15 and cpg15-2 diverge in their spatial and temporal expression profiles. cpg15-2 mRNA is most abundant in the retina and the olfactory bulb, as opposed to the cerebral cortex and the hippocampus for cpg15. In the retina, they differ in their cell-type specificity. cpg15 is expressed in retinal ganglion cells, whereas cpg15-2 is predominantly in bipolar cells. Developmentally, onset of cpg15-2 expression is delayed compared with cpg15 expression. CPG15-2 is glycosylphosphatidylinositol (GPI) anchored to the cell membrane and, like CPG15, can be released in a soluble-secreted form, but with lower efficiency. CPG15 and CPG15-2 were found to form homodimers and heterodimers with each other. In hippocampal explants and dissociated cultures, CPG15 and CPG15-2 promote neurite growth and neuronal survival with similar efficacy. Our findings suggest that CPG15 and CPG15-2 perform similar cellular functions but may play distinct roles in vivo through their cell-type- and tissue-specific transcriptional regulation.
Collapse
Affiliation(s)
- Tadahiro Fujino
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
21
|
FARGO KEITHN, ALEXANDER THOMASD, TANZER LISA, POLETTI ANGELO, JONES KATHRYNJ. Androgen regulates neuritin mRNA levels in an in vivo model of steroid-enhanced peripheral nerve regeneration. J Neurotrauma 2008; 25:561-6. [PMID: 18419250 PMCID: PMC9848905 DOI: 10.1089/neu.2007.0466] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Following crush injury to the facial nerve in Syrian hamsters, treatment with androgens enhances axonal regeneration rates and decreases time to recovery. It has been demonstrated in vitro that the ability of androgen to enhance neurite outgrowth in motoneurons is dependent on neuritin-a protein that is involved in the re-establisment of neuronal connectivity following traumatic damage to the central nervous system and that is under the control of several neurotrophic and neuroregenerative factors--and we have hypothesized that neuritin is a mediator of the ability of androgen to increase peripheral nerve regeneration rates in vivo. Testosterone treatment of facial nerve-axotomized hamsters resulted in an approximately 300% increase in neuritin mRNA levels 2 days post-injury. Simultaneous treatment with flutamide, an androgen receptor blocker that is known to prevent androgen enhancement of nerve regeneration, abolished the ability of testosterone to upregulate neuritin mRNA levels. In a corroborative in vitro experiment, the androgen dihydrotestosterone induced an approximately 100% increase in neuritin mRNA levels in motoneuron-neuroblastoma cells transfected with androgen receptors, but not in cells without androgen receptors. These data confirm that neuritin is under the control of androgens, and suggest that neuritin is an important effector of androgen in enhancing peripheral nerve regeneration following injury. Given that neuritin has now been shown to be involved in responses to both central and peripheral injuries, and appears to be a common effector molecule for several neurotrophic and neurotherapeutic agents, understanding the neuritin pathway is an important goal for the clinical management of traumatic nervous system injuries.
Collapse
Affiliation(s)
- KEITH N. FARGO
- Neuroscience Program and Department of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.,Research and Development Service, Hines VA Medical Center, Hines, Illinois
| | | | - LISA TANZER
- Neuroscience Program and Department of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - ANGELO POLETTI
- Institute of Endocrinology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - KATHRYN J. JONES
- Neuroscience Program and Department of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.,Research and Development Service, Hines VA Medical Center, Hines, Illinois
| |
Collapse
|
22
|
Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation. Neural Plast 2008; 2007:26496. [PMID: 18301726 PMCID: PMC2248427 DOI: 10.1155/2007/26496] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 07/27/2007] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence implicate BDNF in the pathogenesis of stress-induced depression and the delayed efficacy of antidepressant drugs. Antidepressant-induced upregulation of BDNF signaling is thought to promote adaptive neuronal plasticity through effects on gene expression, but the effector genes downstream of BDNF has not been identified. Local infusion of BDNF into the dentate gyrus induces a long-term potentiation (BDNF-LTP) of synaptic transmission that requires upregulation of the immediate early gene Arc. Recently, we identified five genes (neuritin, Narp, TIEG1, Carp, and Arl4d) that are coupregulated with Arc during BDNF-LTP. Here, we examined the expression of these genes in the dentate gyrus, hippocampus proper, and prefrontal cortex after antidepressant treatment. We show that chronic, but not acute, fluoxetine administration leads to upregulation of these BDNF-LTP-associated genes in a brain region-specific pattern. These findings link chronic effects of antidepressant treatment to molecular mechanisms underlying BDNF-induced synaptic plasticity.
Collapse
|
23
|
Cappelletti G, Galbiati M, Ronchi C, Maggioni MG, Onesto E, Poletti A. Neuritin (cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells. J Neurosci Res 2008; 85:2702-13. [PMID: 17335086 DOI: 10.1002/jnr.21235] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuritin is a small, highly conserved GPI-anchored protein involved in neurite outgrowth. We have analyzed the involvement of neuritin in NGF-induced differentiation of PC12 cells by investigating the time-course of neuritin expression, the effects of its overexpression or silencing, and the possible mechanisms of its regulation and action. Real-time PCR analysis has shown that neuritin gene is upregulated by NGF in PC12 cells hours before neurite outgrowth becomes appreciable. PC12 cells transfected with a plasmid expressing neuritin display a significant increase in the response to NGF: 1) in the levels of SMI312 positive phosphorylated neurofilament proteins (markers for axonal processes) and tyrosine hydroxylase; 2) in the percentage of cells bearing neurites; as well as 3) in the average length of neurites when compared to control cells. On the contrary, neuritin silencing significantly reduces neurite outgrowth. These data suggest that neuritin is a modulator of NGF-induced neurite extension in PC12 cells. We also showed that neuritin potentiated the NGF-induced differentiation of PC12 cells without affecting TrkA or EGF receptor mRNAs expression. Moreover, the S-methylisothiourea (MIU), a potent inhibitor of inducible nitric oxide synthases, partially counteracts the NGF-mediated neuritin induction. These data suggest that NGF regulates neuritin expression in PC12 cells via the signaling pathway triggered by NO. This study reports the first evidence that neuritin plays a role in modulating neurite outgrowth during the progression of NGF-induced differentiation of PC12 cells. PC12 cells could be considered a valuable model to unravel the mechanism of action of neuritin on neurite outgrowth. (c) 2007 Wiley-Liss, Inc.
Collapse
|
24
|
Redmond L. Translating neuronal activity into dendrite elaboration: signaling to the nucleus. Neurosignals 2008; 16:194-208. [PMID: 18253058 DOI: 10.1159/000111563] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growth and elaboration of neuronal processes is key to establishing neuronal connectivity critical for an optimally functioning nervous system. Neuronal activity clearly influences neuronal connectivity and does so via intracellular calcium signaling. A number of CaMKs and MAPKs convey the calcium signal initiated by neuronal activity. Several of these kinases interact with substrates in close proximity to the plasma membrane and alter dendrite structure locally via these local interactions. However, many calcium-activated kinases, such as Ras-MAPK and CaMKIV, target proteins in the nucleus, either by activating a downstream substrate that is a component of a signaling cascade or by directly acting within the nucleus. It is the activation of nuclear signaling and gene transcription that is thought to mediate global changes in dendrite complexity. The identification of calcium-sensitive transcription factors and transcriptional coactivators provides substantial evidence that gene transcription is a prevalent mechanism by which neuronal activity is translated into changes in dendrite complexity. The present review presents an overview of the role of neuronal activity in the development of neuronal dendrites, the signaling mechanisms that translate neuronal activity into gene transcription, and the transcribed effectors that regulate dendrite complexity.
Collapse
Affiliation(s)
- Lori Redmond
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
25
|
Cantallops I, Cline HT. Rapid activity-dependent delivery of the neurotrophic protein CPG15 to the axon surface of neurons in intactXenopus tadpoles. Dev Neurobiol 2008; 68:744-59. [DOI: 10.1002/dneu.20529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Knutsen PM, Pietr M, Ahissar E. Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 2006; 26:8451-64. [PMID: 16914670 PMCID: PMC6674338 DOI: 10.1523/jneurosci.1516-06.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using their large mystacial vibrissas, rats perform a variety of tasks, including localization and identification of objects. We report on the discriminatory thresholds and behavior of rats trained in a horizontal object localization task. Using an adaptive training procedure, rats learned to discriminate offsets in horizontal (anteroposterior) location with all, one row, or one arc of whiskers intact, but not when only a single whisker (C2) was intact on each cheek. However, rats initially trained with multiple whiskers typically improved when retested later with a single whisker intact. Individual rats reached localization thresholds as low as 0.24 mm (approximately 1 degree). Among the tested groups, localization acuity was finest (<1.5 mm) with rats that were initially trained with all whiskers and then trimmed to one arc of whiskers intact. Horizontal acuity was finer than the typical inter-vibrissal spacing (approximately 4.8 mm at contact points). Performance correlated with the net whisking spectral power in the range of 5-25 Hz but not in nonwhisking range of 30-50 Hz. Lesioning the facial motor nerves reduced performance to chance level. We conclude that horizontal object localization in the rat vibrissal system can reach hyperacuity level and is an active sensing process: whisker movements are both required and beneficiary, in a graded manner, for making accurate positional judgments.
Collapse
Affiliation(s)
- Per Magne Knutsen
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | |
Collapse
|