1
|
Dong CD, Huang CP, Chen CW, Lam SS, Sonne C, Kang CK, Hung CM. Facile heteroatoms modification biochar production from mahogany (Swietenia macrophylla King) pericarps for enhanced the suppression of polycyclic aromatic hydrocarbon pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123173. [PMID: 38110049 DOI: 10.1016/j.envpol.2023.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are critical environmental concerns due to their intrinsic toxic aromatic nature and concomitant circumstances that potentially harm the ecological and human health. In this study, converting mahogany (Swietenia macrophylla King) pericarps to value-added biochar by pyrolysis for evaluating the potential formation/destruction of biochar-bound PAHs was studied for the first time. This study designed and optimized the thermal processing conditions at 300-900 °C in the CO2 or N2 atmosphere, and heteroatoms (N, O, B, NB, and NS) were modified for mahogany pericarps biochar (MPBC) production. The MPBC500 exhibited significantly higher pyrolysis products of PAHs (2780 ± 38 ng g-1) than that of MPBC900 (78 ± 6 ng g-1) under N2 without introducing modified elements. Specifically, the inhibition capacity of MPBC500 for PAHs under CO2 was improved most efficiently by the active nitrogen species of the pyridinic N and pyrrolic N groups. The pyrolysis conditions and heteroatom modification of MPBC altered its physicochemical properties, that is, aromaticity and hydrophobicity, affecting the PAH concentration and composition in the pyrolysis products. This study reveals sustainable approaches to reduce the environmental footprint of biochar by focusing on increases in PAHs pollution in sustainable biochar produced from a low-carbon bioeconomy perspective.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Chih-Kuo Kang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chang-Mao Hung
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
2
|
Zhou Y, Li L, Liu Y, Wang H, Feng Z, Feng F, Zhang Q, Liu W, Han W, Lu C, Li X. Palladium Nanoparticles Inset into the Carbon Sphere with Robust Acid Resistance for Selective Hydrogenation of Chloronitrobenzene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yebin Zhou
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Ling Li
- Zhejiang Research Institute of Chemical Industry Co., Ltd., Xixi Road, Hangzhou 310023, People’s Republic of China
| | - Yi Liu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Hongzheng Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Zhenlong Feng
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Feng Feng
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Qunfeng Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Wucan Liu
- Zhejiang Research Institute of Chemical Industry Co., Ltd., Xixi Road, Hangzhou 310023, People’s Republic of China
| | - Wenfeng Han
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Chunshan Lu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
3
|
Activated carbon-Polyaniline composite active material slurry electrode for high capacitance, improved rheological performance electrochemical flow capacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Cao J, Han F, Wang L, Huang X, Cao Y, He P, Yang H, Chen J, Li H. Ru/g-C 3N 4 as an efficient catalyst for selective hydrogenation of aromatic diamines to alicyclic diamines. RSC Adv 2020; 10:16515-16525. [PMID: 35498848 PMCID: PMC9052785 DOI: 10.1039/d0ra00836b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
A series of Ru/g-C3N4 materials with highly dispersed Ru were firstly prepared by an ultrasonic impregnation method using carbon nitride as a support. The catalysts were characterized by various techniques including BET and elemental analysis, ICP-AES, XPS, XRD, CO2-TPD and TEM. The results demonstrated that Ru/g-C3N4 materials with a mesoporous structure and highly dispersed Ru were successfully prepared. The chemo-selective hydrogenation of p-phenylenediamine (PPDA) to 1,4-cyclohexanediamine (CHDA) over Ru/g-C3N4 as a model reaction was investigated in detail. PPDA conversion of 100% with a CHDA selectivity of more than 86% could be achieved under mild conditions. It can be inferred that the carbon nitride support possessed abundant basic sites and the Ru/g-C3N4-T catalysts provided suitable basicity for the aromatic ring hydrogenation. Compared to the N-free Ru/C catalyst, the involvement of nitrogen species in Ru/g-C3N4 remarkably improved the catalytic performance. In addition, the recyclability of the catalyst demonstrated that the aggregation of Ru nanoparticles was responsible for the decrease of the catalytic activity. Furthermore, this strategy also could be expanded to the selective hydrogenation of other aromatic diamines to alicyclic diamines.
Collapse
Affiliation(s)
- Junya Cao
- China University of Mining & Technology Beijing 100083 P. R. China
| | - Fenggang Han
- China University of Mining & Technology Beijing 100083 P. R. China
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Clean Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Liguo Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Clean Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences Beijing 10049 China
- Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Xiaoyu Huang
- China University of Mining & Technology Beijing 100083 P. R. China
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Clean Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Yan Cao
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Clean Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Peng He
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Clean Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Huanhuan Yang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Clean Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences Beijing 10049 China
| | - Jiaqiang Chen
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Clean Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Huiquan Li
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Clean Production Technology, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences Beijing 10049 China
| |
Collapse
|
5
|
Lu C, Zhang X, Qi Y, Ji H, Zhu Q, Wang H, Zhou Y, Feng Z, Li X. Surface-Group-Oriented, Condensation Cyclization-Driven, Nitrogen-Doping Strategy for the Preparation of a Nitrogen-Species-Tunable, Carbon-Material-Supported Pd Catalyst. ChemistryOpen 2019; 8:87-96. [PMID: 30693172 PMCID: PMC6345223 DOI: 10.1002/open.201800227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
A nitrogen-carbon framework with the thickness of several molecules was fabricated through a straightforward nitrogen-doping strategy, in which specially designed surface-oxygen-containing groups (SOGs) first introduced onto the porous carbon support were used to guide the generation of a surface-nitrogen-containing structure through condensation reactions between SOGs and the amidogen group of organic amines under hydrothermal conditions. The results indicate that different kinds of SOGs generate different types and abundances of N species. The CO-releasing groups are apt to form a high proportion of amino groups, whereas the CO2-releasing groups, especially carboxyl and lactones, are mainly transformed into pyrrolic-type nitrogen. In the framework with dominant pyrrolic-type nitrogen, an electron-rich Pd activated site composed of Pd, pyrrolic-type N and C is built, in which electron transfer occurs from N to C and Pd atoms. This activated site contributes to the formation of electron-rich activated hydrogen and desorption of p-chloroaniline, which work together to achieve the superior selectivity about 99.90 % of p-chloroaniline and the excellent reusable performance. This strategy not only provides low-cost, nitrogen-doped carbon materials, but also develops a new method for the fabrication of different kinds of nitrogen species structures.
Collapse
Affiliation(s)
- Chunshan Lu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Xuejie Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Yani Qi
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Haoke Ji
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Qianwen Zhu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Hao Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Yebin Zhou
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Zhenlong Feng
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhou310014China
| |
Collapse
|