1
|
Sivasubramanian PD, Unnikrishnan G, Kolanthai E, Muthuswamy S. Engineered nanoparticle systems: A review on emerging strategies for enhanced cancer therapeutics. NEXT MATERIALS 2025; 6:100405. [DOI: 10.1016/j.nxmate.2024.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
A Ferrofluid with High Specific Absorption Rate Prepared in a Single Step Using a Biopolymer. MATERIALS 2022; 15:ma15030788. [PMID: 35160734 PMCID: PMC8836388 DOI: 10.3390/ma15030788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
An exhaustive characterization of the physicochemical properties of gum arabic (GA)-coated Fe3O4 magnetic nanoparticles was conducted in this work. These nanoparticles were obtained via the in-situ coprecipitation method (a fast single-step method) in two GA:Fe ratios, 10:1 and 20:1, respectively. Several experimental techniques were applied in the characterization process, all of them described below. Using Transmission Electron Microcopy images, they were shown to have spherical-like morphology with 11 nm diameter. The Fourier Transform Infrared spectra confirmed the attachment of the GA on the surface of the magnetic nanoparticles (MNPs), providing good colloidal stability from pH 7 to 8. The thickness of the coatings (1.7 nm and 1.1 nm) was determined using thermogravimetric measurements. A high specific absorption rate and superparamagnetic properties were determined using alternant and static magnetic fields, respectively. The GA-coated MNPs were non-cytotoxic, according to tests on HT-29 human intestine cells. Additionally, HT-29 cells were exposed to magnetic fluid hyperthermia at 530 kHz, and the induction of cell death by the magnetic field, due to the heating of GA-coated MNP, was observed.
Collapse
|
3
|
Zhong Z, Fang S, Li Y, Huang Y, Zhang Y, Chen H, Zhang J, Wang HX, Xiong H, Zou Q, Wang S. Quantitative Analysis of Protein Corona on Precoated Protein Nanoparticles and Determined Nanoparticles with Ultralow Protein Corona and Efficient Targeting in Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56812-56824. [PMID: 34817983 DOI: 10.1021/acsami.1c12008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The protein corona on nanoparticles (NPs) is a critical problem that often screens the targeting molecules and becomes one of the key reasons for the lack of practical application in nanotherapy. It is critical to fully understand the mechanism of the nanoparticle-biological interactions to design the nanoparticle-based therapeutic agents. Some types of proteins can be precoated on the nanoparticles to avoid unwanted protein attachment; however, the ultralow level of protein corona is hard to achieve, and the relationship of the antifouling property of the precoated protein nanoparticles with protein conformation and protein-nanoparticle interaction energy has never been investigated. In this work, we provided the quantitative protein corona composition analysis on different precoated protein nanoparticles, and on the basis of the molecular simulation process, we found their antifouling property strongly depended on the interaction energy of the precoated protein-serum protein pair and the number of hydrogen bonds formed between them. Furthermore, it also depended on the nanoparticle-serum protein pair interaction energy and the protein conformation on the nanoparticle. The casein coated nanoparticle with the antifouling property was determined, and after aptamer conjugation and drug loading, they exhibited superior targeting and internalization behavior for photodynamic and photothermal therapy in vitro and in vivo. Our work adds to the understanding of the protein corona behavior of precoated protein nanoparticles, and the determined antifouling NP can potentially be used as a highly efficient nanodrug carrier.
Collapse
Affiliation(s)
- Zicheng Zhong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha 410012, China
| | - Yan Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Huang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yue Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Hao Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jinzhi Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Hang-Xing Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qichao Zou
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Suxiao Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Hatamie S, Balasi ZM, Ahadian MM, Mortezazadeh T, Shams F, Hosseinzadeh S. Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Hatamie S, Shih PJ, Chen BW, Shih HJ, Wang IJ, Young TH, Yao DJ. Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles. Polymers (Basel) 2021; 13:3306. [PMID: 34641122 PMCID: PMC8512180 DOI: 10.3390/polym13193306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
To improve bovine corneal endothelial cell (BCEC) migration, enhance cell energy, and facilitate symmetric cell distribution in corneal surfaces, an electromagnet device was fabricated. Twenty nanometer superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with fourth-generation dendrimer macromolecules were synthesized, and their size and structure were evaluated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results confirmed the configuration of the dendrimer on the SPION surfaces. In vitro biocompatibility was assessed using the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide assay. No significant toxicity was noted on BCECs within 24 h of incubation. In the cell migration assay, cells treated with dendrimer-coated SPIONs exhibited a relatively high wound healing rate under sample addition (1 μg/mL) under a magnetic field. Real-time PCR on BCECs treated with dendrimer-coated SPIONs revealed upregulation of specific genes, including AT1P1 and NCAM1, for BCECs-dendrimer-coated SPIONs under a magnetic field. The three-dimensional dispersion of BCECs containing dendrimer-coated SPIONs under a magnetic field was evaluated using COMSOL Multiphysics software. The results revealed the BCECs-SPION vortex pattern layers in the corneal surface corresponded to the electromagnet's displacement from the ocular surface. Magnetic resonance imaging (MRI) indicated that dendrimer-coated SPIONs can be used as a T2 contrast agent.
Collapse
Affiliation(s)
- Shadie Hatamie
- College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Bo-Wei Chen
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan; (B.-W.C.); (D.-J.Y.)
| | - Hua-Ju Shih
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan;
| | - I-Jong Wang
- College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan; (B.-W.C.); (D.-J.Y.)
| |
Collapse
|
7
|
Hatamie S, Shih PJ, Chen BW, Wang IJ, Young TH, Yao DJ. Synergic Effect of Novel WS 2 Carriers Holding Spherical Cobalt Ferrite @cubic Fe 3O 4 (WS 2/s-CoFe 2O 4@c-Fe 3O 4) Nanocomposites in Magnetic Resonance Imaging and Photothermal Therapy for Ocular Treatments and Investigation of Corneal Endothelial Cell Migration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2555. [PMID: 33352770 PMCID: PMC7766809 DOI: 10.3390/nano10122555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
The design of novel materials to use simultaneously in an ocular system for driven therapeutics and wound healing is still challenging. Here, we produced nanocomposites of tungsten disulfide carriers with spherical cobalt ferrite nanoparticles (NPs) as core inside a cubic iron oxide NPs shell (WS2/s-CoFe2O4@c-Fe3O4). Transmission electron microscopy (TEM) confirmed that 10 nm s-CoFe2O4@c-Fe3O4 NPs were attached on the WS2 sheet surfaces. The cytotoxicity of the WS2 sheets and nanocomposites were evaluated on bovine cornea endothelial cells (BCECs) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for a duration of three days. The MTT assay results showed low toxicity of the WS2 sheets on BCECs by 67% cell viability at 100 μg/mL in 24 h, while the nanocomposites show 50% cell viability in the same conditions. The magnetic resonance imaging (MRI) of nanocomposites revealed the excellent T2-weighted imaging with an r2 contrast of 108 mM-1 S-1. The in vitro photothermal therapy based on WS2 sheets and WS2/s-CoFe2O4 @c-Fe3O4 nanocomposites using 808 nm laser showed that the maximum thermal energy dispatched in medium at different applied power densities (1200 mw, 1800, 2200, 2600 mW) was for 0.1 mg/mL of the sample solution. The migration assay of BCECs showed that the wound healing was approximately 20% slower for the cell exposed by nanocomposites compared with the control (no exposed BCECs). We believe that WS2/s-CoFe2O4@c-Fe3O4 nanocomposites have a synergic effect as photothermal therapy agents for eye diseases and could be a target in an ocular system using MRI.
Collapse
Affiliation(s)
- Shadie Hatamie
- College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Bo-Wei Chen
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan; (B.-W.C.); (D.-J.Y.)
| | - I-Jong Wang
- College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan; (B.-W.C.); (D.-J.Y.)
| |
Collapse
|
8
|
Shahsavari Alavijeh M, Maghsoudpour A, Khayat M, Rad I, Hatamie S. Distribution of “molybdenum disulfide/cobalt ferrite” nanocomposite in animal model of breast cancer, following injection via differential infusion flow rates. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00479-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|