1
|
Zhang C, Li L, Xin Y, You J, Zhang J, Fu W, Wang N. Development of Trans-1,4-Polyisoprene Shape-Memory Polymer Composites Reinforced with Carbon Nanotubes Modified by Polydopamine. Polymers (Basel) 2021; 14:110. [PMID: 35012132 PMCID: PMC8747353 DOI: 10.3390/polym14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, which was inspired by mussel-biomimetic bonding research, carbon nanotubes (CNTs) were interfacially modified with polydopamine (PDA) to prepare a novel nano-filler (CNTs@PDA). The structure and properties of the CNTs@PDA were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The CNTs and the CNTs@PDA were used as nanofillers and melt-blended into trans-1,4 polyisoprene (TPI) to create shape-memory polymer composites. The thermal stability, mechanical properties, and shape-memory properties of the TPI/CNTs and TPI/CNTs@PDA composites were systematically studied. The results demonstrate that these modifications enhanced the interfacial interaction, thermal stability, and mechanical properties of TPI/CNTs@PDA composites while maintaining shape-memory performance.
Collapse
Affiliation(s)
- Chuang Zhang
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
| | - Long Li
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China;
| | - Yuanhang Xin
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
| | - Jiaqi You
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
| | - Jing Zhang
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
| | - Wanlu Fu
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China;
| | - Na Wang
- Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (C.Z.); (L.L.); (Y.X.); (J.Y.); (J.Z.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China;
| |
Collapse
|
2
|
Shape memory function of trans-1,4-polyisoprene prepared by radiation crosslinking with a supercritical CO2 foaming. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Facile Fabrication of Eucommia Rubber Composites with High Shape Memory Performance. Polymers (Basel) 2021; 13:polym13203479. [PMID: 34685238 PMCID: PMC8541577 DOI: 10.3390/polym13203479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
We processed a series of shape memory Eucommia rubber (ER) composites with both carbon–carbon and ionic cross-linking networks via a chemical cross-linking method. The influence of the carbon–carbon cross-linking and ion cross-linking degree of ER composites on curing, mechanical, thermal, and shape memory properties were studied by DSC, DMA, and other analytical techniques. Dicumyl peroxide (DCP) and zinc dimethacrylate (ZDMA) played a key role in preparing ER composites with a double cross-linking structure, where DCP initiated polymerization of ZDMA, and grafted ZDMA onto polymer molecular chains and cross-linked rubber molecular chains. Meanwhile, ZDMA combined with rubber macromolecules to build ionic cross-linking bonds in composites under the action of DCP and reinforced the ER composites. The result showed that the coexistence of these two cross-linking networks provide a sufficient restoring force for deformation of shape memory composites. The addition of ZDMA not only improved the mechanical properties of materials, but also significantly enhanced shape memory performance of composites. In particular, Eucommia rubber composites exhibited outstanding mechanical properties and shape memory performance when DCP content was 0.2 phr.
Collapse
|
4
|
Wang Z, Teng J, Sun X, Min B. Development of novel TPI/HDPE/CNTs ternary hybrid shape memory nanocomposites. NANOTECHNOLOGY 2021; 32:405706. [PMID: 34192678 DOI: 10.1088/1361-6528/ac1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In order to make up for the defects of trans-1,4-polyisoprene (TPI) shape memory polymer, TPI/high density polyethylene (HDPE) hybrid shape memory matrix was prepared from the perspective of matrix composition. The carbon nanotubes (CNTs) with excellent mechanical properties were introduced into the hybrid shape memory matrix. Due to the difference of the inherent properties and geometry of nano-fillers, the change of the content of nano-fillers directly affects the bonding state within the composites. Therefore, it is very important to choose the appropriate content. In order to give full play to the potential of thermodynamics of nano-filler, the TPI/HDPE/CNTs ternary hybrid shape memory nanocomposites were prepared by mechanical melt blending technology combined with dynamic vulcanization and hot-pressing forming technology. The addition of CNTs promotes the formation of the crystal structure of TPI and HDPE, and facilitates the energy transfer between different interface, which greatly improves the thermal conductivity and mechanical properties of the nanocomposites at the same time. The effect of the changes of filler content on the thermodynamic properties of the composite materials were revealed by series of tests. The results show that the CNTs act as nucleating agents in the crystallization region of TPI and HDPE. However, the excessive addition of CNTs can inhibit the formation of HDPE crystal structure. Meanwhile, the crystallinity of nanocomposites is also an important factor affecting its thermal conductivity. The specimens with the CNTs content of 0.5 wt% have excellent tensile resistance and cyclic recovery ability, and it can improve the shape recovery properties. Therefore, the nanocomposite with the CNTs content of 0.5 wt% has the best thermodynamic and shape memory properties.
Collapse
Affiliation(s)
- Zhenqing Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, People's Republic of China
| | - Jianxin Teng
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, People's Republic of China
| | - Xiaoyu Sun
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, People's Republic of China
| | - Benzhi Min
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, People's Republic of China
| |
Collapse
|
5
|
Ren Q, Wang XJ, Zhao YQ, Xu LQ, Yu HW, Ma AJ, Zheng WG. Thermo-Responsive Shape Memory Behavior of Methyl Vinyl Silicone Rubber/Olefin Block Copolymer Blends via Co-Crosslinking. INT POLYM PROC 2021. [DOI: 10.1515/ipp-2020-3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Shape memory polymers (SMPs) are developed by blending and cross-linking polymers which include crystalline domains and cross-linked networks. In this paper, we describe the morphology, thermal and shape memory behavior of methyl vinyl silicone rubber (MVMQ)/olefin block copolymer (OBC) blends prepared by a melt-blending and chemical cross-linking method. MVMQ without crystalline domains could not hold its temporary shape. After introducing the OBC, the obtained blends exhibited excellent dual shape memory properties. The cross-linking networks of MVMQ acted as reversible domains, while crystalline regions of OBC worked as fixed domains. When the blending ratio of MVMQ/OBC was 50/ 50, the blend had both a high shape fixity ratio and shape recovery ratio.
Collapse
Affiliation(s)
- Q. Ren
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
- University of Chinese Academy of Sciences , Beijing , PRC
| | - X. J. Wang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
- School of Materials Science and Chemical Engineering, Xi’an Technological University , Xi’an , PRC
| | - Y. Q. Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
| | - L. Q. Xu
- School of Material Science and Chemical Engineering, Ningbo University , Ningbo , PRC
| | - H. W. Yu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
| | - A. J. Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University , Xi’an , PRC
| | - W. G. Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences , Ningbo , PRC
| |
Collapse
|
6
|
Qi X, Zhao X, Li Y, Zhang J, Zhang L, Yue D. A high toughness elastomer based on natural
Eucommia ulmoides
gum. J Appl Polym Sci 2021. [DOI: 10.1002/app.50007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xin Qi
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Xin Zhao
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yongxin Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Jichuan Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Liqun Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Dongmei Yue
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| |
Collapse
|
7
|
Teng J, Wang Z, Liu J, Sun X. Effect of dynamic vulcanization system on the thermodynamics and shape memory properties of TPI/HDPE hybrid shape memory polymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Tian M, Gao W, Hu J, Xu X, Ning N, Yu B, Zhang L. Multidirectional Triple-Shape-Memory Polymer by Tunable Cross-linking and Crystallization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6426-6435. [PMID: 31940167 DOI: 10.1021/acsami.9b19448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Medical fixing is one of the very important applications of the shape-memory polymer material, and the two important properties of the medical fixing material are that it perfectly fits the body during the fixing and easily detaches after being used. As the fixing and detachment are triggered by two independent stimuli in two opposite directions, it is necessary to develop multidirectional triple-shape-memory polymers. In this research, a series of polymer materials composed of trans-polyisoprene (TPI) and paraffin were prepared by melt blending and compression molding, and then the TPI was cross-linked by vulcanization. As a result of the large difference in the melting temperature and crystallization temperature between TPI and paraffin, the obtained polymer materials exhibit a triple-shape-memory behavior. According to the analysis of crystal behavior, microscopic morphology, and mechanical properties of the materials with different paraffin contents and TPI cross-linking density by differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and dynamic mechanical thermal analysis, the shape-memory behavior of the obtained materials was tunable by the cross-linking density of TPI and the crystallization degree of TPI or paraffin. Compared with the traditional triple-shape-memory material, our samples are prepared in a more facile way and can recover at human body temperature (37 °C). Moreover, our TPI/paraffin material can realize more flexible multidirectional recovery, as well as can be reprogramed and used multiple times. To the best of our knowledge, there are few polymer materials reported, which can realize multidirectional recovery. These unique multidirectional and reprogramable properties will enable the application of this polymer material, especially in the medical fixing materials.
Collapse
Affiliation(s)
- Ming Tian
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Weisheng Gao
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Jing Hu
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaowei Xu
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
9
|
Shape Memory Polyurethane and its Composites for Various Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inherent capability to deform and reform in a predefined environment is a unique property existing in shape memory polyurethane. The intrinsic shape memory ability of the polyurethane is due to the presence of macro domains of soft and hard segments in its bulk, which make this material a potential candidate for several applications. This review is focused on manifesting the applicability of shape memory polyurethane and its composites/blends in various domains, especially to human health such as shielding of electromagnetic interference, medical bandage development, bone tissue engineering, self-healing, implants development, etc. A coherent literature review highlighting the prospects of shape memory polyurethane in versatile applications has been presented.
Collapse
|