1
|
Sahoo D, Bera A, Vennapusa SR, De S. Light-Triggered Reversible Helicity Switching of a Rotor by a Photo-Responsive Plier. Chemistry 2025; 31:e202404771. [PMID: 40052763 DOI: 10.1002/chem.202404771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Controlling synchronized motion and transmission of molecular motion to a remotely located guest is not trivial. Here, we demonstrate a light-triggered, scissor-like conformational change in a molecular plier to reversibly alter the conformation and helical chirality of a noncovalently bound rotor. The plier comprises three building blocks: an azobenzene unit that controls the open-close motion of the plier upon light-activated isomerization from E to Z, a BINOL unit that serves as both a hinge and a chiral inducer and two pyridine moieties that can form a complex with the rotor guest. The light-induced conformational alteration of the plier was unequivocally demonstrated by 1H NMR, UV-Vis, and CD spectroscopy. The open-close motion of the plier was translated to the rotor via a 1 : 1 host-guest complex. Indeed, CD spectroscopy, NMR spectroscopy, thermal back isomerization studies, and molecular modelling confirm that the light-triggered conformational alterations of the plier can induce mechanical twisting and helicity switching in the rotor.
Collapse
Affiliation(s)
- Diptiprava Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Anshuman Bera
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Soumen De
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| |
Collapse
|
2
|
Kundu S, Mallick S, Riebe J, Niemeyer J. Directional Macrocycle Transport, Release, and Recapture Enabled by a Rotaxane Transporter. Chemistry 2025:e202501106. [PMID: 40194924 DOI: 10.1002/chem.202501106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/09/2025]
Abstract
A transporter for a directional macrocycle transport, release, and recapture was constructed. This was achieved using a rotaxane featuring a dibenzo-24-crown-8 macrocycle, dibenzylammonium (DBA)/methyl triazolium (MTA) stations on the thread and anthracene/triisopropylsilyl-acetylene stoppers, respectively. In the protonated rotaxane, the macrocycle primarily resides on the DBA station, followed by directional shuttling to the MTA station upon treatment with base. Addition of fluoride as an additional chemical input cleaves the triisopropylsilyl stopper, leading to release of the macrocycle and the half-thread into solution. The released macrocycle can be recaptured by protonation, and the mechanical bond can be reestablished via CuAAC click reaction, enabled by the terminal acetylene unit on the half-thread. This generates an elongated second-generation rotaxane transporter, which was used for a second cycle of directional macrocycle transport and release, proving the possibility of an iterative operation of the rotaxane-transporter in this molecular design.
Collapse
Affiliation(s)
- Sohom Kundu
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
- Research Center for Trustworthy Data Science and Security (UA Ruhr), Joseph-von-Fraunhofer-Str. 25, 44227, Dortmund, Germany
| | - Shubhadip Mallick
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| |
Collapse
|
3
|
Rodríguez-Valdez G, Martínez-Cerda ME, Mejía-Reyes JG, Tapia-Juárez M, Olmos-Orizaba E, Cortés-Rojo C, Cortés-García CJ, Contreras-Celedón CA, Solorio-Alvarado CR, Chacón-García L. A Metastable Semiquinone Molecular Switch Modulated by Ascorbate/O 2: A Study from a System Far-From-Equilibrium to Biological Assays in Mitochondria. Chembiochem 2024; 25:e202400401. [PMID: 38981854 DOI: 10.1002/cbic.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
A molecular switch based on the metastable radical anion derived from a substituted heteroaryl quinone is described. Pyrrolyl quinone thiocyanate (PQ 9) showed an interaction with the fluoride anion that was visible to the naked eye and quantified by UV/vis and 1H and 13 C NMR. The metastable quinoid species formed by the interaction with F- ("ON" state) showed a molecular switching effect autocontrolled by the presence of ascorbate ("OFF" state) and back to the "ON" state by an autooxidation process, measured by visible and UV/vis spectroscopy. Due to its out-of-equilibrium properties and the exchange of matter and energy, a dissipative structural behaviour is proposed. Considering its similarity to the mechanism of coenzyme Q in oxidative phosphophorylation, PQ 9 was evaluated on Saccharomyces cerevisiae mitochondrial function for inhibition of complexes II, III and IV, reactive oxygen species (ROS) production, catalase activity and lipid peroxidation. The results showed that PQ 9 inhibited complex III activity as well as the activity of all electron transport chain (ETC) complexes. In addition, PQ 9 reduced ROS production and catalase activity in yeast. The results suggest that PQ 9 may have potential applications as a new microbicidal compound by inducing ETC dysfunction.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Valdez
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Marlen E Martínez-Cerda
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Jisell G Mejía-Reyes
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Melissa Tapia-Juárez
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Eridani Olmos-Orizaba
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Christian Cortés-Rojo
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Carlos J Cortés-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Claudia A Contreras-Celedón
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| | - Cesar R Solorio-Alvarado
- División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, 36050, Guanajuato, Mexico
| | - Luis Chacón-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, Francisco J. Múgica S/N, 58030, Morelia, Mexico
| |
Collapse
|
4
|
Maity P, Pradhan H, Das A, Dalapati M, Samanta D. Improving Fatigue Resistance and Autonomous Switching of pH Responsive Hydrazones by Pulses of a Chemical Fuel. Chemistry 2024; 30:e202400328. [PMID: 38646974 DOI: 10.1002/chem.202400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
The chemically triggered reversible switching of pH-responsive hydrazones involves rotary motion-induced configurational changes, serving as a prototype for constructing an array of molecular machines. Typically, the configurational isomerization of such switches into two distinct forms (E/Z) occurs through the alteration of the pH the medium, achieved by successive additions of acid and base stimuli. However, this process results in intermittent operation due to the concomitant accumulation of salt after each cycle, limiting switching performance to only a few cycles (5-6). In this context, we introduce a novel strategy for the autonomous E/Z isomerization of hydrazones in acetonitrile using pulses of trichloroacetic acid as a chemical fuel. The use of this transient acid enabled reversible switching of hydrazones even after 50 cycles without causing significant fatigue. To test the broad viability of the fuel, a series of ortho/para-substituted hydrazones were synthesized and their switching performance was investigated. The analysis of kinetic data showed a strong dependency of switching operations including the lifetime of transient state, on the electronic properties of substituents. Finally, a distinct color change from yellow to orange due to reversible switching of the para-methoxy substituted hydrazone was employed for the creation of rewritable messages on commercially available paper.
Collapse
Affiliation(s)
- Pankaj Maity
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Harekrushna Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Asesh Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Monotosh Dalapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Dipak Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| |
Collapse
|
5
|
Elramadi E, Kundu S, Mondal D, Paululat T, Schmittel M. Stepwise Dissipative Control of Multimodal Motion in a Silver(I) Catenate. Angew Chem Int Ed Engl 2024; 63:e202404444. [PMID: 38530118 DOI: 10.1002/anie.202404444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Stepwise dissipative control of two distinct motions, i.e., shuttling and sliding, is demonstrated in a single multicomponent device. When [2]rotaxane 1, which acts as a biped, and deck 2 were treated with AgBF4/PhCH2Br+NEt3 as chemical fuel, the transient catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ was instantly generated showing multimodal motion and autonomous return to 1 and 2. In the dissipative process, catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ cleanly transformed into the follow-up transient device (1) ⋅ [Ag3(2)]3+ exhibiting only sliding motion. Two interference-free dissipative cycles proved the resilience and robustness of the process.
Collapse
Affiliation(s)
- Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie II, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
6
|
Bu A, Gao JN, Chen Y, Xiao H, Li H, Tung CH, Wu LZ, Cong H. Modular Synthesis of Improbable Rotaxanes with All-Benzene Scaffolds. Angew Chem Int Ed Engl 2024; 63:e202401838. [PMID: 38404165 DOI: 10.1002/anie.202401838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
"Improbable" rotaxanes consisting of interlocked conjugated components represent non-trivial synthetic targets, not to mention those with all-benzene scaffolds. Herein, a modular synthetic strategy has been established using an isolable azo-linked pre-rotaxane as the core module, in which the azo group functions as a tracelessly removable template to direct mechanical bond formations. Through versatile connections of the pre-rotaxane and other customizable modules, [2]- and [3]rotaxanes derived from all-benzene scaffolds have been accomplished, demonstrating the utility and potential of the synthetic design for all-benzene interlocked supramolecules.
Collapse
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Nan Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiming Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongwei Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
Zhang X, Mao L, He R, Shi Y, Li L, Li S, Zhu C, Zhang Y, Ma D. Tunable cyclic operation of dissipative molecular switches based on anion recognition. Chem Commun (Camb) 2024; 60:1180-1183. [PMID: 38193867 DOI: 10.1039/d3cc05912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Artificial dissipative molecular switches based on anion recognition are of great importance to simulate biological functions and construct smart materials. Five activated carboxylic acids are used as chemical fuels for dissipative molecular switches, which consist of an imidazolium macrocyclic host and a carboxylate anionic guest. By choosing different types of chemical fuels and using varied fuel concentrations, the rates of cyclic operations are tunable. The operation is capable of undergoing at least three cycles.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lijun Mao
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Rongjing He
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanting Shi
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lingyi Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Shuo Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Chenghao Zhu
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanjing Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Da Ma
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
8
|
Mondal D, Kundu S, Elramadi E, Rajasekaran VV, Schmittel M. Orthogonal Initiation of Molecular Motion Devices by Two Chemical Fuels. J Am Chem Soc 2023. [PMID: 38019966 DOI: 10.1021/jacs.3c08134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Herein, we demonstrate the selective dissipative and orthogonal actuation of two distinct molecular devices controlled by alternate fuel use. When the multicomponent ensemble of [2]rotaxane 1 and turnstile [Cu(2)(3)]+ was charged with AgBF4 as chemical fuel (Fuel 1) together with NEt3/PhCH2Br (cofuels), the transiently formed [Ag(1)]+ showed a stochastic shuttling of the silver macrocycle between two degenerate triazole stations on the thread (k298 = 1.2 × 105 s-1), whereas [Cu(2)(3)]+ was unperturbed. Instead, treatment of the mixture with PPh3 as an alternative fuel (Fuel 2) in the presence of oxidant 4 (cofuel) generated the complex [Cu(3)(PPh3)2]+ and transient thermal motion in rotor 2 (k298 = 4.9 × 104 s-1), whereas rotaxane 1 stayed dormant. Thus, two distinct chemical fuels selectively and orthogonally activated two distinct transient motion devices from a multicomponent mixture. In total, four interference-free dissipative cycles were demonstrated by using alternating fuel additions.
Collapse
Affiliation(s)
- Debabrata Mondal
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Vishnu Verman Rajasekaran
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Organische Chemie I, School of Science and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
9
|
Nandi M, Bej S, Jana T, Ghosh P. From construction to application of a new generation of interlocked molecules composed of heteroditopic wheels. Chem Commun (Camb) 2023. [PMID: 38015500 DOI: 10.1039/d3cc03778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Over the last few decades, research on mechanically interlocked molecules has significantly evolved owing to their unique structural features and interesting properties. A substantial percentage of the reported works have focused on the synthetic strategies, leading to the preparation of functional MIMs for their applications in the chemical, materials, and biomedical sciences. Importantly, various macrocyclic wheels with specific heteroditopicity (including phenanthroline, amide, amine, oxy-ether, isophthalamide, calixarene and triazole) and threading axles (bipyridine, phenanthroline, pyridinium, triazolium, etc.) have been designed to synthesize targeted multifunctional mononuclear/multinuclear pseudorotaxanes, rotaxanes and catenanes. The structural uniqueness of these interlocked systems is advantageous owing to the presence of mechanical bonds with specific three-dimensional cavities. Furthermore, their multi-functionalities and preorganised structural entities exhibit a high potential for versatile applications, like switching, shuttling, dynamic properties, recognition and sensing. In this feature article, we describe some of the most recent advances in the construction and chemical behaviour of a new generation of interlocked molecules, primarily focusing on heteroditopic wheels and their applications in different directions of the modern research area. Furthermore, we outline the future prospects and significant perspectives of the new generation heteroditopic wheel based interlocked molecules in different emerging areas of science.
Collapse
Affiliation(s)
- Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Tarun Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|