1
|
Wiloch MZ, Perez-Estebanez M, Baran N, Heras A, Jönsson-Niedziółka M, Colina A. Spectroelectrochemical studies of TDMQ20: A potential drug against Alzheimer's disease. Bioelectrochemistry 2025; 161:108814. [PMID: 39270580 DOI: 10.1016/j.bioelechem.2024.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Alzheimer's Disease (AD), reported for the first time in 1906, is a common disease that remains incurable to this day. In the past, a family of treatments using Cu(II) chelators failed during clinical trials, evidencing the importance of pre-clinical studies. In this work, we performed electrochemical characterisation of TDMQ20, a new potential drug against AD, using electrochemistry and spectroelectrochemistry. On the basis of voltammetry, we determined that TDMQ20 undergoes a two-step irreversible oxidation process and a one-step irreversible reduction process. Both oxidation and reduction reactions are pH-sensitive. Bidimensional UV-Vis spectroelectrochemistry (UV-Vis-SEC) allowed us to confirm that oxidation of TDMQ20 can occur both on the aliphatic chain and on the aromatic ring. The results expand the knowledge of the TDMQ20 redox activity in the human body which is important from the point of view of the toxicity of the proposed therapy.
Collapse
Affiliation(s)
- Magdalena Z Wiloch
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Martin Perez-Estebanez
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain.
| | - Natalia Baran
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aranzazu Heras
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | | | - Alvaro Colina
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
2
|
Nguyen M, Li Y, Robert A, Liu Y, Meunier B. Oxidation of TDMQ20, a Specific Copper Chelator as Potential Drug Against Alzheimer's Disease. ChemistrySelect 2023. [DOI: 10.1002/slct.202204877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS Inserm ERL 1289 205 route de Narbonne 31077 Toulouse cedex France
| | - Youzhi Li
- School of Chemical Engineering and Light Industry Guangdong University of Technology, Higher Education Mega Center Guangzhou 510006 P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS Inserm ERL 1289 205 route de Narbonne 31077 Toulouse cedex France
| | - Yan Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology, Higher Education Mega Center Guangzhou 510006 P. R. China
| | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS Inserm ERL 1289 205 route de Narbonne 31077 Toulouse cedex France
- School of Chemical Engineering and Light Industry Guangdong University of Technology, Higher Education Mega Center Guangzhou 510006 P. R. China
| |
Collapse
|
3
|
Zhao J, Shi Q, Tian H, Li Y, Liu Y, Xu Z, Robert A, Liu Q, Meunier B. TDMQ20, a Specific Copper Chelator, Reduces Memory Impairments in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2021; 12:140-149. [PMID: 33322892 DOI: 10.1021/acschemneuro.0c00621] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Besides targeting amyloid or tau metabolisms, regulation of redox metal ions is a recognized therapeutic target for Alzheimer's disease (AD). Based on the bioinorganic chemistry of copper, we designed specific chelators of copper(II) (TDMQs) insight to regulate copper homeostasis in the brain and to inhibit the deleterious oxidative stress catalyzed by copper-amyloid complexes. An oral treatment by TDMQ20 was able to fully reverse the cognitive and behavioral impairment in three different murine models, two nontransgenic models mimicking the early stage of AD and a transgenic model representing a more advanced stage of AD. To our knowledge, such a comparative study using the same molecule has never been performed. Regular C57BL/6 mice received a single injection of human Cu-Aβ1-42 in the lateral ventricles (icv-CuAβ) or in the hippocampus (hippo-CuAβ). In both cases, mice developed a cognitive impairment similar to that of transgenic 5XFAD mice. Oral administration of TDMQ20 to icv-CuAβ or hippo-CuAβ mice within a 16-day period resulted in a significant improvement of the cognitive status. The 3-month treatment of transgenic 5XFAD mice with TDMQ20 also resulted in behavioral improvements. The consistent positive pharmacological results obtained using these different AD models correlate well with previously obtained physicochemical data of TDMQ20. The short-term novel object recognition (NOR) test was found particularly relevant to evaluate the rescue of declarative memory impairment. TDMQ20 was also able to reduce the oxidative stress in the mouse cortex. Due to its reliability and facile use, the hippo-CuAβ model can be considered as a robust nontransgenic model to evaluate the activity of potential drugs on the early stages of memory deficits.
Collapse
Affiliation(s)
- Jie Zhao
- College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qihui Shi
- College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Hongda Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Youzhi Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Zhen Xu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), 205 route de Narbonne, 31077 Toulouse, cedex 4, France
| | - Qiong Liu
- College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), 205 route de Narbonne, 31077 Toulouse, cedex 4, France
| |
Collapse
|
4
|
Maiolo D, Pizzi A, Gori A, Gazzera L, Demitri N, Genoni A, Baggi F, Moda F, Terraneo G, Baldelli Bombelli F, Metrangolo P, Resnati G. Halogenation of the N-Terminus Tyrosine 10 Promotes Supramolecular Stabilization of the Amyloid-β Sequence 7-12. ChemistryOpen 2020; 9:253-260. [PMID: 32110506 PMCID: PMC7041548 DOI: 10.1002/open.201900350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Here, we demonstrate that introduction of halogen atoms at the tyrosine 10 phenol ring of the DSGYEV sequence derived from the flexible amyloid-β N-terminus, promotes its self-assembly in the solid state. In particular, we report the crystal structures of two halogen-modified sequences, which we found to be stabilized in the solid state by halogen-mediated interactions. The structural study is corroborated by Non-Covalent Interaction (NCI) analysis. Our results prove that selective halogenation of an amino acid enhances the supramolecular organization of otherwise unstructured biologically-relevant sequences. This method may develop as a general strategy for stabilizing highly polymorphic peptide regions.
Collapse
Affiliation(s)
- Daniele Maiolo
- Dept. Chem., Mater., and Chem. Eng. “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Dept. Chem., Mater., and Chem. Eng. “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie ChimicheNational Research Council of ItalyVia M. Bianco 920131MilanoItaly
| | - Lara Gazzera
- Dept. Chem., Mater., and Chem. Eng. “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Nicola Demitri
- Elettra – Sincrotrone TriesteS.S. 14 Km 163.5 in Area Science Park34149Basovizza – TriesteItaly
| | - Alessandro Genoni
- Laboratoire de Physique et Chimie ThéoriquesUniversité de Lorraine and CNRS UMR CNRS 70191 Boulevard Arago57078MetzFrance
| | - Fulvio Baggi
- Fondazione IRCCS Istituto Neurologico “Carlo Besta”Via G. Celoria 1120133MilanItaly
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico “Carlo Besta”Via G. Celoria 1120133MilanItaly
| | - Giancarlo Terraneo
- Dept. Chem., Mater., and Chem. Eng. “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
- Istituto di Scienze e Tecnologie ChimicheNational Research Council of ItalyVia M. Bianco 920131MilanoItaly
| | | | - Pierangelo Metrangolo
- Dept. Chem., Mater., and Chem. Eng. “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| | - Giuseppe Resnati
- Dept. Chem., Mater., and Chem. Eng. “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanoItaly
| |
Collapse
|
5
|
Liu Y, Nguyen M, Robert A, Meunier B. Metal Ions in Alzheimer's Disease: A Key Role or Not? Acc Chem Res 2019; 52:2026-2035. [PMID: 31274278 DOI: 10.1021/acs.accounts.9b00248] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts in universities and pharmaceutical companies, effective drugs are still lacking for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease have not yet been clearly understood. Besides a small percentage of cases with early onset disease having a genetic origin (<5%, familial AD), most cases develop in the elderly as a sporadic form due to multiple and complex parameters of aging. Consequently, AD is spreading in all countries with a long life expectancy. AD is characterized by deposition of senile plaques made of β-amyloid proteins (Aβ) and by hyperphosphorylation of tau proteins, which have been considered as the main drug targets up to now. However, antibodies targeting amyloid aggregates, as well as enzyme inhibitors aiming to modify the amyloid precursor protein processing, have failed to improve cognition in clinical trials. Thus, to set up effective drugs, it is urgent to enlarge the panel of drug targets. Evidence of the link between AD and redox metal dysregulation has also been supported by post-mortem analyses of amyloid plaques, which revealed accumulation of copper, iron, and zinc by 5.7, 2.8, and 3.1 times, respectively, the levels observed in normal brains. Copper-amyloid complexes, in the presence of endogenous reductants, are able to catalyze the reduction of dioxygen and to produce reduced, reactive oxygen species (ROS), leading to neuron death. The possibility of using metal chelators to regenerate normal trafficking of metal ions has been considered as a promising strategy in order to reduce the redox stress lethal for neurons. However, most attempts to use metal chelators as therapeutic agents have been limited to existing molecules available from the shelves. Very few chelators have resulted from a rational design aiming to create drugs with a safety profile and able to cross the blood-brain barrier after an oral administration. In the human body, metals are handled by a sophisticated protein network to strictly control their transport and reactivity. Abnormal concentrations of certain metals may lead to pathological events due to misaccumulation and irregular reactivity. Consequently, therapeutic attempts to restore metal homeostasis should carefully take into account the coordination chemistry specificities of the concerned redox-active metal ions. This Account is focused on the role of the main biologically redox-active transition metals, iron and copper. For iron, the recent debate on the possible role of magnetite in AD pathogenesis is presented. The section devoted to copper is focused on the design of specific copper chelators as drug candidates able to regulate copper homeostasis and to reduce the oxidative damage responsible for the neuron death observed in AD brains. A short survey on non-redox-active metal ions is also included at the beginning, such as aluminum and its controversial role in AD and zinc which is a key metal ion in the brain.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| |
Collapse
|
6
|
Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 2019; 58:13509-13527. [DOI: 10.1021/acs.inorgchem.9b00995] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | - Peter Faller
- LCC−CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | |
Collapse
|
7
|
Zhang W, Liu Y, Hureau C, Robert A, Meunier B. N 4 -Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copper-Amyloid-β 1-16. Chemistry 2018; 24:7825-7829. [PMID: 29687932 DOI: 10.1002/chem.201801387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 01/15/2023]
Abstract
The disruption of copper homeostasis and the oxidative stress induced by Cu-amyloids are crucial features of Alzheimer's disease pathology. The copper specific N4 -tetradendate ligands TDMQ20 and 1 are able to fully inhibit in vitro the aerobic oxidation of ascorbate induced by Cu-Aβ1-16 , even in the presence of 100 molar equivalents of ZnII with respect to CuII , whereas other ligands with N2 O2 or N3 O2 coordination spheres failed to do so. This essential result indicates that, in addition to metal selectivity, the coordination sphere of copper chelators should exhibit a N4 -tetradendate motif to be able to reduce an oxidative stress in the zinc-rich physiological environment of brain. The N4 -scaffolds of these two aminoquinoline-based ligands, TDMQ20 or 1, suitable for a square-planar coordination of copper(II), allowed them to enhance both the selectivity for copper and the ability to reduce the oxidative stress induced by copper-amyloid in a zinc-rich environment.
Collapse
Affiliation(s)
- Weixin Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
| | - Christelle Hureau
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| |
Collapse
|
8
|
Synthesis and characterization of copper-specific tetradendate ligands as potential treatment for Alzheimer's disease. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Zhang W, Huang D, Huang M, Huang J, Wang D, Liu X, Nguyen M, Vendier L, Mazères S, Robert A, Liu Y, Meunier B. Preparation of Tetradentate Copper Chelators as Potential Anti-Alzheimer Agents. ChemMedChem 2018; 13:684-704. [DOI: 10.1002/cmdc.201700734] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/25/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Weixin Zhang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Daya Huang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Meijie Huang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Ju Huang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Dean Wang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Xingguo Liu
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| | - Laure Vendier
- Laboratoire de Chimie de Coordination du CNRS; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| | - Serge Mazères
- Institut de Pharmacologie et Biologie Structurale; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 64182 31077 Toulouse cedex 4 France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| | - Yan Liu
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
- Laboratoire de Chimie de Coordination du CNRS; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| |
Collapse
|
10
|
Conte-Daban A, Boff B, Candido Matias A, Aparicio CNM, Gateau C, Lebrun C, Cerchiaro G, Kieffer I, Sayen S, Guillon E, Delangle P, Hureau C. A Trishistidine Pseudopeptide with Ability to Remove Both Cu Ι and Cu ΙΙ from the Amyloid-β Peptide and to Stop the Associated ROS Formation. Chemistry 2017; 23:17078-17088. [PMID: 28846165 PMCID: PMC5714062 DOI: 10.1002/chem.201703429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/08/2023]
Abstract
The pseudopeptide L, derived from a nitrilotriacetic acid scaffold and functionalized with three histidine moieties, is reminiscent of the amino acid side chains encountered in the Alzheimer's peptide (Aβ). Its synthesis and coordination properties for CuΙ and CuΙΙ are described. L efficiently complex CuΙΙ in a square-planar geometry involving three imidazole nitrogen atoms and an amidate-Cu bond. By contrast, CuΙ is coordinated in a tetrahedral environment. The redox behavior is irreversible and follows an ECEC mechanism in accordance with the very different environments of the two redox states of the Cu center. This is in line with the observed resistance of the CuΙ complex to oxidation by oxygen and the CuΙΙ complex reduction by ascorbate. The affinities of L for CuΙΙ and CuΙ at physiological pH are larger than that reported for the Aβ peptide. Therefore, due to its peculiar Cu coordination properties, the ligand L is able to target both redox states of Cu, redox silence them and prevent reactive oxygen species production by the CuAβ complex. Because reactive oxygen species contribute to the oxidative stress, a key issue in Alzheimer's disease, this ligand thus represents a new strategy in the long route of finding molecular concepts for fighting Alzheimer's disease.
Collapse
Affiliation(s)
- A. Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - B. Boff
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - A. Candido Matias
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - C. N. Montes Aparicio
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - C. Gateau
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - G. Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - I. Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers de Grenoble, UMS 832 CNRS Université Grenoble Alpes, F-38041 Grenoble, France
| | - S. Sayen
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - E. Guillon
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - P. Delangle
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| |
Collapse
|
11
|
Zhang X, Wang Y, Wang SN, Chen QH, Tu YL, Yang XH, Chen JK, Yan JW, Pi RB, Wang Y. Discovery of a novel multifunctional carbazole–aminoquinoline dimer for Alzheimer's disease: copper selective chelation, anti-amyloid aggregation, and neuroprotection. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2101-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Nguyen M, Vendier L, Stigliani JL, Meunier B, Robert A. Structures of the Copper and Zinc Complexes of PBT2, a Chelating Agent Evaluated as Potential Drug for Neurodegenerative Diseases. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Laure Vendier
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Jean-Luc Stigliani
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- Guangdong University of Technology; Department of Chemical Engineering; No. 100 Waihuan Xi road, Education Mega Center Guangzhou P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| |
Collapse
|
13
|
Mital M, Zawisza IA, Wiloch MZ, Wawrzyniak UE, Kenche V, Wróblewski W, Bal W, Drew SC. Copper Exchange and Redox Activity of a Prototypical 8-Hydroxyquinoline: Implications for Therapeutic Chelation. Inorg Chem 2016; 55:7317-9. [DOI: 10.1021/acs.inorgchem.6b00832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariusz Mital
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Izabela A. Zawisza
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Magdalena Z. Wiloch
- Department of Microbioanalytics, Faculty
of Chemistry, Warsaw University of Technology, Warsaw 00-664, Poland
| | - Urszula E. Wawrzyniak
- Department of Microbioanalytics, Faculty
of Chemistry, Warsaw University of Technology, Warsaw 00-664, Poland
| | - Vijaya Kenche
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Wojciech Wróblewski
- Department of Microbioanalytics, Faculty
of Chemistry, Warsaw University of Technology, Warsaw 00-664, Poland
| | - Wojciech Bal
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Simon C. Drew
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Phopin K, Sinthupoom N, Treeratanapiboon L, Kunwittaya S, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes. EXCLI JOURNAL 2016; 15:144-52. [PMID: 27103894 PMCID: PMC4834669 DOI: 10.17179/excli2016-101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/28/2016] [Indexed: 11/10/2022]
Abstract
8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Nujarin Sinthupoom
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Lertyot Treeratanapiboon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Sarun Kunwittaya
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, and Program in Chemical Biology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education (CHE), Ministry of Education, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
15
|
Médaille Lavoisier: J. Livage / New Members of the Academia Europaea Science Award Electrochemistry: B. D. McCloskey / Ernst Haage Prize: I. Siewert / Einstein Visiting Fellowship: D. W. Stephan. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/anie.201510268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Médaille Lavoisier: J. Livage / Neue Mitglieder der Academia Europaea Science Award Electrochemistry: B. D. McCloskey / Ernst-Haage-Preis: I. Siewert / Einstein-Stipendium: D. W. Stephan. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Nguyen M, Bijani C, Martins N, Meunier B, Robert A. Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand. Chemistry 2015; 21:17085-90. [DOI: 10.1002/chem.201502824] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 11/09/2022]
|
18
|
Robert A, Liu Y, Nguyen M, Meunier B. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease. Acc Chem Res 2015; 48:1332-9. [PMID: 25946460 DOI: 10.1021/acs.accounts.5b00119] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that do not efficiently extract copper from soluble amyloids. We have designed and developed new tetradendate ligands such as 21 and PA1637 based on bis(8-aminoquinolines) that are specific for copper chelation and are able to extract copper(II) from amyloids and then can release copper ion upon reduction with a biological reducing agent. These studies contribute to the understanding of the physicochemical properties of the tetradentate copper ligands compared with bidentate ligands like clioquinol. One of these copper ligands, PA1637, after selection with a nontransgenic mouse model that is able to efficiently monitor the loss of episodic memory, is currently under preclinical development.
Collapse
Affiliation(s)
- Anne Robert
- Laboratoire
de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Yan Liu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, P. R. China
| | - Michel Nguyen
- Laboratoire
de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Bernard Meunier
- Laboratoire
de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|