Barveen NR, Chinnapaiyan S, Huang CH, Lin YY, Xu JL, Cheng YW. Facile coupling of plasmonic Au-NPs on ZnS NFs as a robust SERS substrate for toluidine blue detection and degradation.
Anal Chim Acta 2024;
1328:343177. [PMID:
39266196 DOI:
10.1016/j.aca.2024.343177]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND
The robustness and sensitivity of the surface-enhanced Raman spectroscopy (SERS) technique heavily relies on the development of SERS active materials. A hybrid of semiconductor and plasmonic metals is highly effective as a SERS substrate, which enables the trace level detection of various organic pollutants.
RESULTS
This approach demonstrates the photodeposition of plasmonic gold nanoparticles (Au-NPs) on the surface of semiconductor-zinc sulfide nanoflowers (ZnS NFs), grown via the hydrothermal route. The synergistic contribution of the charge-transfer phenomenon and localized surface plasmon resonance of the Au-NPs/ZnS NFs makes it an ideal SERS substrate for the detection of organic pollutants, toluidine blue (TB). The proposed material has a high SERS enhancement factor (109), low limit of detection (10-11 M), good reproducibility, selectivity and strong anti-interference ability. Furthermore, the practicability of the Au-NPs/ZnS NFs is explored in real-time water samples, which are obtained with the satisfactory recovery rates. Additionally, the UVC light illumination on the Au-NPs/ZnS NFs has efficiently degraded TB within a time period of 150 min.
SIGNIFICANCE AND NOVELTY
These finding demonstrate the significance of the proposed Au-NPs/ZnS NFs for SERS based detection and degradation of organic pollutants in real-time samples, highlighting their potential in monitoring and treating water pollutants in wastewater.
Collapse