1
|
Zhang T, Sun G, Cheng X, Cao C, Cai Z, Zhou J. Screening for Potential Antiviral Compounds from Cyanobacterial Secondary Metabolites Using Machine Learning. Mar Drugs 2024; 22:501. [PMID: 39590781 PMCID: PMC11595798 DOI: 10.3390/md22110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The secondary metabolites of seawater and freshwater blue-green algae are a rich natural product pool containing diverse compounds with various functions, including antiviral compounds; however, high-efficiency methods to screen such compounds are lacking. Advanced virtual screening techniques can significantly reduce the time and cost of novel antiviral drug identification. In this study, we used a cyanobacterial secondary metabolite library as an example and trained three models to identify compounds with potential antiviral activity using a machine learning method based on message-passing neural networks. Using this method, 364 potential antiviral compounds were screened from >2000 cyanobacterial secondary metabolites, with amides predominating (area under the receiver operating characteristic curve value: 0.98). To verify the actual effectiveness of the candidate antiviral compounds, HIV virus reverse transcriptase (HIV-1 RT) was selected as a target to evaluate their antiviral potential. Molecular docking experiments demonstrated that candidate compounds, including kororamide, mollamide E, nostopeptolide A3, anachelin-H, and kasumigamide, produced relatively robust non-covalent bonding interactions with the RNase H active site on HIV-1 RT, supporting the effectiveness of the proposed screening model. Our data demonstrate that artificial intelligence-based screening methods are effective tools for mining potential antiviral compounds, which can facilitate the exploration of various natural product libraries.
Collapse
Affiliation(s)
- Tingrui Zhang
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (T.Z.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Geyao Sun
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xueyu Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (T.Z.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cheng Cao
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (T.Z.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (T.Z.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (T.Z.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
2
|
Protić S, Crnoglavac Popović M, Kaličanin N, Prodanović O, Senćanski M, Milićević J, Stevanović K, Perović V, Paessler S, Prodanović R, Glišić S. SARS-CoV-2 PL pro Inhibition: Evaluating in Silico Repurposed Fidaxomicin's Antiviral Activity Through In Vitro Assessment. ChemistryOpen 2024; 13:e202400091. [PMID: 39099532 PMCID: PMC11564859 DOI: 10.1002/open.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
The emergence of drug-resistant viruses and novel strains necessitates the rapid development of novel antiviral therapies. This need was particularly demanding during the COVID-19 pandemic. While de novo drug development is a time-consuming process, repurposing existing approved medications offers a more expedient approach. In our prior in silico screening of the DrugBank database, fidaxomicin emerged as a potential SARS-CoV-2 papain-like protease inhibitor. This study extends those findings by investigating fidaxomicin's antiviral properties in vitro. Our results support further exploration of fidaxomicin as a therapeutic candidate against SARS-CoV-2, given its promising in vitro antiviral activity and favorable safety profile.
Collapse
Affiliation(s)
- Sara Protić
- Faculty of ChemistryUniversity of BelgradeStudentski Trg 12–16BelgradeSerbia
| | | | - Nevena Kaličanin
- Institute of ChemistryTechnology and MetallurgyUniversity of BelgradeNjegoševa 12BelgradeSerbia
| | - Olivera Prodanović
- Institute for Multidisciplinary ResearchUniversity of BelgradeKneza Višeslava 1BelgradeSerbia
| | - Milan Senćanski
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
- Laboratory for Plant Molecular BiologyInstitute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeVojvode Stepe 444aBelgradeSerbia
| | - Jelena Milićević
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
| | - Kristina Stevanović
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
| | - Vladimir Perović
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
| | - Slobodan Paessler
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexasUnited States
- Institute for Human Infections and ImmunityUniversity of Texas Medical BranchGalvestonTexasUnited States
| | - Radivoje Prodanović
- Faculty of ChemistryUniversity of BelgradeStudentski Trg 12–16BelgradeSerbia
| | - Sanja Glišić
- Laboratory of Bioinformatics and Computational ChemistryInstitute of Nuclear Sciences VincaNational Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–14BelgradeSerbia
| |
Collapse
|
3
|
Diogo MA, Cabral AGT, de Oliveira RB. Advances in the Search for SARS-CoV-2 M pro and PL pro Inhibitors. Pathogens 2024; 13:825. [PMID: 39452697 PMCID: PMC11510351 DOI: 10.3390/pathogens13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
SARS-CoV-2 is a spherical, positive-sense, single-stranded RNA virus with a large genome, responsible for encoding both structural proteins, vital for the viral particle's architecture, and non-structural proteins, critical for the virus's replication cycle. Among the non-structural proteins, two cysteine proteases emerge as promising molecular targets for the design of new antiviral compounds. The main protease (Mpro) is a homodimeric enzyme that plays a pivotal role in the formation of the viral replication-transcription complex, associated with the papain-like protease (PLpro), a cysteine protease that modulates host immune signaling by reversing post-translational modifications of ubiquitin and interferon-stimulated gene 15 (ISG15) in host cells. Due to the importance of these molecular targets for the design and development of novel anti-SARS-CoV-2 drugs, the purpose of this review is to address aspects related to the structure, mechanism of action and strategies for the design of inhibitors capable of targeting the Mpro and PLpro. Examples of covalent and non-covalent inhibitors that are currently being evaluated in preclinical and clinical studies or already approved for therapy will be also discussed to show the advances in medicinal chemistry in the search for new molecules to treat COVID-19.
Collapse
Affiliation(s)
| | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.D.); (A.G.T.C.)
| |
Collapse
|
4
|
Ciardullo G, Orlando C, Russo N, Marchese E, Galano A, Marino T, Prejanò M. On the dual role of (+)-catechin as primary antioxidant and inhibitor of viral proteases. Comput Biol Med 2024; 180:108953. [PMID: 39089115 DOI: 10.1016/j.compbiomed.2024.108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Natural antioxidants have become the subject of many investigations due to the role that they play in the reduction of oxidative stress. Their main scavenging mechanisms concern the direct inactivation of free radicals and the coordination of metal ions involved in Fenton-like reactions. Recently, increasing attention has been paid to non-covalent inhibition of enzymes involved in different diseases by the antioxidants. Here, a computational investigation on the primary antioxidant power of (+)-catechin against the •OOH radical has been performed in both lipid-like and aqueous environments, taking into account the relevant species present in the simulated acid-base equilibria at the physiological pH. Hydrogen Atom Transfer (HAT), Single Electron Transfer (SET), and Radical Adduct Formation (RAF) mechanisms were studied, and relative rate constants were estimated. The potential inhibitory activity of the (+)-catechin towards the most important proteases from SARS-CoV-2, 3C-like (Mpro) and papain-like (PLpro) proteases was also investigated by MD simulations to provide deeper atomistic insights on the binding sites. Based on the antioxidant and antiviral properties also unravelled by comparison with other molecules having similar chemical scaffold, our results propose that (+)-CTc satisfies can explicate a dual action as antioxidant and antiviral in particular versus Mpro from SARS-CoV-2.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Carla Orlando
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Emanuela Marchese
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, 09310, Mexico
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy.
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| |
Collapse
|
5
|
Perovic V, Stevanovic K, Bukreyeva N, Paessler S, Maruyama J, López-Serrano S, Darji A, Sencanski M, Radosevic D, Berardozzi S, Botta B, Mori M, Glisic S. Exploring the Antiviral Potential of Natural Compounds against Influenza: A Combined Computational and Experimental Approach. Int J Mol Sci 2024; 25:4911. [PMID: 38732151 PMCID: PMC11084791 DOI: 10.3390/ijms25094911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The influenza A virus nonstructural protein 1 (NS1), which is crucial for viral replication and immune evasion, has been identified as a significant drug target with substantial potential to contribute to the fight against influenza. The emergence of drug-resistant influenza A virus strains highlights the urgent need for novel therapeutics. This study proposes a combined theoretical criterion for the virtual screening of molecular libraries to identify candidate NS1 inhibitors. By applying the criterion to the ZINC Natural Product database, followed by ligand-based virtual screening and molecular docking, we proposed the most promising candidate as a potential NS1 inhibitor. Subsequently, the selected natural compound was experimentally evaluated, revealing measurable virus replication inhibition activity in cell culture. This approach offers a promising avenue for developing novel anti-influenza agents targeting the NS1 protein.
Collapse
Affiliation(s)
- Vladimir Perovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, 11001 Belgrade, Serbia; (K.S.); (M.S.); (D.R.)
| | - Kristina Stevanovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, 11001 Belgrade, Serbia; (K.S.); (M.S.); (D.R.)
| | - Natalya Bukreyeva
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Sergi López-Serrano
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Institut de Recerca en Tecnologies Agroalimentaries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ayub Darji
- Institut de Recerca en Tecnologies Agroalimentaries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Milan Sencanski
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, 11001 Belgrade, Serbia; (K.S.); (M.S.); (D.R.)
| | - Draginja Radosevic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, 11001 Belgrade, Serbia; (K.S.); (M.S.); (D.R.)
| | - Simone Berardozzi
- Department of Chemistry and Technologies of Drugs, Sapienza University of Roma, 00185 Roma, Italy
- CLNS—Center for Life Nano Sciences@Sapienza, Istituto Italiano di Tecnologia, 00161 Roma, Italy
| | - Bruno Botta
- Department of Chemistry and Technologies of Drugs, Sapienza University of Roma, 00185 Roma, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sanja Glisic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, 11001 Belgrade, Serbia; (K.S.); (M.S.); (D.R.)
| |
Collapse
|
6
|
Kralj S, Jukič M, Bahun M, Kranjc L, Kolarič A, Hodošček M, Ulrih NP, Bren U. Identification of Triazolopyrimidinyl Scaffold SARS-CoV-2 Papain-Like Protease (PL pro) Inhibitor. Pharmaceutics 2024; 16:169. [PMID: 38399230 PMCID: PMC10893172 DOI: 10.3390/pharmaceutics16020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The global impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its companion disease, COVID-19, has reminded us of the importance of basic coronaviral research. In this study, a comprehensive approach using molecular docking, in vitro assays, and molecular dynamics simulations was applied to identify potential inhibitors for SARS-CoV-2 papain-like protease (PLpro), a key and underexplored viral enzyme target. A focused protease inhibitor library was initially created and molecular docking was performed using CmDock software (v0.2.0), resulting in the selection of hit compounds for in vitro testing on the isolated enzyme. Among them, compound 372 exhibited promising inhibitory properties against PLpro, with an IC50 value of 82 ± 34 μM. The compound also displayed a new triazolopyrimidinyl scaffold not yet represented within protease inhibitors. Molecular dynamics simulations demonstrated the favorable binding properties of compound 372. Structural analysis highlighted its key interactions with PLpro, and we stress its potential for further optimization. Moreover, besides compound 372 as a candidate for PLpro inhibitor development, this study elaborates on the PLpro binding site dynamics and provides a valuable contribution for further efforts in pan-coronaviral PLpro inhibitor development.
Collapse
Affiliation(s)
- Sebastjan Kralj
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, SI-6000 Koper, Slovenia
- Institute of Enviormental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Miha Bahun
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Luka Kranjc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
- National Institute of Biology, Večna Pot 111, SI-1000 Ljubljana, Slovenia
| | - Anja Kolarič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Milan Hodošček
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, SI-6000 Koper, Slovenia
- Institute of Enviormental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
7
|
Khan A, Liaqat A, Masood A, Ali SS, Ali L, Alshammari A, Alasmari AF, Mohammad A, Waheed Y, Wei DQ. Exploring the medicinal potential of Dark Chemical Matters (DCM) to design promising inhibitors for PLpro of SARS-CoV-2 using molecular screening and simulation approaches. Saudi Pharm J 2023; 31:101775. [PMID: 37719892 PMCID: PMC10504533 DOI: 10.1016/j.jsps.2023.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
The growing concerns and cases of COVID-19 with the appearance of novel variants i.e., BA.2.75. BA.5 and XBB have prompted demand for more effective treatment options that could overcome the risk of immune evasion. For this purpose, discovering novel small molecules to inhibit druggable proteins such as PLpro required for viral pathogenesis, replication, survival, and spread is the best choice. Compounds from the Dark chemical matter (DCM) database is consistently active in various screening tests and offer intriguing possibilities for finding drugs that are extremely selective or active against uncommon targets. Considering the essential role of PLpro, the current study uses DCMdatabase for the identification of potential hits using in silico virtual molecular screening and simulation approaches to inhibit the current and emerging variants of SARS-CoV-2. Our results revealed the 10 best compounds with docking scores between -7.99 to -7.03 kcal/mol better than the control drug (GRL0617) among which DC 5977-0726, DC 6623-2024, DC C879-0379 and DC D135-0154 were observed as the best hits. Structural-dynamics properties such as dynamic stability, protein packing, and residue flexibility demonstrated the pharmacologically favorable properties of these top hits in contrast to GRL0617. The hydrogen bonding half-life revealed that Asp164, Arg166, Tyr264, and Tyr268 have major contributions to the hydrogen bonding during the simulation. However, some of the important hydrogen bonds were missing in the control drug (GRL0617). Finally, the total binding free energy was reported to be -34.41 kcal/mol for GRL0617 (control), -41.03 kcal/mol for the DC5977-0726-PLpro, for the DC6623-2024-Plpro complex the TBE was -48.87 kcal/mol, for the for DCC879-0379-Plpro complex the TBE was -45.66 kcal/mol while for the DCD135-0154-PLpro complex the TBE was calculated to be -40.09 kcal/mol respectively, which shows the stronger potency of these compounds against PLpro and further in in vivo and in vitro test are required for the possible usage as potential drug against SARS-CoV-2.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan 473006, PR China
| | - Ayesha Liaqat
- King Edward Medical University Lahore, Punjab, Pakistan
| | - Adan Masood
- University Medical and Dental College, Faisalabad, Punjab, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS). Rawalpindi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan 473006, PR China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
8
|
Ribaudo G, Yun X, Ongaro A, Oselladore E, Ng JPL, Haynes RK, Law BYK, Memo M, Wong VKW, Coghi P, Gianoncelli A. Combining computational and experimental evidence on the activity of antimalarial drugs on papain-like protease of SARS-CoV-2: A repurposing study. Chem Biol Drug Des 2023; 101:809-818. [PMID: 36453012 DOI: 10.1111/cbdd.14187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The development of inhibitors that target the papain-like protease (PLpro) has the potential to counteract the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent causing coronavirus disease 2019 (COVID-19). Based on a consideration of its several downstream effects, interfering with PLpro would both revert immune suppression exerted by the virus and inhibit viral replication. By following a repurposing strategy, the current study evaluates the potential of antimalarial drugs as PLpro inhibitors, and thereby the possibility of their use for treatment of SARS-CoV-2 infection. Computational tools were employed for structural analysis, molecular docking, and molecular dynamics simulations to screen antimalarial drugs against PLpro, and in silico data were validated by in vitro experiments. Virtual screening highlighted amodiaquine and methylene blue as the best candidates, and these findings were complemented by the in vitro results that indicated amodiaquine as a μM PLpro deubiquitinase inhibitor. The results of this study demonstrate that the computational workflow adopted here can correctly identify active compounds. Thus, the highlighted antimalarial drugs represent a starting point for the development of new PLpro inhibitors through structural optimization.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Richard K Haynes
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
10
|
In Silico and In Vitro Inhibition of SARS-CoV-2 PL pro with Gramicidin D. Int J Mol Sci 2023; 24:ijms24031955. [PMID: 36768280 PMCID: PMC9915632 DOI: 10.3390/ijms24031955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study's findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.
Collapse
|
11
|
Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg Chem 2023; 135:106390. [PMID: 37037129 PMCID: PMC9883075 DOI: 10.1016/j.bioorg.2023.106390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.
Collapse
|
12
|
Miwa K, Guo Y, Hata M, Hirano Y, Yamamoto N, Hoshino T. In Silico Identification of Inhibitory Compounds for SARS-Cov-2 Papain-Like Protease. Chem Pharm Bull (Tokyo) 2023; 71:897-905. [PMID: 38044142 DOI: 10.1248/cpb.c23-00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Virtual screening with high-performance computers is a powerful and cost-effective technique in drug discovery. A chemical database is searched to find candidate compounds firmly bound to a target protein, judging from the binding poses and/or binding scores. The severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infectious disease has spread worldwide for the last three years, causing severe slumps in economic and social activities. SARS-Cov-2 has two viral proteases: 3-chymotrypsin-like (3CL) and papain-like (PL) protease. While approved drugs have already been released for the 3CL protease, no approved agent is available for PL protease. In this work, we carried out in silico screening for the PL protease inhibitors, combining docking simulation and molecular mechanics calculation. Docking simulations were applied to 8,820 molecules in a chemical database of approved and investigational compounds. Based on the binding poses generated by the docking simulations, molecular mechanics calculations were performed to optimize the binding structures and to obtain the binding scores. Based on the binding scores, 57 compounds were selected for in vitro assay of the inhibitory activity. Five inhibitory compounds were identified from the in vitro measurement. The predicted binding structures of the identified five compounds were examined, and the significant interaction between the individual compound and the protease catalytic site was clarified. This work demonstrates that computational virtual screening by combining docking simulation with molecular mechanics calculation is effective for searching candidate compounds in drug discovery.
Collapse
Affiliation(s)
- Kazunori Miwa
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yan Guo
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Masayuki Hata
- College of Pharmaceutical Sciences, Matsuyama University
| | | | - Norio Yamamoto
- Department of Virology, Division of Host Defense Mechanism, Tokai University School of Medicine
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|