1
|
Plata VTG, de Jesus Simão J, de Sousa Bispo AF, Alonso-Vale MI, Armelin-Correa L. Impact of fish oil on epigenetic regulation in perirenal adipose tissue of obese mice. Obes Res Clin Pract 2025; 19:122-129. [PMID: 40246605 DOI: 10.1016/j.orcp.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
It has been demonstrated that fish oil (FO), a source of omega-3 polyunsaturated fatty acids (n-3 PUFA), offers partial protection to mice from the adverse effects of a high-fat diet (HFD) by altering the expression of genes involved in adipogenesis and adipocyte metabolism. Histone 3 lysine 27 (H3K27) modifiers, namely Ezh2, Kdm6a, Kdm6b, Crebbp and Ep300, are vital for the appropriate differentiation and metabolism of adipocytes, as they can either silence or activate transcription. The expansion of perirenal adipose tissue (AT) in obesity is associated with a number of complications, including hypertension and kidney disease. The aim of this study was to assess the expression of H3K27 modifiers and genes involved in adipogenesis and adipocyte metabolism in perirenal AT of HFD-fed and FO-treated (5DHA:1EPA) mice using real-time PCR. This study demonstrates, for the first time, that a high-fat diet (HFD) increases the expression of Kdm6b (H3K27 demethylase) in perirenal AT, and that treatment with FO can completely reverse this effect. Conversely, the expression of the Acly gene, which encodes an enzyme that provides a substrate for histone acetylases, was found to be reduced in HFD-fed mice and this was not reversed by FO treatment. Additionally, transcription factor genes, such as Tbx1, exhibited diminished expression in perirenal AT of mice fed an HFD. These observations suggest that a HFD affects the expression of chromatin modifiers, transcription factors, and metabolic genes in perirenal AT, and that FO can reverse some of these effects, offering a promising avenue for the treatment of obesity.
Collapse
Affiliation(s)
- Victor Tadeu Gonçalves Plata
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Jussara de Jesus Simão
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Andressa França de Sousa Bispo
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Maria Isabel Alonso-Vale
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil; Department of Biological Sciences, Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Lucia Armelin-Correa
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil; Department of Biological Sciences, Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil.
| |
Collapse
|
2
|
Simao JDJ, Bispo AFDS, Plata VTG, Abel ABM, Saran RJ, Barcella JF, Alonso JCC, Santana AV, Armelin-Correa LM, Alonso-Vale MIC. The Activation of the NF-κB Pathway in Human Adipose-Derived Stem Cells Alters the Deposition of Epigenetic Marks on H3K27 and Is Modulated by Fish Oil. Life (Basel) 2024; 14:1653. [PMID: 39768360 PMCID: PMC11678231 DOI: 10.3390/life14121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chronic low-grade inflammation in obesity is linked to white adipose tissue (WAT) dysfunction. Plasma lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), triggering NF-κB and worsening these disturbances. Previously, we showed that histone H3 lysine 27 (H3K27) epigenetic modifications affect WAT gene expression in high-fat-diet mice, identifying key pathways in adipose-derived stem cells (ASCs). This study explores whether NF-κB influences H3K27 modifiers in human ASCs and evaluates fish oil (FO) as a modulator. METHODS Human visceral WAT ASCs were stimulated with LPS and treated with FO enriched with eicosapentaenoic acid (EPA). Flow cytometry, PCR array, RT-PCR, and Western blot assays were used. RESULTS LPS increased NF-κB activity, elevating KDM6B demethylase levels and H3K27 acetylation. These epigenetic modifications in LPS-stimulated ASCs were associated with persistent changes in the expression of genes involved in adipogenesis, metabolic regulation, and inflammation, even after LPS removal and cell differentiation. FO mitigated these effects, reducing H3K27 acetylation and promoting methylation. CONCLUSIONS FO demonstrates potential in modulating inflammation-induced epigenetic changes and preserving adipocyte function.
Collapse
Affiliation(s)
- Jussara de Jesus Simao
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Andressa França de Sousa Bispo
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Victor Tadeu Gonçalves Plata
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Ana Beatriz Marques Abel
- Post-Graduate Program in Nutrition, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
| | - Raphael Justa Saran
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | - Júlia Fernandes Barcella
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | | | - André Valente Santana
- Post-Graduate Program in Interdisciplinary Surgical Science, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
| | - Lucia Maria Armelin-Correa
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| | - Maria Isabel Cardoso Alonso-Vale
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
- Post-Graduate Program in Nutrition, Paulista School of Medicine, Federal University of São Paulo—UNIFESP, Sao Paulo 04023-062, Brazil;
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (R.J.S.); (J.F.B.)
| |
Collapse
|
3
|
de Jesus Simão J, de Sousa Bispo AF, Plata VTG, Abel ABM, Telles MM, Armelin-Correa LM, Alonso-Vale MIC. Fish oil attenuates the expression of the CCL2 chemokine and histone-modifying enzymes in LPS-stimulated human preadipocytes. Metabol Open 2024; 24:100336. [PMID: 39717736 PMCID: PMC11665696 DOI: 10.1016/j.metop.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024] Open
Abstract
In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased TNF-alpha (∼5.8-fold) and CCL2 (∼3.8-fold) expression, modulating H3K27 modifying enzymes expression, including KDM6B and EP300. FO, in turn, significantly attenuated LPS-induced CCL2 expression and secretion and downregulated KDM6B and EP300, elucidating an important mechanism of action involved in the anti-inflammatory role of FO. We next isolated mature hypertrophied adipocytes from patient with overweight and exposed to LPS, resulting in increased CCL2/MCP-1 (∼3.8-fold) and TNF-alpha (∼4.5-fold) expression, effects significantly attenuated by FO. We also generated adipocyte-conditioned medium (ACM) and exposed ASCs to LPS or ACM for up to 72 h to assess CCL2/MCP-1 secretion. ACM from hypertrophied adipocytes stimulated increased CCL2/MCP-1 expression, which was partially reduced by FO. LPS treatment of primary ASCs led to a marked increase in CCL2 secretion, which was completely abolished by FO after 6 h, highlighting its potent anti-inflammatory effect. After 72 h, FO consistently maintained lower levels of CCL2, even during sustained inflammatory stimulation, underscoring its ability to modulate chronic inflammation. Additionally, the inhibition of NF-κB with JSH-23 mimicked the effects of FO on CCL2 expression, further suggesting that the anti-inflammatory actions of FO may involve NF-κB signaling. In conclusion, FO attenuates CCL2 expression and secretion in both preadipocytes and ASCs, providing evidence of its potential in modulating inflammation in WAT progenitor cells by modulating histone-modifying enzymes and inflammatory pathways.
Collapse
Affiliation(s)
- Jussara de Jesus Simão
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Andressa França de Sousa Bispo
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Victor Tadeu Gonçalves Plata
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Ana Beatriz Marques Abel
- Post-graduate Program in Nutrition –Paulista School of Medicine, Federal University of São Paulo - UNIFESP, Sao Paulo, Brazil
| | - Monica Marques Telles
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Post-graduate Program in Nutrition –Paulista School of Medicine, Federal University of São Paulo - UNIFESP, Sao Paulo, Brazil
| | - Lucia Maria Armelin-Correa
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Maria Isabel Cardoso Alonso-Vale
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Post-graduate Program in Nutrition –Paulista School of Medicine, Federal University of São Paulo - UNIFESP, Sao Paulo, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| |
Collapse
|
4
|
de Jesus Simão J, de Sousa Bispo AF, Plata VTG, Armelin-Correa LM, Alonso-Vale MIC. Fish Oil Supplementation Mitigates High-Fat Diet-Induced Obesity: Exploring Epigenetic Modulation and Genes Associated with Adipose Tissue Dysfunction in Mice. Pharmaceuticals (Basel) 2024; 17:861. [PMID: 39065712 PMCID: PMC11280081 DOI: 10.3390/ph17070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of fish oil (FO) treatment, particularly enriched with eicosapentaenoic acid (EPA), on obesity induced by a high-fat diet (HFD) in mice. The investigation focused on elucidating the impact of FO on epigenetic modifications in white adipose tissue (WAT) and the involvement of adipose-derived stem cells (ASCs). C57BL/6j mice were divided into two groups: control diet and HFD for 16 weeks. In the last 8 weeks, the HFD group was subdivided into HFD and HFD + FO (treated with FO). WAT was removed for RNA and protein extraction, while ASCs were isolated, cultured, and treated with leptin. All samples were analyzed using functional genomics tools, including PCR-array, RT-PCR, and Western Blot assays. Mice receiving an HFD displayed increased body mass, fat accumulation, and altered gene expression associated with WAT inflammation and dysfunction. FO supplementation attenuated these effects, a potential protective role against HFD-induced obesity. Analysis of H3K27 revealed HFD-induced changes in histone, which were partially reversed by FO treatment. This study further explored leptin signaling in ASCs, suggesting a potential mechanism for ASC dysfunction in the obesity-rich leptin environment of WAT. Overall, FO supplementation demonstrated efficacy in mitigating HFD-induced obesity, influencing epigenetic and molecular pathways, and shedding light on the role of ASCs and leptin signaling in WAT dysfunction associated with obesity.
Collapse
Affiliation(s)
- Jussara de Jesus Simão
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Andressa França de Sousa Bispo
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Victor Tadeu Gonçalves Plata
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
| | - Lucia Maria Armelin-Correa
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil
| | - Maria Isabel Cardoso Alonso-Vale
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil; (J.d.J.S.); (A.F.d.S.B.); (V.T.G.P.); (L.M.A.-C.)
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo—UNIFESP, Diadema 09913-030, Brazil
| |
Collapse
|
5
|
Simão JJ, Cruz MM, Abdala FM, Bolsoni-Lopes A, Armelin-Correa L, Alonso-Vale MIC. Palmitoleic Acid Acts on Adipose-Derived Stromal Cells and Promotes Anti-Hypertrophic and Anti-Inflammatory Effects in Obese Mice. Pharmaceuticals (Basel) 2022; 15:1194. [PMID: 36297306 PMCID: PMC9609051 DOI: 10.3390/ph15101194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 04/16/2024] Open
Abstract
Adipose tissue (AT) secretes adipokines, modulators of low-grade chronic inflammation in obesity. Molecules that induce the emergence of new and functional adipocytes in AT can alleviate or prevent inflammatory and metabolic disorders. The objective of this study was to investigate the role of palmitoleic acid (n7) in 3T3-L1 and primary pre-adipocyte differentiation and AT inflammation. C57BL/6j mice were submitted to a control or high-fat diet (HFD) for 8 weeks, and treated with n7 for 4 weeks. Mice consuming a HFD presented an increase in body weight, epididymal (Epi) fat mass, and Epi adipocytes size. N7 treatment attenuated the body weight gain and completely prevented the hypertrophy of Epi adipocytes, but not the increment in Epi mass induced by the HFD, suggesting a greater adipocytes hyperplasia in animals treated with n7. It was agreed that n7 increased 3T3-L1 proliferation and differentiation, as well as the expression of genes involved in adipogenesis, such as Cebpa, Pparg, aP2, Perilipin, and Scl2a4. Furthermore, n7 decreased the inflammatory cytokines Mcp1, Tnfa, Il6, Cxcl10, and Nos2 genes in Epi vascular stromal cells, but not in the whole AT. These findings show that n7 exerts anti-hypertrophic effects in adipocytes which influence the surrounding cells by attenuating the overexpression of pro-inflammatory cytokines triggered by a HFD.
Collapse
Affiliation(s)
- Jussara J. Simão
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Maysa M. Cruz
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Fernanda M. Abdala
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Andressa Bolsoni-Lopes
- Department of Nursing, Health Sciences Center, Federal University of Espirito Santo, Vitoria 29075-910, ES, Brazil
| | - Lucia Armelin-Correa
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Maria Isabel C. Alonso-Vale
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|