1
|
Maya J, Malloum A, Fifen JJ, Dhaouadi Z, Fouda HPE, Conradie J. Quantum cluster equilibrium theory applied to liquid ammonia. J Comput Chem 2024; 45:1279-1288. [PMID: 38353541 DOI: 10.1002/jcc.27327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 04/19/2024]
Abstract
Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6-31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190-260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small-sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment.
Collapse
Affiliation(s)
- Josué Maya
- Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- National Radiation Protection Agency, Yaounde, Cameroon
| | - Alhadji Malloum
- Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Jean Jules Fifen
- Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Zoubeida Dhaouadi
- Laboratoire de Spectroscopie Atomique Moléculaire et Application, Université de Tunis El Manar, Tunis, Tunisie
| | | | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
2
|
Frömbgen T, Drysch K, Zaby P, Dölz J, Ingenmey J, Kirchner B. Quantum Cluster Equilibrium Theory for Multicomponent Liquids. J Chem Theory Comput 2024; 20:1838-1846. [PMID: 38372002 DOI: 10.1021/acs.jctc.3c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In this work, we present a new theory to treat multicomponent liquids based on quantum-chemically calculated clusters. The starting point is the binary quantum cluster equilibrium theory, which is able to treat binary systems. The theory provides one equation with two unknowns. In order to obtain another linearly independent equation, the conservation of mass is used. However, increasing the number of components leads to more unknowns, and this requires linearly independent equations. We address this challenge by introducing a generalization of the conservation of arbitrary quantities accompanied by a comprehensive mathematical proof. Furthermore, a case study for the application of the new theory to ternary mixtures of chloroform, methanol, and water is presented. Calculated enthalpies of vaporization for the whole composition range are given, and the populations or weights of the different clusters are visualized.
Collapse
Affiliation(s)
- Tom Frömbgen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, Bonn D-53115, Germany
- Max-Planck-Institut Für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Katrin Drysch
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, Bonn D-53115, Germany
| | - Paul Zaby
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, Bonn D-53115, Germany
| | - Jürgen Dölz
- Institute for Numerical Simulation, University of Bonn, Friedrich-Hirzebruch-Allee 7, Bonn D-53115, Germany
| | - Johannes Ingenmey
- CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, Paris F-75005, France
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, Bonn D-53115, Germany
| |
Collapse
|
3
|
Taherivardanjani S, Wylie L, Dötzer R, Kirchner B. Exploring the Influence of the Phosphorus-Heteroatom Substitution in Nicotine on Its Electronic and Vibrational Spectroscopic Properties. Chemistry 2024; 30:e202302534. [PMID: 37984418 DOI: 10.1002/chem.202302534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
The influence of phosphorus substitution of nitrogen in heterocyclic compounds on the vibrational spectroscopy as well as frontier molecular orbitals are analyzed. Nicotine with two nitrogen atoms in its structure is taken as the sample system to be studied computationally. By replacing the nitrogen atom in one or both rings of this molecule with phosphorus, three nicotine derivatives are created. The vibrational circular dichroism and infrared spectra of these four molecules in their monomer state, as well as the assemblies up to trimers are determined. The aforementioned spectra are calculated using static quantum chemical calculations employing a cluster-weighted approach. The calculated gas phase spectra of nicotine are compared to their respective experimental spectra. It is observed that the nicotine derivatives with phosphorus in the methylpyrrolidine ring have considerably different gas phase and bulk phase vibrational circular dichroism spectra when compared to nicotine. The phosphorus substitution reduces the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as altering the polarizability and reactivity of the investigated molecules.
Collapse
Affiliation(s)
- Shima Taherivardanjani
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | | | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| |
Collapse
|
4
|
Malloum A, Conradie J. Structures of DMSO clusters and quantum cluster equilibrium (QCE). J Mol Graph Model 2024; 126:108661. [PMID: 37913567 DOI: 10.1016/j.jmgm.2023.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Dimethylsulfoxide (DMSO) clusters are crucial for understanding processes in liquid DMSO. Despite its importance, DMSO clusters have received negligible attention due to the complexity of their potential energy surfaces (PESs). In this work, we explored the PESs of the DMSO clusters from dimer to decamer, starting with classical molecular dynamics, followed by full optimizations at the PW6B95-D3/def2-TZVP level of theory. In addition, the binding energies, the binding enthalpy per DMSO, and the quantum theory of atoms in molecules (QTAIM) analysis of the most stable isomers are reported. Temperature effects on the stability of the isomers have also been assessed. After thoroughly exploring the PESs of the DMSO clusters, 159 configurations have been used to apply the quantum cluster equilibrium (QCE) theory to liquid DMSO. The quantum cluster equilibrium theory has been applied to determine the liquid properties of DMSO from DMSO clusters. Thus, using the QCE, the population of the liquid DMSO, its infrared spectrum, and some thermodynamic properties of the liquid DMSO are predicted. The QCE results show that the population of the liquid DMSO is mainly dominated by the DMSO dimer and decamer, with the contribution in trace of the DMSO monomer, trimer, tetramer, pentamer, and octamer. More interestingly, the predicted infrared spectrum of liquid DMSO is in qualitative agreement with the experiment.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa; Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
5
|
Taherivardanjani S, Blasius J, Brehm M, Dötzer R, Kirchner B. Conformer Weighting and Differently Sized Cluster Weighting for Nicotine and Its Phosphorus Derivatives. J Phys Chem A 2022; 126:7070-7083. [PMID: 36170053 DOI: 10.1021/acs.jpca.2c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Weighting methods applied to systems with many conformers have been broadly employed to calculate thermodynamic properties, structural characteristics, and populations. To better understand and test the sensitivity of conventional weighting methods, the conformational distributions of nicotine and its phosphorus-substituted derivatives are investigated. The weighting schemes used for this are all based on Boltzmann statistics. Classical Boltzmann factors based on the electronic energy and the Gibbs free energy are calculated at different quantum chemical levels of theory and compared to cluster weights obtained by the quantum cluster equilibrium method. Furthermore, the influence of the modified rigid-rotor-harmonic-oscillator (mRRHO) approximation on the cluster weights is investigated. The substitution of the nitrogen atom in the methylpyrrolidine ring by a phosphorus atom results in more monomer conformers and clusters being populated. The conformational distribution of the monomers remained stable at different levels of theory and weighting methods. However, going to dimers and trimers, we observe a significant influence of the level of theory, weighting method, and mRRHO cutoff on the populations of these clusters. We show that mRRHO cutoff values of 50 and 100 cm-1 yield similar results, which is why 50 cm-1 is recommended as a robust choice. Furthermore, we observe that the global minimum for ΔE0 and ΔG varies in a few cases and that the global minimum is not always the dominantly occupied structure.
Collapse
Affiliation(s)
- Shima Taherivardanjani
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Reinhard Dötzer
- Competence Center Analytics, BASF SE, D-67056 Ludwigshafen, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| |
Collapse
|
6
|
Interaction mechanism of cholesterol/β-cyclodextrin complexation by combined experimental and computational approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Kirchner B, Ingenmey J, von Domaros M, Perlt E. The Ionic Product of Water in the Eye of the Quantum Cluster Equilibrium. Molecules 2022; 27:molecules27041286. [PMID: 35209075 PMCID: PMC8877775 DOI: 10.3390/molecules27041286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
The theoretical description of water properties continues to be a challenge. Using quantum cluster equilibrium (QCE) theory, we combine state-of-the-art quantum chemistry and statistical thermodynamic methods with the almost historical Clausius-Clapeyron relation to study water self-dissociation and the thermodynamics of vaporization. We pay particular attention to the treatment of internal rotations and their impact on the investigated properties by employing the modified rigid-rotor-harmonic-oscillator (mRRHO) approach. We also study a novel QCE parameter-optimization procedure. Both the ionic product and the vaporization enthalpy yield an astonishing agreement with experimental reference data. A significant influence of the mRRHO approach is observed for cluster populations and, consequently, for the ionic product. Thermodynamic properties are less affected by the treatment of these low-frequency modes.
Collapse
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, 53115 Bonn, Germany
- Correspondence:
| | - Johannes Ingenmey
- CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005 Paris, France;
| | - Michael von Domaros
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany;
| | - Eva Perlt
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich-Schiller-Universität Jena, Löbdergraben 32, 07743 Jena, Germany;
| |
Collapse
|
8
|
Marchelli G, Ingenmey J, Hollóczki O, Chaumont A, Kirchner B. Hydrogen Bonding and Vaporization Thermodynamics in Hexafluoroisopropanol-Acetone and -Methanol Mixtures. A Joined Cluster Analysis and Molecular Dynamic Study. Chemphyschem 2022; 23:e202100620. [PMID: 34632686 PMCID: PMC9298724 DOI: 10.1002/cphc.202100620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Indexed: 12/23/2022]
Abstract
Binary mixtures of hexafluoroisopropanol with either methanol or acetone are analyzed via classical molecular dynamics simulations and quantum cluster equilibrium calculations. In particular, their populations and thermodynamic properties are investigated with the binary quantum cluster equilibrium method, using our in-house code Peacemaker 2.8, upgraded with temperature-dependent parameters. A novel approach, where the final density from classical molecular dynamics, has been used to generate the necessary reference isobars. The hydrogen bond network in both type of mixtures at molar fraction of hexafluoroisopropanol of 0.2, 0.5, and 0.8 respectively is investigated via the molecular dynamics trajectories and the cluster results. In particular, the populations show that mixed clusters are preferred in both systems even at 0.2 molar fractions of hexafluoroisopropanol. Enthalpies and entropies of vaporization are calculated for the neat and mixed systems and found to be in good agreement with experimental values.
Collapse
Affiliation(s)
- Gwydyon Marchelli
- Mulliken Center for Theoretical ChemistryRheinische Friedrich-Wilhelms-Universität BonnBeringstr. 4+6D-53115BonnGermany
| | - Johannes Ingenmey
- Mulliken Center for Theoretical ChemistryRheinische Friedrich-Wilhelms-Universität BonnBeringstr. 4+6D-53115BonnGermany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical ChemistryRheinische Friedrich-Wilhelms-Universität BonnBeringstr. 4+6D-53115BonnGermany
| | - Alain Chaumont
- Université de StrasbourgCNRS, CMC UMR 7140Laboratoire MSMF-67000StrasbourgFrance
| | - Barbara Kirchner
- Mulliken Center for Theoretical ChemistryRheinische Friedrich-Wilhelms-Universität BonnBeringstr. 4+6D-53115BonnGermany
| |
Collapse
|