1
|
Nguyen LH, Truong TN. Nature of partial sigma bond. J Comput Chem 2024; 45:2251-2264. [PMID: 38838302 DOI: 10.1002/jcc.27445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
This study investigates the formation of partial sigma (σ) covalent bonds in experimentally synthesizable biradicals formed from hydrogenated and fluorinated C8, C20, and C60 cage structures, by assessing their stability, geometry, and bonding character in singlet and triplet states using restricted B3LYP-D3/6-31+G(d,p) theory, natural bond orbital (NBO) analysis, and complete active space self-consistent field (CASSCF) method. The results show that these partial σCC bonds have Wiberg bond orders of 0.38 to 0.48 and bond lengths ranging from 2.62 Å to 5.93 Å. Cage size influences the characteristics of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), with electrons favoring more antibonding orbitals in smaller cages where electrons reside more on the exterior of the cage and favoring bonding orbitals in larger ones where electrons are more in the interior. Fluorination enhances electron density on bonding orbitals. The analysis further clarified that the differentiation between antibonding and bonding features of HOMOs and LUMOs extends beyond merely electron transfer from s- to p-atomic orbitals, also noting possible interactions of the same symmetry repel. The study also introduces hyperconjugation from α-position CH bonds as a factor in stabilizing partial σ-bond formation. The results also caution against the use of broken symmetry methodology in unrestricted SCF wavefunctions for biradicals, such as those in this study as it may cause large spin contamination and thus errors in the calculated electronic properties results.
Collapse
Affiliation(s)
- Lam H Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Thanh N Truong
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Vásquez-Espinal A, Pino-Rios R. Strong carbon - noble gas covalent bond and fluxionality in hypercoordinate compounds. Phys Chem Chem Phys 2023; 25:27468-27474. [PMID: 37800185 DOI: 10.1039/d3cp03576j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Thermodynamic, kinetic, and chemical bonding analysis at the coupled cluster level has been carried out for a series of hypercoordinated carbon compounds with formula CH4Ng2+ (Ng = He-Rn). Results show that these compounds could be stable at room temperature and Born-Oppenheimer molecular dynamics simulations (BOMD) in conjunction with activation energies indicate high kinetic stability. In addition, all chemical bonding descriptors agree with a strong C-Ng covalent bond and a bonding pattern similar to that of CH5+. Finally, BOMD simulations showed that these compounds are fluxional, with a continuous formation/breaking of H-H and C-H bonds. To the best of the authors' knowledge, these results represent the first series of fluxional compounds possessing a covalent bond between a main group element and a noble gas atom.
Collapse
Affiliation(s)
- Alejandro Vásquez-Espinal
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat. Casilla 121, Iquique 1100000, Chile.
| | - Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat. Casilla 121, Iquique 1100000, Chile.
- Instituto de Estudios de la Salud, Universidad Arturo Prat, Iquique, 1100000, Chile
| |
Collapse
|
3
|
Pino-Rios R, Vásquez-Espinal A, Pan S, Cerpa E, Tiznado W, Merino G. BH 4 Ng + (Ar-Rn): Viable Compounds with a B-Ng Covalent Bond. Chemphyschem 2023; 24:e202200601. [PMID: 36264712 DOI: 10.1002/cphc.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Indexed: 11/10/2022]
Abstract
In this work, we explore, using high-level calculations, the ability of BH4 + to interact with noble gases. The He system is energetically unstable, while the Ne system could only be observed at cryogenic temperatures. In the case of the Ar, Kr and Xe systems, all are energetically stable, even at room temperature. The different chemical bond descriptors reveal a covalent character between B and the noble gas from Ar to Rn. However, this interaction gradually weakens the multicentric bond between the boron atom and the H2 fragment. Thus, although BH4 Rn+ exhibits a strong covalent bond, it tends to dissociate at room temperature into BH2 Rn+ +H2 .
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique, 1100000, Chile
| | - Alejandro Vásquez-Espinal
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique, 1100000, Chile
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Erick Cerpa
- Departamento de Formación Básica y Disciplinaria, Academia de Física, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, C.P. 36275, Silao de la Victoria, Gto, México
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, 97310, Yucatán, México
| |
Collapse
|
4
|
Yun GR, Li HX, Cabellos JL, Tiznado W, Cui ZH, Pan S. Hitting the Bull's Eye: Stable HeBeOH + Complex. Chemphyschem 2022; 23:e202200587. [PMID: 36029196 DOI: 10.1002/cphc.202200587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Indexed: 01/05/2023]
Abstract
It is now known that the heavier noble gases (Ng=Ar-Rn) show some varying degrees of reactivity with a gradual increase in reactivity along Ar-Rn. However, because of their very small size and very high ionization potential, helium and neon are the hardest targets to crack. Although few neon complexes are isolated at very low temperatures, helium needs very extreme situations like very high pressure. Here, we find that protonated BeO, BeOH+ can bind helium and neon spontaneously at room temperature. Therefore, extreme conditions like very low temperature and/or high pressure will not be required for their experimental isolation. The Ng-Be bond strength is very high for their heavier homologs and the bond strength shows a gradual increase from He to Rn. Moreover, the Ng-Be attractive energy is almost exclusively originated from the orbital interaction which is composed of one Ng(s/pσ )→BeOH+ σ-donation and two weaker Ng(pπ )→BeOH+ π-donations, except for helium. Helium uses its low-lying vacant 2p orbitals to accept π-electron density from BeOH+ . Previously, such electron-accepting ability of helium was used to explain a somewhat stronger helium bond than neon for neutral complexes. However, the present results indicate that such π-back donations are too weak in nature to decide any energetic trend between helium and neon.
Collapse
Affiliation(s)
- Gai-Ru Yun
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China
| | - Hai-Xia Li
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China
| | - Jose Luis Cabellos
- Universidad Politécnica de Tapachula, Carretera Tapachula a Puerto Madero km 24+300, San Benito, Puerto Madero, C.P. 30830, Tapachula, Chiapas, Mexico
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, postCode/>8370251, Chile
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China.,Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, 130023, Changchun, China
| | - Sudip Pan
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China.,Fachbereich Chemie, Philipps-Universitt Marbur, Hans-Meerwein-Straße, 35043, Marburg, Germany
| |
Collapse
|
5
|
Ferrari P, Delgado-Callico L, Lushchikova OV, Bejide M, Wensink FJ, Bakker JM, Baletto F, Janssens E. Bonding Nature between Noble Gases and Small Gold Clusters. J Phys Chem Lett 2022; 13:4309-4314. [PMID: 35533018 DOI: 10.1021/acs.jpclett.2c00738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noble gases are usually seen as utterly inert, likewise gold, which is typically conceived as the noblest of all metals. While one may expect that noble gases bind to gold via dispersion interactions only, strong bonds can be formed between noble gas atoms and small gold clusters. We combine mass spectrometry, infrared spectroscopy, and density functional theory calculations to address the bonding nature between Aun+ (n ≤ 4) clusters and Ar, Kr, and Xe. We unambiguously determine the geometries and quantitatively uncover the bonding nature in AunNgm+ (Ng = Ar, Kr, Xe) complexes. Each Au cluster can form covalent bonds with atop bound noble gas atoms, with strengths that increase with the noble gas atomic radius. This is demonstrated by calculated adsorption energies, Bader electron charges, and analysis of the electron density. The covalent bonding character, however, is limited to the atop-coordinated Ng atoms.
Collapse
Affiliation(s)
- Piero Ferrari
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | | | - Olga V Lushchikova
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Matias Bejide
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | - Frank J Wensink
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Joost M Bakker
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Francesca Baletto
- Department of Physics, King's College London, London WC2R 2LS, U.K
- Department of Physics, University of Milan, Via Celoria 16, I-20133 Milano, Italy
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Tian Y, Cheng T, Yang D, Zheng R. An efficient error-correction model to investigate the rotational structure and microwave spectrum of Ar–AgF complex. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Davies AR, Cranney A, Viehland LA, Wright TG. Interactions of Si +( 2PJ) and Ge + ( 2PJ) with rare gas atoms (He-Rn): interaction potentials, spectroscopy, and ion transport coefficients. Phys Chem Chem Phys 2022; 24:7144-7163. [PMID: 35274637 DOI: 10.1039/d1cp05710c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Accurate interatomic potentials were calculated for the interaction of a singly-charged silicon cation, Si+, with a single rare gas atom, RG (RG = Kr-Rn), as well as a singly-charged germanium cation, Ge+, with a single rare gas atom, RG (RG = He-Rn). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy is counterpoise corrected and extrapolated to the basis set limit. The lowest electronic term (2P) of each cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. Variations in several spectroscopic parameters with the increasing atomic number of RG were examined. The presence of incipient chemical interaction was also examined via Birge-Sponer-like plots and various population analyses across the series. In the cases of heavier RG, these were consistent with a small amount of electron transfer from the heavier RG atom to the cation, rationalizing the spin-orbit splittings. This was also supported by the observed larger-than-expected spin-orbit splittings for the Si+-RG complexes. Finally, each set of RCCSD(T) potentials including spin-orbit coupling was employed to calculate transport coefficients for the cation moving through a bath of the RG. The calculated ion mobilities showed significant differences for the two atomic spin-orbit states, arising from subtle changes in the interaction potentials.
Collapse
Affiliation(s)
- Alexander R Davies
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Aiden Cranney
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Larry A Viehland
- Science Department, Chatham University, Pittsburgh, Pennsylvania 15232, USA.
| | - Timothy G Wright
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Ghosh A, Maitra A, Kuntar SP, Ghanty TK. Stability-Order Reversal in FSiY and FYSi (Y = N and P) Molecules after the Insertion of a Noble Gas Atom. J Phys Chem A 2022; 126:1132-1143. [PMID: 35157456 DOI: 10.1021/acs.jpca.1c10424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent theoretical prediction and experimental identification of fluorinated noble gas cyanides and isocyanides motivate us to explore a unique novel series of neutral noble gas-inserted heavier cyanofluoride isomers, FNgYSi and FNgSiY (Ng = Kr, Xe, and Rn; Y = N and P), theoretically using quantum chemical calculations. The concerned minima and saddle point geometries have been optimized using DFT, MP2, and CCSD(T) methods. The precursor molecule FSiY is more stable than its isomer FYSi, and the stability order is found to be reversed after the insertion of a noble gas (Ng) atom into them which is in contrast to the previously reported FCN/FNC systems where the stability order in the precursors remains intact after the insertion of a Ng atom into them. The predicted FNgYSi molecules are metastable in nature as they are kinetically stable but thermodynamically unstable with respect to the global minima products (FYSi and Ng). All the calculations for the corresponding FNgSiY molecules clearly indicate that the less stable FNgSiY behaves similarly to the FNgYSi in all respects. The energetics, force constant, and spectroscopic data strongly reinforce the possibility of occurrence of these predicted FNgYSi and FNgSiY molecules which might be experimentally realized under suitable cryogenic condition(s).
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India
| | - Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India.,Bio Science Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India.,Bio Science Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India
| |
Collapse
|
9
|
Kuntar SP, Ghosh A, Ghanty TK. Theoretical prediction of FNgM3–kHk (Ng = Ar, Kr, Xe, and Rn; M = Cu, Ag and Au; k = 0–2) molecules. Mol Phys 2022. [DOI: 10.1080/00268976.2021.2020924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Tapan K. Ghanty
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Bio Science Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
10
|
Pototschnig JV, Papadopoulos A, Lyakh DI, Repisky M, Halbert L, Severo Pereira Gomes A, Jensen HJA, Visscher L. Implementation of Relativistic Coupled Cluster Theory for Massively Parallel GPU-Accelerated Computing Architectures. J Chem Theory Comput 2021; 17:5509-5529. [PMID: 34370471 PMCID: PMC8444343 DOI: 10.1021/acs.jctc.1c00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we report reimplementation of the core algorithms of relativistic coupled cluster theory aimed at modern heterogeneous high-performance computational infrastructures. The code is designed for parallel execution on many compute nodes with optional GPU coprocessing, accomplished via the new ExaTENSOR back end. The resulting ExaCorr module is primarily intended for calculations of molecules with one or more heavy elements, as relativistic effects on the electronic structure are included from the outset. In the current work, we thereby focus on exact two-component methods and demonstrate the accuracy and performance of the software. The module can be used as a stand-alone program requiring a set of molecular orbital coefficients as the starting point, but it is also interfaced to the DIRAC program that can be used to generate these. We therefore also briefly discuss an improvement of the parallel computing aspects of the relativistic self-consistent field algorithm of the DIRAC program.
Collapse
Affiliation(s)
- Johann V Pototschnig
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Anastasios Papadopoulos
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Dmitry I Lyakh
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Loïc Halbert
- Universite de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - André Severo Pereira Gomes
- Universite de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Argon Adsorption on Cationic Gold Clusters Au n+ ( n ≤ 20). Molecules 2021; 26:molecules26134082. [PMID: 34279423 PMCID: PMC8272223 DOI: 10.3390/molecules26134082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
The interaction of Aun+ (n ≤ 20) clusters with Ar is investigated by combining mass spectrometric experiments and density functional theory calculations. We show that the inert Ar atom forms relatively strong bonds with Aun+. The strength of the bond strongly varies with the cluster size and is governed by a fine interplay between geometry and electronic structure. The chemical bond between Aun+ and Ar involves electron transfer from Ar to Au, and a stronger interaction is found when the Au adsorption site has a higher positive partial charge, which depends on the cluster geometry. Au15+ is a peculiar cluster size, which stands out for its much stronger interaction with Ar than its neighbors, signaled by a higher abundance in mass spectra and a larger Ar adsorption energy. This is shown to be a consequence of a low-coordinated Au adsorption site in Au15+, which possesses a large positive partial charge.
Collapse
|
12
|
Pan S, Merino G, Chattaraj PK. Editorial: "Changing the Perspective of the Noble Gas Reactivity". Front Chem 2021; 9:658318. [PMID: 33869145 PMCID: PMC8044899 DOI: 10.3389/fchem.2021.658318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China.,Fachbereich Chemie, Philipps-Universitt Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Mexico
| | - Pratim K Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.,Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
13
|
Vanbuel J, Ferrari P, Jia M, Fielicke A, Janssens E. Argon tagging of doubly transition metal doped aluminum clusters: The importance of electronic shielding. J Chem Phys 2021; 154:054312. [PMID: 33557561 DOI: 10.1063/5.0037568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interaction of argon with doubly transition metal doped aluminum clusters, AlnTM2 + (n = 1-18, TM = V, Nb, Co, Rh), is studied experimentally in the gas phase via mass spectrometry. Density functional theory calculations on selected sizes are used to understand the argon affinity of the clusters, which differ depending on the transition metal dopant. The analysis is focused on two pairs of consecutive sizes: Al6,7V2 + and Al4,5Rh2 +, the largest of each pair showing a low affinity toward Ar. Another remarkable observation is a pronounced drop in reactivity at n = 14, independent of the dopant element. Analysis of the cluster orbitals shows that this feature is not a consequence of cage formation but is electronic in nature. The mass spectra demonstrate a high similarity between the size-dependent reactivity of the clusters with Ar and H2. Orbital interactions provide an intuitive link between the two and further establish the importance of precursor states in the reactions of the clusters with hydrogen.
Collapse
Affiliation(s)
- Jan Vanbuel
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Piero Ferrari
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Meiye Jia
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany and Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Rohdenburg M, Azov VA, Warneke J. New Perspectives in the Noble Gas Chemistry Opened by Electrophilic Anions. Front Chem 2020; 8:580295. [PMID: 33282830 PMCID: PMC7691601 DOI: 10.3389/fchem.2020.580295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022] Open
Abstract
Binding of noble gases (NGs) is commonly considered to be the realm of highly reactive electophiles with cationic or at least non-charged character. Herein, we summarize our latest results evidencing that the incorporation of a strongly electrophilic site within a rigid cage-like anionic structure offers several advantages that facilitate the binding of noble gases and stabilize the formed NG adducts. The anionic superelectrophiles investigated by us are based on the closo-dodecaborate dianion scaffold. The record holder [B12(CN)11]− binds spontaneously almost all members of the NG family, including the very inert argon at room temperature and neon at 50 K in the gas phase of mass spectrometers. In this perspective, we summarize the argumentation for the advantages of anionic electrophiles in binding of noble gases and explain them in detail using several examples. Then we discuss the next steps necessary to obtain a comprehensive understanding of the binding properties of electrophilic anions with NGs. Finally, we discuss the perspective to prepare bulk ionic materials containing NG derivatives of the anionic superelectophiles. In particular, we explore the role of counterions using computational methods and discuss the methodology, which may be used for the actual preparation of such salts.
Collapse
Affiliation(s)
- Markus Rohdenburg
- Fachbereich 2-Biologie/Chemie, Institut für Angewandte und Physikalische Chemie, Universität Bremen, Bremen, Germany
| | - Vladimir A Azov
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany.,Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| |
Collapse
|
15
|
Jamshidi Z, Lushchikova OV, Bakker JM, Visscher L. Not Completely Innocent: How Argon Binding Perturbs Cationic Copper Clusters. J Phys Chem A 2020; 124:9004-9010. [PMID: 33058661 PMCID: PMC7604873 DOI: 10.1021/acs.jpca.0c07771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Argon is often considered as an innocent probe that can be attached and detached to study the structure of a particular species without perturbing the species too much. We have investigated whether this assumption also holds for small copper cationic clusters and demonstrated that small but significant charge transfer from argon to metal changes the remaining binding positions, leading in general, to weaker binding of other argon atoms. The exception is binding to just one copper ion, where the binding of the first argon facilitates the binding of the second.
Collapse
Affiliation(s)
- Zahra Jamshidi
- Chemistry
Department, Sharif University of Technology, Tehran 11155-9516, Iran
- Theoretical
Chemistry, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Olga V. Lushchikova
- Radboud
University, Institute for Molecules and Materials, FELIX Laboratory, 6525 XZ Nijmegen, the Netherlands
| | - Joost M. Bakker
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 XZ Nijmegen, the Netherlands
| | - Lucas Visscher
- Theoretical
Chemistry, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
16
|
Ghara M, Chattaraj PK. Noble Gas Binding Ability of an Au(I) Cation Stabilized by a Frustrated Lewis Pair: A DFT Study. Front Chem 2020; 8:616. [PMID: 32850643 PMCID: PMC7396548 DOI: 10.3389/fchem.2020.00616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
The noble gas (Ng) binding ability of a monocationic [(FLP)Au]+ species has been investigated by a computational study. Here, the monocationic [(FLP)Au]+ species is formed by coordination of Au(I) cation with the phosphorous (Lewis base) and the boron (Lewis acid) centers of a frustrated Lewis pair (FLP). The bonds involving Au and P, and Au and B atoms in [(FLP)Au]+ are partially covalent in nature as revealed by Wiberg bond index (WBI) values, electron density analysis and energy decomposition analysis (EDA). The zero point energy corrected bond dissociation energy (D0), enthalpy and free energy changes are computed for the dissociation of Au-Ng bonds to assess the Ng binding ability of [(FLP)Au]+ species. The D0 ranges from 6.0 to 13.3 kcal/mol, which increases from Ar to Rn. Moreover, the dissociation of Au-Ng bonds is endothermic as well as endergonic for Ng = Kr-Rn, whereas the same for Ng = Ar is endothermic but exergonic at room temperature. The partial covalent character of the bonds between Au and Ng atoms is demonstrated by their WBI values and electron density analysis. The Ng atoms get slight positive charges of 0.11–0.23 |e|, which indicates some amount of charge transfer takes place from it. EDA demonstrates that electrostatic and orbital interactions have equal contributions to stabilize the Ng-Au bonds in the [(FLP)AuNg]+ complex.
Collapse
Affiliation(s)
- Manas Ghara
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology, Kharagpur, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology, Kharagpur, India.,Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
17
|
Jalife S, Arcudia J, Pan S, Merino G. Noble gas endohedral fullerenes. Chem Sci 2020; 11:6642-6652. [PMID: 33033593 PMCID: PMC7500087 DOI: 10.1039/d0sc02507k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
This review focuses on the available experimental and theoretical investigations on noble gas (Ng) endohedral fullerenes, addressing essential questions related to the mutual effects that confinement of one or more Ng atoms induces on the electronic structure, bonding, and different properties of fullerenes. It also summarizes the different contributions to the mechanisms of formation and decomplexation, the reactivity towards Diels-Alder cycloaddition reactions, the chemical bonding situation of Ng endohedral fullerenes, and the interactions that dominate within these systems.
Collapse
Affiliation(s)
- Said Jalife
- Departamento de Física Aplicada , Centro de Investigación y de Estudios Avanzados , Antigua carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich , 97310 Mérida , Yucatán , Mexico . ; ;
| | - Jessica Arcudia
- Departamento de Física Aplicada , Centro de Investigación y de Estudios Avanzados , Antigua carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich , 97310 Mérida , Yucatán , Mexico . ; ;
| | - Sudip Pan
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Straße , 35032 Marburg , Germany .
| | - Gabriel Merino
- Departamento de Física Aplicada , Centro de Investigación y de Estudios Avanzados , Antigua carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich , 97310 Mérida , Yucatán , Mexico . ; ;
| |
Collapse
|
18
|
Ghosh A, Mallick A, Ghanty TK. Anomaly in the stability of the hydroxides of icosagens (B and Al) and their noble gas (Xe and Rn) derivatives: a comparative study. Phys Chem Chem Phys 2020; 22:14109-14124. [PMID: 32542270 DOI: 10.1039/d0cp01928c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the discovery of neutral noble gas hydrides, herein, we have explored the possibility of the existence of a novel class of neutral noble gas compounds, HNgBO, HNgOB, HNgAlO and HNgOAl (Ng = Xe and Rn), through the insertion of a Ng atom into the hydroxides of icosagens and their isomers, namely, HBO, HOB, HAlO and HOAl. Second-order Møller-Plesset perturbation theory (MP2), density functional theory (DFT), and coupled-cluster theory (CCSD(T))-based methods have been employed to investigate the structures, stabilities, energetics, harmonic vibrational frequencies, and charge distribution of the predicted molecules. The HXeBO, HXeOAl, HRnBO, HRnAlO and HRnOAl molecules are found to be thermodynamically stable with respect to all plausible 2-body and 3-body dissociation channels except the 2-body dissociation pathway, leading to the formation of global minimum products (Ng + HBO), (Ng + HOAl) and (Ng + HAlO). However, the very large activation energy barrier heights provide enough kinetic stability to the predicted metastable molecules, which in turn can prevent them from dissociating into the global minimum products. Between the HNgBO-HNgOB isomers, HNgBO is found to be more stable, where both HNgBO and the precursor molecule HBO are linear. On the other hand, HNgOAl is more stable between the HNgAlO-HNgOAl isomers, where the precursor molecule HOAl is bent and HNgOAl is linear in contradiction and in agreement with Walsh's rule, respectively. Moreover, in contrast to the more stable HNgBO case, where the Ng atom is bonded with the icosagen atom, in the more stable HNgOAl, the Ng atom is connected to the chalcogen atom. All the detailed aforementioned analyses concerning the predicted molecules clearly indicate that a strong covalent bond exists between the H and Ng atoms, while an ionic interaction is found between the Ng and B atoms in HNgBO and Ng and O atoms in the HNgOAl molecules. In addition, the charge distribution and atoms-in-molecules (AIM) analyses are in agreement with the above-mentioned conclusion and also suggest that the predicted metastable HNgBO and HNgOAl molecules should essentially exist in the form of [HNg]+[BO]- and [HNg]+[OAl]-, respectively. All the calculated results reported in this work indicate that it might be possible to prepare and characterize the predicted molecules via suitable experimental technique(s) under cryogenic conditions.
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | |
Collapse
|
19
|
Mazej Z. Noble-Gas Chemistry More than Half a Century after the First Report of the Noble-Gas Compound. Molecules 2020; 25:E3014. [PMID: 32630333 PMCID: PMC7412050 DOI: 10.3390/molecules25133014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022] Open
Abstract
Recent development in the synthesis and characterization of noble-gas compounds is reviewed, i.e., noble-gas chemistry reported in the last five years with emphasis on the publications issued after 2017. XeF2 is commercially available and has a wider practical application both in the laboratory use and in the industry. As a ligand it can coordinate to metal centers resulting in [M(XeF2)x]n+ salts. With strong Lewis acids, XeF2 acts as a fluoride ion donor forming [XeF]+ or [Xe2F3]+ salts. Latest examples are [Xe2F3][RuF6]·XeF2, [Xe2F3][RuF6] and [Xe2F3][IrF6]. Adducts NgF2·CrOF4 and NgF2·2CrOF4 (Ng = Xe, Kr) were synthesized and structurally characterized at low temperatures. The geometry of XeF6 was studied in solid argon and neon matrices. Xenon hexafluoride is a well-known fluoride ion donor forming various [XeF5]+ and [Xe2F11]+ salts. A large number of crystal structures of previously known or new [XeF5]+ and [Xe2F11]+ salts were reported, i.e., [Xe2F11][SbF6], [XeF5][SbF6], [XeF5][Sb2F11], [XeF5][BF4], [XeF5][TiF5], [XeF5]5[Ti10F45], [XeF5][Ti3F13], [XeF5]2[MnF6], [XeF5][MnF5], [XeF5]4[Mn8F36], [Xe2F11]2[SnF6], [Xe2F11]2[PbF6], [XeF5]4[Sn5F24], [XeF5][Xe2F11][CrVOF5]·2CrVIOF4, [XeF5]2[CrIVF6]·2CrVIOF4, [Xe2F11]2[CrIVF6], [XeF5]2[CrV2O2F8], [XeF5]2[CrV2O2F8]·2HF, [XeF5]2[CrV2O2F8]·2XeOF4, A[XeF5][SbF6]2 (A = Rb, Cs), Cs[XeF5][BixSb1-xF6]2 (x = ~0.37-0.39), NO2XeF5(SbF6)2, XeF5M(SbF6)3 (M = Ni, Mg, Zn, Co, Cu, Mn and Pd) and (XeF5)3[Hg(HF)]2(SbF6)7. Despite its extreme sensitivity, many new XeO3 adducts were synthesized, i.e., the 15-crown adduct of XeO3, adducts of XeO3 with triphenylphosphine oxide, dimethylsulfoxide and pyridine-N-oxide, and adducts between XeO3 and N-bases (pyridine and 4-dimethylaminopyridine). [Hg(KrF2)8][AsF6]2·2HF is a new example of a compound in which KrF2 serves as a ligand. Numerous new charged species of noble gases were reported (ArCH2+, ArOH+, [ArB3O4]+, [ArB3O5]+, [ArB4O6]+, [ArB5O7]+, [B12(CN)11Ne]-). Molecular ion HeH+ was finally detected in interstellar space. The discoveries of Na2He and ArNi at high pressure were reported. Bonding motifs in noble-gas compounds are briefly commented on in the last paragraph of this review.
Collapse
Affiliation(s)
- Zoran Mazej
- Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Ferrari P, Hou GL, Lushchikova OV, Calvo F, Bakker JM, Janssens E. The structures of cationic gold clusters probed by far-infrared spectroscopy. Phys Chem Chem Phys 2020; 22:11572-11577. [PMID: 32400803 DOI: 10.1039/d0cp01613f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Determining the precise structures of small gold clusters is an essential step towards understanding their chemical and physical properties. Due to the relativistic nature of gold, its clusters remain planar (2D) up to appreciable sizes. Ion mobility experiments have suggested that positively charged gold clusters adopt three-dimensional (3D) structures from n = 8 onward. Computations predict, depending on the level of theory, 2D or 3D structures as putative energy-minimum for n = 8. In this work, far-infrared multiple photon dissociation spectroscopy, using Ar as tagging element, is combined with density-functional theory calculations to determine the structures of Aun+ (n≤ 9) clusters formed by laser ablation. While the Au frameworks in Au6Arm+ and Au7Arm+ complexes are confirmed to be planar and that in Au9Arm+ three-dimensional, we demonstrate the coexistence of 3D and planar Au8Arm+ (m = 1-3) isomers. Thus, it is revealed that at finite temperatures, the formal 2D to 3D transition takes place at n = 8 but is not sharp.
Collapse
Affiliation(s)
- Piero Ferrari
- KU Leuven, Department of Physics and Astronomy, Quantum Solid-State Physics, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
21
|
Zhang G, Su Y, Zou X, Fu L, Song J, Chen D, Sun C. Charge-Shift Bonding in Xenon Hydrides: An NBO/NRT Investigation on HXeY···HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CCH, CN) via H-Xe Blue-Shift Phenomena. Front Chem 2020; 8:277. [PMID: 32391318 PMCID: PMC7191121 DOI: 10.3389/fchem.2020.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
Noble-gas bonding represents curiosity. Some xenon hydrides, such as HXeY (Y = Cl, Br, I) and their hydrogen-bonded complexes HXeY···HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CN, CCH), have been identified in matrixes by observing H-Xe frequencies or its monomer-to-complex blue shifts. However, the H-Xe bonding in HXeY is not yet completely understood. Previous theoretical studies provide two answers. The first one holds that it is a classical covalent bond, based on a single ionic structure H-Xe+ Y-. The second one holds that it is resonance bonding between H-Xe+ Y- and H- Xe+-Y. This study investigates the H-Xe bonding, via unusual blue-shifted phenomena, combined with some NBO/NRT calculations for chosen hydrogen-bonded complexes HXeY···HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CN, CCH). This study provides new insights into the H-Xe bonding in HXeY. The H-Xe bond in HXeY is not a classical covalent bond. It is a charge-shift (CS) bond, a new class of electron-pair bonds, which is proposed by Shaik and Hiberty et al. The unusual blue shift in studied hydrogen-bonded complexes is its H-Xe CS bonding character in IR spectroscopy. It is expected that these studies on the H-Xe bonding and its IR spectroscopic property might assist the chemical community in accepting this new-class electron-pair bond concept.
Collapse
Affiliation(s)
- Guiqiu Zhang
- Key Laboratory of Molecular and Nano Probes, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Ministry of Education, Shandong Normal University, Jinan, China
| | | | | | | | | | | | - Chuanzhi Sun
- Key Laboratory of Molecular and Nano Probes, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Ministry of Education, Shandong Normal University, Jinan, China
| |
Collapse
|
22
|
Lundberg L, Bartl P, Leidlmair C, Scheier P, Gatchell M. Protonated and Cationic Helium Clusters. Molecules 2020; 25:molecules25051066. [PMID: 32120989 PMCID: PMC7179179 DOI: 10.3390/molecules25051066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/30/2022] Open
Abstract
Protonated rare gas clusters have previously been shown to display markably different structures compared to their pure, cationic counterparts. Here, we have performed high-resolution mass spectrometry measurements of protonated and pristine clusters of He containing up to 50 atoms. We identify notable differences between the magic numbers present in the two types of clusters, but in contrast to heavier rare gas clusters, neither the protonated nor pure clusters exhibit signs of icosahedral symmetries. These findings are discussed in light of results from heavier rare gases and previous theoretical work on protonated helium.
Collapse
Affiliation(s)
- Linnea Lundberg
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Peter Bartl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Christian Leidlmair
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
23
|
Pan S, Jana G, Saha R, Zhao L, Chattaraj PK. Intriguing structural, bonding and reactivity features in some beryllium containing complexes. Phys Chem Chem Phys 2020; 22:27476-27495. [DOI: 10.1039/d0cp04912c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We highlighted our contributions to Be chemistry which include bond-stretch isomerism in Be32− species, Be complexes bound with noble gas, CO, and N2, Be based nanorotors, and intriguing bonding situations in some Be complexes.
Collapse
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing
| | - Gourhari Jana
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Ranajit Saha
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Lili Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing
| | - Pratim K. Chattaraj
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
- Department of Chemistry
| |
Collapse
|
24
|
Borocci S, Grandinetti F, Nunzi F, Sanna N. Classifying the chemical bonds involving the noble-gas atoms. NEW J CHEM 2020. [DOI: 10.1039/d0nj01927e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Ng–X bonds are classified into covalent (Cov), and different types of non-covalent (nCov), or partially-covalent (pCov) interactions.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei Sistemi Biologici
- Agroalimentari e Forestali (DIBAF)
- Università della Tuscia
- 01100 Viterbo
- Italy
| | - Felice Grandinetti
- Dipartimento per la Innovazione nei Sistemi Biologici
- Agroalimentari e Forestali (DIBAF)
- Università della Tuscia
- 01100 Viterbo
- Italy
| | - Francesca Nunzi
- Dipartimento di Chimica
- Biologia e Biotecnologie (DCBB)
- 8 06123 Perugia
- Italy
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta” del CNR
| | - Nico Sanna
- Dipartimento per la Innovazione nei Sistemi Biologici
- Agroalimentari e Forestali (DIBAF)
- Università della Tuscia
- 01100 Viterbo
- Italy
| |
Collapse
|
25
|
Wen M, Li ZZ, Li AY. OBCN isomerization and noble gas insertion compounds of identical valence electron number species: stability and bonding. Phys Chem Chem Phys 2019; 21:26311-26323. [PMID: 31781710 DOI: 10.1039/c9cp04980k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new noble gas (Ng) insertion compounds of the general type XNgX, XNgY and XNgY+ has been theoretically studied using ab initio and DFT methods herein. We first studied the isomerization process of the OBCN compound, and then investigated the bonding properties and stability of the compounds formed by inserting Ng into the single bond of the three low energy isomers by high-level ab initio calculations. The OBNgCN compounds are thermochemically stable with respect to all dissociation channels except for the processes of releasing OBCN/OBNC and free Ng. Furthermore, the two dissociation processes OBNgCN → Ng + OBNC and OBNgNC → Ng + OBCN are kinetically prohibited by the relatively high free energy barrier ranging from 22.7 to 31.7 kcal mol-1 except for the OBKrCN and OBKrNC analogues. And the adaptive natural density partitioning (AdNDP) analysis indicated that chemical bonding in OBNgCN compounds is realized via a delocalized 3-center 2-electron (3c-2e) σ-bond in the B-Ng-C moiety and a totally delocalized 5-center 2-electron (5c-2e) σ-bond in the whole O-B-Ng-C-N. Natural bond orbital (NBO) theory, atoms-in-molecules (AIM) and energy decomposition analysis (EDA) based on the molecular wavefunction revealed that the B-Ng bond and Ng-C bond have some covalent character in OBNgCN. In addition, the calculation and detailed bonding analysis on a large number of neutral and monocationic compounds with identical valence electron numbers to OBNgCN demonstrate that the two bonds directly linked to the Ng atoms have covalent properties in neutral compounds, whereas Ng forms one typical covalent bond and one partial covalent and partial ionic bond with the neighboring atoms in the monocationic compounds.
Collapse
Affiliation(s)
- Mei Wen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | |
Collapse
|
26
|
Mahmoodi-Darian M, Martini P, Tiefenthaler L, Kočišek J, Scheier P, Echt O. Solvation of Silver Ions in Noble Gases He, Ne, Ar, Kr, and Xe. J Phys Chem A 2019; 123:10426-10436. [PMID: 31725298 DOI: 10.1021/acs.jpca.9b09496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use a novel technique to solvate silver cations in small clusters of noble gases. The technique involves the formation of large, superfluid helium nanodroplets that are subsequently electron ionized, mass-selected by deflection in an electric field, and doped with silver atoms and noble gases (Ng) in pickup cells. Excess helium is then stripped from the doped nanodroplets by multiple collisions with helium gas at room temperature, producing cluster ions that contain no more than a few dozen noble gas atoms and just a few (or no) silver atoms. Under gentle stripping conditions, helium atoms remain attached to the cluster ions, demonstrating their low vibrational temperature. Under harsher stripping conditions, some of the heavier noble gas atoms will be evaporated as well, thus enriching stable clusters of NgnAgm+ at the expense of less stable ones. This results in local anomalies in the cluster ion abundance, which is measured in a high-resolution time-of-flight mass spectrometer. On the basis of these data, we identify specific "magic" sizes n of particularly stable ions. There is no evidence, however, for enhanced stability of Ng2Ag+, in contrast to the high stability of Ng2Au+ that derives from the covalent nature of the bond for heavy noble gases. "Magic" sizes are also identified for Ag2+ dimer ions complexed with He or Kr. Structural models will be tentatively proposed. A sequence of magic numbers n = 12, 32, and 44, indicative of three concentric solvation shells of icosahedral symmetry, is observed for HenH2O+.
Collapse
Affiliation(s)
| | - Paul Martini
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Innsbruck A-6020 , Austria
| | - Lukas Tiefenthaler
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Innsbruck A-6020 , Austria
| | - Jaroslav Kočišek
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Innsbruck A-6020 , Austria.,J. Heyrovský Institute of Physical Chemistry of the CAS , Prague 18223 , Czech Republic
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Innsbruck A-6020 , Austria
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Innsbruck A-6020 , Austria.,Department of Physics , University of New Hampshire , Durham , New Hampshire 03824 , United States
| |
Collapse
|
27
|
Li ZZ, Wen M, Li AY. Rg nBe 3B 3+: theoretical investigation of Be 3B 3+ and its rare gas capability. J Mol Model 2019; 25:349. [PMID: 31741081 DOI: 10.1007/s00894-019-4248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022]
Abstract
A series of Be3B3+ and its rare gas (Rg) containing complexes RgnBe3B3+ (Rg = He-Rn, n = 1-6) have been predicted theoretically using the B3LYP, MP2, and CCSD(T) methods to explore structures, stability, charge distributions, and nature of bonding. Both Be3B3+ and RgBe3B3+ are the global minima on the potential energy surfaces. In the RgnBe3B3+ complexes, the dissociation energy drops with the increase in number of Rg. Natural bond orbital (NBO) and topological analysis of the electron density (AIM) show that the Rg-Be bonds for Kr-Rn have some covalent character. The Rg-Be bond is stabilized dominantly by the Rg → Be3B3+ σ-donation from the valence p orbital of Rg to the vacant valence LUMO orbital of Rgn-1Be3B3+. Besides, other two π-donations also play important roles in stabilizing the Rg-Be bonds.
Collapse
Affiliation(s)
- Zhuo Zhe Li
- School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road No. 2, Chongqing, 400715, People's Republic of China.
| | - Mei Wen
- School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road No. 2, Chongqing, 400715, People's Republic of China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road No. 2, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
28
|
Martini P, Kranabetter L, Goulart M, Rasul B, Gatchell M, Scheier P, Echt O. Atomic Gold Ions Clustered with Noble Gases: Helium, Neon, Argon, Krypton, and Xenon. J Phys Chem A 2019; 123:9505-9513. [PMID: 31621319 DOI: 10.1021/acs.jpca.9b06715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-resolution mass spectra of helium droplets doped with gold and ionized by electrons reveal HenAu+ cluster ions. Additional doping with heavy noble gases results in NenAu+, ArnAu+, KrnAu+, and XenAu+ cluster ions. The high stability predicted for covalently bonded Ar2Au+, Kr2Au+, and Xe2Au+ is reflected in their relatively high abundance. Surprisingly, the abundance of Ne2Au+, which is predicted to have zero covalent bonding character and no enhanced stability, features a local maximum, too. The predicted size and structure of complete solvation shells surrounding ions with essentially nondirectional bonding depends primarily on the ratio σ* of the ion-ligand versus the ligand-ligand distance. For Au+ solvated in helium and neon, the ratio σ* is slightly below 1, favoring icosahedral packing in agreement with a maximum observed in the corresponding abundance distributions at n = 12. HenAu+ appears to adopt two additional solvation shells of Ih symmetry, containing 20 and 12 atoms, respectively. For ArnAu+, with σ* ≈ 0.67, one would expect a solvation shell of octahedral symmetry, in agreement with an enhanced ion abundance at n = 6. Another anomaly in the ion abundance at Ar9Au+ matches a local maximum in its computed dissociation energy.
Collapse
Affiliation(s)
- Paul Martini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck , Technikerstr. 25 , A-6020 Innsbruck , Austria
| | - Lorenz Kranabetter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck , Technikerstr. 25 , A-6020 Innsbruck , Austria
| | - Marcelo Goulart
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck , Technikerstr. 25 , A-6020 Innsbruck , Austria
| | - Bilal Rasul
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck , Technikerstr. 25 , A-6020 Innsbruck , Austria
- Department of Physics , University of Sargodha , 40100 Sargodha , Pakistan
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck , Technikerstr. 25 , A-6020 Innsbruck , Austria
- Department of Physics , Stockholm University , 106 91 Stockholm , Sweden
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck , Technikerstr. 25 , A-6020 Innsbruck , Austria
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck , Technikerstr. 25 , A-6020 Innsbruck , Austria
- Department of Physics , University of New Hampshire , Durham , New Hampshire NH 03824 , United States
| |
Collapse
|
29
|
Saha R, Jana G, Pan S, Merino G, Chattaraj PK. How Far Can One Push the Noble Gases Towards Bonding?: A Personal Account. Molecules 2019; 24:E2933. [PMID: 31412650 PMCID: PMC6719121 DOI: 10.3390/molecules24162933] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/29/2023] Open
Abstract
Noble gases (Ngs) are the least reactive elements in the periodic table towards chemical bond formation when compared with other elements because of their completely filled valence electronic configuration. Very often, extreme conditions like low temperatures, high pressures and very reactive reagents are required for them to form meaningful chemical bonds with other elements. In this personal account, we summarize our works to date on Ng complexes where we attempted to theoretically predict viable Ng complexes having strong bonding to synthesize them under close to ambient conditions. Our works cover three different types of Ng complexes, viz., non-insertion of NgXY type, insertion of XNgY type and Ng encapsulated cage complexes where X and Y can represent any atom or group of atoms. While the first category of Ng complexes can be thermochemically stable at a certain temperature depending on the strength of the Ng-X bond, the latter two categories are kinetically stable, and therefore, their viability and the corresponding conditions depend on the size of the activation barrier associated with the release of Ng atom(s). Our major focus was devoted to understand the bonding situation in these complexes by employing the available state-of-the-art theoretic tools like natural bond orbital, electron density, and energy decomposition analyses in combination with the natural orbital for chemical valence theory. Intriguingly, these three types of complexes represent three different types of bonding scenarios. In NgXY, the strength of the donor-acceptor Ng→XY interaction depends on the polarizing power of binding the X center to draw the rather rigid electron density of Ng towards itself, and sometimes involvement of such orbitals becomes large enough, particularly for heavier Ng elements, to consider them as covalent bonds. On the other hand, in most of the XNgY cases, Ng forms an electron-shared covalent bond with X while interacting electrostatically with Y representing itself as [XNg]+Y-. Nevertheless, in some of the rare cases like NCNgNSi, both the C-Ng and Ng-N bonds can be represented as electron-shared covalent bonds. On the other hand, a cage host is an excellent moiety to examine the limits that can be pushed to attain bonding between two Ng atoms (even for He) at high pressure. The confinement effect by a small cage-like B12N12 can even induce some covalent interaction within two He atoms in the He2@B12N12 complex.
Collapse
Affiliation(s)
- Ranajit Saha
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gourhari Jana
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, Mérida 97310, Yuc., Mexico.
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
30
|
De Santis M, Rampino S, Storchi L, Belpassi L, Tarantelli F. The Chemical Bond and s–d Hybridization in Coinage Metal(I) Cyanides. Inorg Chem 2019; 58:11716-11729. [DOI: 10.1021/acs.inorgchem.9b01694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matteo De Santis
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Sergio Rampino
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Loriano Storchi
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Francesco Tarantelli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
31
|
Jana G, Jha R, Pan S, Chattaraj PK. Microsolvation of lithium–phosphorus double helix: a DFT study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2462-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Pan S, Jana G, Merino G, Chattaraj PK. Noble-Noble Strong Union: Gold at Its Best to Make a Bond with a Noble Gas Atom. ChemistryOpen 2019; 8:173-187. [PMID: 30740292 PMCID: PMC6356865 DOI: 10.1002/open.201800257] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/25/2018] [Indexed: 11/29/2022] Open
Abstract
This Review presents the current status of the noble gas (Ng)‐noble metal chemistry, which began in 1977 with the detection of AuNe+ through mass spectroscopy and then grew from 2000 onwards; currently, the field is in a somewhat matured state. On one side, modern quantum chemistry is very effective in providing important insights into the structure, stability, and barrier for the decomposition of Ng compounds and, as a result, a plethora of viable Ng compounds have been predicted. On the other hand. experimental achievement also goes beyond microscopic detection and characterization through spectroscopic techniques and crystal structures at ambient temperature; for example, (AuXe4)2+(Sb2F11−)2 have also been obtained. The bonding between two noble elements of the periodic table can even reach the covalent limit. The relativistic effect makes gold a very special candidate to form a strong bond with Ng in comparison to copper and silver. Insertion compounds, which are metastable in nature, depending on their kinetic stability, display an even more fascinating bonding situation. The degree of covalency in Ng–M (M=noble metal) bonds of insertion compounds is far larger than that in non‐insertion compounds. In fact, in MNgCN (M=Cu, Ag, Au) molecules, the M−Ng and Ng−C bonds might be represented as classical 2c–2e σ bonds. Therefore, noble metals, particularly gold, provide the opportunity for experimental chemists to obtain sufficiently stable complexes with Ng at room temperature in order to characterize them by using experimental techniques and, with the intriguing bonding situation, to explore them with various computational tools from a theoretical perspective. This field is relatively young and, in the coming years, a lot of advancement is expected experimentally as well as theoretically.
Collapse
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Gourhari Jana
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Gabriel Merino
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73 Cordemex 97310 Mérida, Yuc. México
| | - Pratim K Chattaraj
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur Kharagpur 721302 India.,Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|