1
|
Badshah SL, Naeem A. Computational Simulation of Conjugated Cholera Toxin Protein. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021. [DOI: 10.3103/s0891416821050049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Haksar D, Asadpoor M, Heise T, Shi J, Braber S, Folkerts G, Ballell L, Rodrigues J, Pieters RJ. Fighting Shigella by Blocking Its Disease-Causing Toxin. J Med Chem 2021; 64:6059-6069. [PMID: 33909975 PMCID: PMC8154557 DOI: 10.1021/acs.jmedchem.1c00152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Shiga toxin is an
AB5 toxin produced by Shigella species, while related toxins are produced
by Shiga toxin-producing Escherichia coli (STEC). Infection by Shigella can lead to bloody diarrhea followed
by the often fatal hemolytic uremic syndrome (HUS). In the present
paper, we aimed for a simple and effective toxin inhibitor by comparing
three classes of carbohydrate-based inhibitors: glycodendrimers, glycopolymers,
and oligosaccharides. We observed a clear enhancement in potency for
multivalent inhibitors, with the divalent and tetravalent compounds
inhibiting in the millimolar and micromolar range, respectively. However,
the polymeric inhibitor based on galabiose was the most potent in
the series exhibiting nanomolar inhibition. Alginate and chitosan
oligosaccharides also inhibit Shiga toxin and may be used as a prophylactic
drug during shigella outbreaks.
Collapse
Affiliation(s)
- Diksha Haksar
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jie Shi
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Lluis Ballell
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Janneth Rodrigues
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
Yamini G, Nestorovich EM. Multivalent Inhibitors of Channel-Forming Bacterial Toxins. Curr Top Microbiol Immunol 2019; 406:199-227. [PMID: 27469304 PMCID: PMC6814628 DOI: 10.1007/82_2016_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rational design of multivalent molecules represents a remarkable modern tool to transform weak non-covalent interactions into strong binding by creating multiple finely-tuned points of contact between multivalent ligands and their supposed multivalent targets. Here, we describe several prominent examples where the multivalent blockers were investigated for their ability to directly obstruct oligomeric channel-forming bacterial exotoxins, such as the pore-forming bacterial toxins and B component of the binary bacterial toxins. We address problems related to the blocker/target symmetry match and nature of the functional groups, as well as chemistry and length of the linkers connecting the functional groups to their multivalent scaffolds. Using the anthrax toxin and AB5 toxin case studies, we briefly review how the oligomeric toxin components can be successfully disabled by the multivalent non-channel-blocking inhibitors, which are based on a variety of multivalent scaffolds.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, Washington, D.C., 20064, USA
| | | |
Collapse
|
4
|
Haksar D, de Poel E, van Ufford LQ, Bhatia S, Haag R, Beekman J, Pieters RJ. Strong Inhibition of Cholera Toxin B Subunit by Affordable, Polymer-Based Multivalent Inhibitors. Bioconjug Chem 2019; 30:785-792. [PMID: 30629410 PMCID: PMC6429436 DOI: 10.1021/acs.bioconjchem.8b00902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Cholera is a potentially
fatal bacterial infection that affects
a large number of people in developing countries. It is caused by
the cholera toxin (CT), an AB5 toxin secreted by Vibrio cholera. The toxin comprises a toxic A-subunit
and a pentameric B-subunit that bind to the intestinal cell surface.
Several monovalent and multivalent inhibitors of the toxin have been
synthesized but are too complicated and expensive for practical use
in developing countries. Meta-nitrophenyl α-galactoside (MNPG)
is a known promising ligand for CT, and here mono- and multivalent
compounds based on MNPG were synthesized. We present the synthesis
of MNPG in greatly improved yields and its use while linked to a multivalent
scaffold. We used economical polymers as multivalent scaffolds, namely,
polyacrylamide, dextran, and hyperbranched polyglycerols (hPGs). Copper-catalyzed
alkyne azide cycloaddition reaction (CuAAC) produced the inhibitors
that were tested in an ELISA-type assay and an intestinal organoid
swelling inhibition assay. The inhibitory properties varied widely
depending on the type of polymer, and the most potent conjugates showed
IC50 values in the nanomolar range.
Collapse
Affiliation(s)
- Diksha Haksar
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Regenerative Medicine Center Utrecht , University Medical Centre Utrecht , Lundlaan 6 , 3508 GA Utrecht , The Netherlands
| | - Linda Quarles van Ufford
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Sumati Bhatia
- Institut für Chemie und Biochemie Organische Chemie , Freie Universität at Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie Organische Chemie , Freie Universität at Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Jeffrey Beekman
- Department of Pediatric Pulmonology, Regenerative Medicine Center Utrecht , University Medical Centre Utrecht , Lundlaan 6 , 3508 GA Utrecht , The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
5
|
Kumar V, Turnbull WB. Carbohydrate inhibitors of cholera toxin. Beilstein J Org Chem 2018; 14:484-498. [PMID: 29520310 PMCID: PMC5827775 DOI: 10.3762/bjoc.14.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/08/2018] [Indexed: 01/17/2023] Open
Abstract
Cholera is a diarrheal disease caused by a protein toxin released by Vibrio cholera in the host's intestine. The toxin enters intestinal epithelial cells after binding to specific carbohydrates on the cell surface. Over recent years, considerable effort has been invested in developing inhibitors of toxin adhesion that mimic the carbohydrate ligand, with particular emphasis on exploiting the multivalency of the toxin to enhance activity. In this review we introduce the structural features of the toxin that have guided the design of diverse inhibitors and summarise recent developments in the field.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Punjab, India
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Heggelund JE, Mackenzie A, Martinsen T, Heim JB, Cheshev P, Bernardi A, Krengel U. Towards new cholera prophylactics and treatment: Crystal structures of bacterial enterotoxins in complex with GM1 mimics. Sci Rep 2017; 7:2326. [PMID: 28539625 PMCID: PMC5443773 DOI: 10.1038/s41598-017-02179-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023] Open
Abstract
Cholera is a life-threatening disease in many countries, and new drugs are clearly needed. C-glycosidic antagonists may serve such a purpose. Here we report atomic-resolution crystal structures of three such compounds in complexes with the cholera toxin. The structures give unprecedented atomic details of the molecular interactions and show how the inhibitors efficiently block the GM1 binding site. These molecules are well suited for development into low-cost prophylactic drugs, due to their relatively easy synthesis and their resistance to glycolytic enzymes. One of the compounds links two toxin B-pentamers in the crystal structure, which may yield improved inhibition through the formation of toxin aggregates. These structures can spark the improved design of GM1 mimics, either alone or as multivalent inhibitors connecting multiple GM1-binding sites. Future developments may further include compounds that link the primary and secondary binding sites. Serving as decoys, receptor mimics may lessen symptoms while avoiding the use of antibiotics.
Collapse
Affiliation(s)
- Julie Elisabeth Heggelund
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway. .,School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, UK and School of Pharmacy, University of Oslo, P.O. Box 1068, NO-0316, Blindern, Norway.
| | - Alasdair Mackenzie
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway.,Alere Technologies AS, Kjelsåsveien 161, NO-0884, Oslo, Norway
| | - Tobias Martinsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway
| | - Joel Benjamin Heim
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway
| | - Pavel Cheshev
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy.,Skolkovo innovation center, Office 229, OC Technopark bld. 2, Lugovaya str. 4, 143026, Moscow, Russia
| | - Anna Bernardi
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy
| | - Ute Krengel
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway.
| |
Collapse
|
7
|
Bhatia S, Camacho LC, Haag R. Pathogen Inhibition by Multivalent Ligand Architectures. J Am Chem Soc 2016; 138:8654-66. [DOI: 10.1021/jacs.5b12950] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sumati Bhatia
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Luis Cuellar Camacho
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
8
|
Zomer-van Ommen DD, Pukin AV, Fu O, Quarles van Ufford LH, Janssens HM, Beekman JM, Pieters RJ. Functional Characterization of Cholera Toxin Inhibitors Using Human Intestinal Organoids. J Med Chem 2016; 59:6968-72. [DOI: 10.1021/acs.jmedchem.6b00770] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Domenique D. Zomer-van Ommen
- Department
of Pediatric Pulmonology, University Medical Centre Utrecht, Lundlaan
6, 3508 GA Utrecht, The Netherlands
| | - Aliaksei V. Pukin
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Ou Fu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Linda H.C. Quarles van Ufford
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Hettie M. Janssens
- Department
of Pediatric Pulmonology, Erasmus Medical Center/Sophia Children’s Hospital, Wytemaweg 80, 3015
CN Rotterdam, The Netherlands
| | - Jeffrey M. Beekman
- Department
of Pediatric Pulmonology, University Medical Centre Utrecht, Lundlaan
6, 3508 GA Utrecht, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
9
|
Kumar V, Yadav N, Kartha KPR. Synthetic multivalent ligands for cholera & cholera-like toxins: Protected cyclic neoglycopeptides. Carbohydr Res 2016; 431:47-55. [PMID: 27309341 DOI: 10.1016/j.carres.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Synthesis of a set of novel glycopeptide analogues as potential cholera/cholera-like toxin inhibitors in their protected form is described. They include di-, tri-, tetra- and pentavalent scaffolds. The synthetic steps were achieved using a combination of solvent-free mechanochemical as well as the conventional solution-phase reactions. During the conventional DIC-HOBt-mediated peptide coupling followed for the preparation of certain glycopeptide analogues an interesting in situ Fmoc deprotection was observed which has been demonstrated to hold potential for synthesiszing glycopeptides/neoglycopeptides with extended polyamide chains.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Narender Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - K P Ravindranathan Kartha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
10
|
Zuilhof H. Fighting Cholera One-on-One: The Development and Efficacy of Multivalent Cholera-Toxin-Binding Molecules. Acc Chem Res 2016; 49:274-85. [PMID: 26760438 DOI: 10.1021/acs.accounts.5b00480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of diseases, ranging from cholera via travelers' diarrhea to hamburger disease, are caused by bacterially produced toxic proteins. In particular, a toxic protein unit is brought into the host cell upon binding to specific membrane-bound oligosaccharides on the host cell membrane. For example, the protein that causes cholera, cholera toxin (CT), has five identical, symmetrically placed binding pockets (B proteins), on top of which the toxic A protein resides. A promising strategy to counteract the devastating biological effects of this AB5 protein involves the development of inhibitors that can act as mimics of membrane-bound GM1 molecules, i.e., that can bind CT strongly and selectively. To reach this goal, two features are essential: First of all, the inhibitor should display oligosaccharides that resemble as much as possible the naturally occurring cell-surface pentasaccharide onto which CT normally binds, the so-called GM1 sugar (the oligosaccharide part of which is then labeled GM1os). Second, the inhibitor should be able to bind CT via multivalent interactions so as to bind CT as strongly as possible to allow for a real competition with the cell-membrane-bound GM1 molecules. In this Account, we present elements of the path that leads to strong CT inhibition by outlining the roles of multivalency and the development and use of GM1 mimics. First, multivalency effects were investigated using "sugar-coated" platforms, ranging from dendritic structures with up to eight oligosaccharides to platforms that mimicked the fivefold symmetry of CT itself. The latter goal was reached either via synthetic scaffolds like corannulene or calix[5]arene or via the development of a neolectin CT mimic that itself carries five GM1os groups. Second, the effect of the nature of the oligosaccharide appended to this platform was investigated via the use of oligosaccharides of increasing complexity, from galactose and lactose to the tetrasaccharide GM2os and eventually to GM1os itself. The combination of these threads gives rise to a series of inhibitors that can strongly bind CT, with IC50 values below 100 pM, and in some cases can even bind one-on-one.
Collapse
Affiliation(s)
- Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Department
of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Müller C, Despras G, Lindhorst TK. Organizing multivalency in carbohydrate recognition. Chem Soc Rev 2016; 45:3275-302. [DOI: 10.1039/c6cs00165c] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|