1
|
Wu J, Anselmi S, Carvalho ATP, Caswell J, Quinn DJ, Moody TS, Castagnolo D. Expanding the toolbox of Baeyer-Villiger and flavin monooxygenase biocatalysts for the enantiodivergent green synthesis of sulfoxides. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:8685-8693. [PMID: 39081496 PMCID: PMC11284623 DOI: 10.1039/d4gc02657h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Two new monooxygenase biocatalysts, the Baeyer-Villiger monooxygenase BVMO145 and the flavin monooxygenase FMO401 from Almac library, have been found to catalyse the enantiodivergent oxidation of sulfides bearing N-heterocyclic substituents into sulfoxides under mild and green conditions. The biocatalyst BVMO145 provides (S)-sulfoxides while the flavin monooxygenase FMO401 affords (R)-sulfoxides with good conversions and high ee.
Collapse
Affiliation(s)
- Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Silvia Anselmi
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Alexandra T P Carvalho
- Department of Biocatalysis & Isotope Chemistry Almac 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
| | - Jill Caswell
- Department of Biocatalysis & Isotope Chemistry Almac 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
| | - Derek J Quinn
- Department of Biocatalysis & Isotope Chemistry Almac 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
| | - Thomas S Moody
- Department of Biocatalysis & Isotope Chemistry Almac 20 Seagoe Industrial Estate Craigavon BT63 5QD UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate Athlone Co. Roscommon Ireland
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
2
|
Li H, Shen Q, Zhou X, Duan P, Hollmann F, Huang Y, Zhang W. Peroxygenase-Catalysed Sulfoxidations in Non-Aqueous Media. CHEMSUSCHEM 2024; 17:e202301321. [PMID: 37948039 DOI: 10.1002/cssc.202301321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Chiral sulfoxides are valuable building blocks in asymmetric synthesis. However, the biocatalytic synthesis of chiral sulfoxides is still challenged by low product titres. Herein, we report the use of peroxygenase as a catalyst for asymmetric sulfoxidation under non-aqueous conditions. Upon covalent immobilisation, the peroxygenase showed stability and activity under neat reaction conditions. A large variety of sulfides was converted into chiral sulfoxides in very high product concentration with moderate to satisfactory optical purity (e. g. 626 mM of (R)-methyl phenyl sulfoxide in approx. 89 % ee in 48 h). Further polishing of the ee value via cascading methionine reductase A (MsrA) gave>99 % ee of the sulfoxide. The robustness of the enzymes and high product titer is superior to the state-of-the-art methodologies. Gram-scale synthesis has been demonstrated. Overall, we demonstrated a practical and facile catalytic method to synthesize chiral sulfoxides.
Collapse
Affiliation(s)
- Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaoying Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
3
|
Anselmi S, Carvalho ATP, Serrano-Sanchez A, Ortega-Roldan JL, Caswell J, Omar I, Perez-Ortiz G, Barry SM, Moody TS, Castagnolo D. Discovery and Rational Mutagenesis of Methionine Sulfoxide Reductase Biocatalysts To Expand the Substrate Scope of the Kinetic Resolution of Chiral Sulfoxides. ACS Catal 2023; 13:4742-4751. [PMID: 37066047 PMCID: PMC10088026 DOI: 10.1021/acscatal.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Indexed: 04/18/2023]
Abstract
Methionine sulfoxide reductase A (MsrA) enzymes have recently found applications as nonoxidative biocatalysts in the enantioselective kinetic resolution of racemic sulfoxides. This work describes the identification of selective and robust MsrA biocatalysts able to catalyze the enantioselective reduction of a variety of aromatic and aliphatic chiral sulfoxides at 8-64 mM concentration with high yields and excellent ees (up to 99%). Moreover, with the aim to expand the substrate scope of MsrA biocatalysts, a library of mutant enzymes has been designed via rational mutagenesis utilizing in silico docking, molecular dynamics, and structural nuclear magnetic resonance (NMR) studies. The mutant enzyme MsrA33 was found to catalyze the kinetic resolution of bulky sulfoxide substrates bearing non-methyl substituents on the sulfur atom with ees up to 99%, overcoming a significant limitation of the currently available MsrA biocatalysts.
Collapse
Affiliation(s)
- Silvia Anselmi
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
| | - Alexandra T. P. Carvalho
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
| | | | | | - Jill Caswell
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
| | - Iman Omar
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Gustavo Perez-Ortiz
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Sarah M. Barry
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Thomas S. Moody
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
- Arran
Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone,
Co., Roscommon N37 DN24, Ireland
| | - Daniele Castagnolo
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
| |
Collapse
|
4
|
Wang Q, Jiang X, Gao Y, Yin L, Wei X, Guo K, Gao X, Wang L, Zhang C. Studies on Biosynthesis of Chiral Sulfoxides by Using P450 119 Peroxygenase and Its Mutants. ChemistrySelect 2022. [DOI: 10.1002/slct.202204031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qin Wang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
- Dazhou Vocational College of Chinese Medicine Luojiang Town, Tongchuan District Dazhou 635000 China
| | - Xin‐Meng Jiang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Yan‐Ping Gao
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Li‐Ping Yin
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Xiao‐Yao Wei
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Kai Guo
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Xiao‐Wei Gao
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Li Wang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
- Department of Nuclear Medicine The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Chun Zhang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| |
Collapse
|
5
|
Kawana H, Miwa T, Honda Y, Furuya T. Sustainable Approach for Peroxygenase-Catalyzed Oxidation Reactions Using Hydrogen Peroxide Generated from Spent Coffee Grounds and Tea Leaf Residues. ACS OMEGA 2022; 7:20259-20266. [PMID: 35721909 PMCID: PMC9201881 DOI: 10.1021/acsomega.2c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 05/05/2023]
Abstract
Peroxygenases are promising catalysts for use in the oxidation of chemicals as they catalyze the direct oxidation of a variety of compounds under ambient conditions using hydrogen peroxide (H2O2) as an oxidant. Although the use of peroxygenases provides a simple method for oxidation of chemicals, the anthraquinone process currently used to produce H2O2 requires significant energy input and generates considerable waste, which negatively affects process sustainability and production costs. Thus, generating H2O2 for peroxygenases on site using an environmentally benign method would be advantageous. Here, we utilized spent coffee grounds (SCGs) and tea leaf residues (TLRs) for the production of H2O2. These waste biomass products reacted with molecular oxygen and effectively generated H2O2 in sodium phosphate buffer. The resulting H2O2 was utilized by the bacterial P450 peroxygenase, CYP152A1. Both SCG-derived and TLR-derived H2O2 promoted the CYP152A1-catalyzed oxidation of 4-methoxy-1-naphthol to Russig's blue as a model reaction. In addition, when CYP152A1 was incubated with styrene, the SCG and TLR solutions enabled the synthesis of styrene oxide and phenylacetaldehyde. This new approach using waste biomass provides a simple, cost-effective, and sustainable oxidation method that should be readily applicable to other peroxygenases for the synthesis of a variety of valuable chemicals.
Collapse
Affiliation(s)
- Hideaki Kawana
- Faculty
of Science and Technology, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Toru Miwa
- Faculty
of Science and Technology, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yuki Honda
- Department
of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Toshiki Furuya
- Faculty
of Science and Technology, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
6
|
Pardhe BD, Do H, Jeong CS, Kim KH, Lee JH, Oh TJ. Characterization of high-H 2O 2-tolerant bacterial cytochrome P450 CYP105D18: insights into papaverine N-oxidation. IUCRJ 2021; 8:684-694. [PMID: 34258016 PMCID: PMC8256718 DOI: 10.1107/s2052252521005522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The bacterial CYP105 family is involved in secondary metabolite biosynthetic pathways and plays essential roles in the biotransformation of xenobiotics. This study investigates the newly identified H2O2-mediated CYP105D18 from Streptomyces laurentii as the first bacterial CYP for N-oxidation. The catalytic efficiency of CYP105D18 for papaverine N-oxidation was 1.43 s-1 µM -1. The heme oxidation rate (k) was low (<0.3 min-1) in the presence of 200 mM H2O2. This high H2O2 tolerance capacity of CYP105D18 led to higher turnover prior to heme oxidation. Additionally, the high-resolution papaverine complexed structure and substrate-free structure of CYP105D18 were determined. Structural analysis and activity assay results revealed that CYP105D18 had a strong substrate preference for papaverine because of its bendable structure. These findings establish a basis for biotechnological applications of CYP105D18 in the pharmaceutical and medicinal industries.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Chang-Sook Jeong
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
7
|
Wei X, Zhang C, Gao X, Gao Y, Yang Y, Guo K, Du X, Pu L, Wang Q. Enhanced Activity and Substrate Specificity by Site-Directed Mutagenesis for the P450 119 Peroxygenase Catalyzed Sulfoxidation of Thioanisole. ChemistryOpen 2019; 8:1076-1083. [PMID: 31406654 PMCID: PMC6682931 DOI: 10.1002/open.201900157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
P450 119 peroxygenase was found to catalyze the sulfoxidation of thioanisole and the sulfonation of sulfoxide in the presence of tert-butyl hydroperoxide (TBHP) for the first time with turnover rates of 1549 min-1 and 196 min-1 respectively. Several mutants were designed to improve the peroxygenation activity and thioanisole specificity by site-directed mutagenesis. The F153G/T213G mutant gave an increase of sulfoxide yield and a decrease of sulfone yield. Moreover the S148P/I161T/K199E/T214V mutant and the K199E mutant with acidic Glu residue contributed to improving the product ratio of sulfoxide to sulfone. Addition of short-alkyl-chain organic acids to the P450 119 peroxygenase-catalyzed sulfur oxidation of thioanisole was investigated. Octanoic acid was found to induce a preferred sulfoxidation of thioanisole catalyzed by the F153G/T213G mutant to give approximately 2.4-fold increase in turnover rate with a k cat value of 3687 min-1 relative to that of the wild-type, and by the F153G mutant to give the R-sulfoxide up to 30 % ee. The experimental control and the proposed mechanism for the P450 119 peroxygenase-catalyzed sulfoxidation of thioanisole in the presence of octanoic acid suggested that octanoic acid could partially occupy the substrate pocket; meanwhile the F153G mutation could enhance the substrate specificity, which could lead to efficiently regulate the spatial orientation of thioanisole and facilitate the formation of Compound I. This is the most effective catalytic system for the P450 119 peroxygenase-catalyzed sulfoxidation of thioanisole.
Collapse
Affiliation(s)
- Xiaoyao Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Chun Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Xiaowei Gao
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Yanping Gao
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Ya Yang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Kai Guo
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Xi Du
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Lin Pu
- Department of Chemistry University of Virginia Charlottesville VA 22904-4319 USA
| | - Qin Wang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| |
Collapse
|