1
|
Karami Fath M, Vakilinezami P, Abdoli Keleshtery Z, Sima Azgomi Z, Nezamivand Chegini S, Shahriarinour M, Seyfizadeh Saraabestani S, Diyarkojouri M, Nikpassand M, Ranji N. Silibinin-Loaded Nanoparticles for Drug Delivery in Gastric Cancer: In Vitro Modulating miR-181a and miR-34a to Inhibit Cancer Cell Growth and Migration. Food Sci Nutr 2025; 13:e4609. [PMID: 40078338 PMCID: PMC11896884 DOI: 10.1002/fsn3.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 03/14/2025] Open
Abstract
Silibinin (C25H22O10), a notable bioactive flavonolignans, is recognized for its anticancer properties. However, due to its poor water solubility, the objective of this study was to design and synthesize nanocarriers to enhance the solubility of silibinin for effective delivery to AGS gastric cancer cells. This study details the synthesis of PEG400-OA nanoparticles for silibinin delivery to AGS cells. Various physicochemical techniques, including FT-IR, TGA, EDX, FE-SEM, and TEM, were employed to characterize the silibinin-loaded nanoparticles (SLNs), confirming particle size, elemental composition, thermal stability, and paramagnetic properties. The anticancer effects of the SLNs were assessed using MTT assay, scratch test, and Q-RT-PCR. The SLNs exhibited particle sizes ranging from 45 to 60 nm, with thermal stability below 110°C. TEM images suggested a micelles/liposomes structure due to the low polydispersity and spherical shape of the particles. EDX analysis revealed the presence of C, O, N, and P, confirming the incorporation of phospholipids (micelle/liposome) within the SLNs. The IC50 of SLNs in AGS cells was determined to be 28.21 μg/mL. Antimigration effects of SLNs's were demonstrated through the downregulation of miR-181a and upregulation of its potential targets (TGFB, SMAD3, and β-catenin genes), as well as the upregulation of miR-34a and downregulation of its potential target (E-Cadherin antimigration gene). The findings suggest that nanoparticles serve as effective nanocarriers for the targeted delivery of silibinin to cancer cells. Silibinin-loaded micelles/liposomes nanoparticles (SLNs) appear to inhibit cancer cell proliferation and migration by modulating the expressionof miRNAs and their target mRNAs.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Parastoo Vakilinezami
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | | | - Zahra Sima Azgomi
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | | | - Mahdi Shahriarinour
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | | | - Mahzad Diyarkojouri
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | - Mohammad Nikpassand
- Department of Chemistry, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| | - Najmeh Ranji
- Department of Biology, Faculty of Basic Sciences, Rasht BranchIslamic Azad UniversityRashtIran
| |
Collapse
|
2
|
Zhong C, Chen D, Gong D, Sheng X, Lin Y, Li R, Li Y. Transcriptomic response of overexpression ZNF32 in breast cancer cells. Sci Rep 2024; 14:28407. [PMID: 39557972 PMCID: PMC11574142 DOI: 10.1038/s41598-024-80125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Breast cancer is one of the deadliest malignancies in women worldwide. Zinc finger protein 32 (ZNF32) has been reported to be involved in autophagy and stem cell like properties of breast cancer cells. However, the effects, mechanisms, target genes and pathways of ZNF32 in breast cancer development have not been fully explored. In this study, stable ZNF32 overexpression breast cancer cell line was generated, and we used RNA-seq and RT-qPCR to quantify and verify the changes in transcription levels in breast cancer cells under ZNF32 overexpression. Transcriptome analysis showed that high expression of ZNF32 is accompanied by changes in downstream focal adhesion, ECM-receptor interaction, PI3K-AKT, HIPPO and TNF signaling pathways, which are critical for the occurrence and development of cancer. Multiple differentially expressed genes (DEGs) were significantly involved in cell proliferation, adhesion and migration, including 11 DEGs such as CA9, CRLF1 and ENPP2P with fundamental change of regulation modes. All the 11 DEGs were validated by RT-qPCR, and 9 of them contained potential transcriptional binding sequences of ZNF32 in their promoter region. This study provides a holistic perspective on the role and molecular mechanism of ZNF32 in breast cancer progression.
Collapse
Affiliation(s)
- Chaosong Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Dingshuang Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Di Gong
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Xueqing Sheng
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Ashin ZF, Sadeghi-Mohammadi S, Vaezi Z, Najafi F, AdibAmini S, Sadeghizadeh M, Naderi-Manesh H. Synergistic effect of curcumin and tamoxifen loaded in pH-responsive gemini surfactant nanoparticles on breast cancer cells. BMC Complement Med Ther 2024; 24:337. [PMID: 39304876 DOI: 10.1186/s12906-024-04631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Drug combination therapy is preferred over monotherapy in clinical research to improve therapeutic effects. Developing a new nanodelivery system for cancer drugs can reduce side effects and provide several advantages, including matched pharmacokinetics and potential synergistic activity. This study aimed to examine and determine the efficiency of the gemini surfactants (GSs) as a pH-sensitive polymeric carrier and cell-penetrating agent in cancer cells to achieve dual drug delivery and synergistic effects of curcumin (Cur) combined with tamoxifen citrate (TMX) in the treatment of MCF-7 and MDA-MB-231 human BC cell lines. METHODS The synthesized NPs were self-assembled using a modified nanoprecipitation method. The functional groups and crystalline form of the nanoformulation were examined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) used to assess zeta potential and particle size, and the morphological analysis determined by transmission electron microscopy (TEM). The anticancer effect was evaluated through an in vitro cytotoxicity MTT assay, flow cytometry analysis, and apoptosis analysis performed for mechanism investigation. RESULTS The tailored NPs were developed with a size of 252.3 ± 24.6 nm and zeta potential of 18.2 ± 4.4 mV capable of crossing the membrane of cancer cells. The drug loading and release efficacy assessment showed that the loading of TMX and Cur were 93.84% ± 1.95% and 90.18% ± 0.56%, respectively. In addition, the drug release was more controlled and slower than the free state. Polymeric nanocarriers improved controlled drug release 72.19 ± 2.72% of Tmx and 55.50 ± 2.86% of Cur were released from the Tmx-Cur-Gs NPs after 72 h at pH = 5.5. This confirms the positive effect of polymeric nanocarriers on the controlled drug release mechanism. moreover, the toxicity test showed that combination-drug delivery was much more greater than single-drug delivery in MCF-7 and MDA-MB-231 cell lines. Cellular imaging showed excellent internalization of TMX-Cur-GS NPs in both MCF-7 and MDA-MB-231 cells and synergistic anticancer effects, with combination indices of 0.561 and 0.353, respectively. CONCLUSION The combined drug delivery system had a greater toxic effect on cell lines than single-drug delivery. The synergistic effect of TMX and Cur with decreasing inhibitory concentrations could be a more promising system for BC-targeted therapy using GS NPs.
Collapse
Affiliation(s)
- Zeinab Fotouhi Ashin
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sanam Sadeghi-Mohammadi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Pardeshi S, Mohite P, Rajput T, Puri A. The Nanotech Potential of Curcumin in Pharmaceuticals: An Overview. Curr Drug Discov Technol 2024; 21:e260723219113. [PMID: 37493163 DOI: 10.2174/1570163820666230726125809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 07/27/2023]
Abstract
It is safe to use Curcumin as a cosmetic and therapeutic ingredient in pharmaceutical products. For the uses mentioned above and for fundamental research, it is essential to obtain pure Curcumin from plant sources. There is a requirement for effective extraction and purification techniques that adhere to green chemistry standards for efficiency improvement, process safety, and environmental friendliness. Several outstanding studies have looked into the extraction and purification of Curcumin. This review thoroughly covers the currently available curcumin extraction, synthesis, and transformation techniques. Additionally, Curcumin's poor solubility and low absorption in the human body have limited its potential for pharmaceutical use. However, recent developments in novel curcumin formulations utilizing nanotechnology delivery methods have provided new approaches to transport and maximize the human body's curcumin absorption efficiency. In this review, we explore the various curcumin nanoformulations and the potential medicinal uses of nano curcumin. Additionally, we review the necessary future research directions to recommend Curcumin as an excellent therapeutic candidate.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutics AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra- 401404, India
| | - Popat Mohite
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Tanavirsing Rajput
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Abhijeet Puri
- Department of Pharmacognosy, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| |
Collapse
|
5
|
Abdihaji M, Mirzaei Chegeni M, Hadizadeh A, Farrokhzad N, Kheradmand Z, Fakhrfatemi P, Faress F, Moeinabadi-Bidgoli K, Noorbazargan H, Mostafavi E. Polyvinyl Alcohol (PVA)-Based Nanoniosome for Enhanced in vitro Delivery and Anticancer Activity of Thymol. Int J Nanomedicine 2023; 18:3459-3488. [PMID: 37396433 PMCID: PMC10314792 DOI: 10.2147/ijn.s401725] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction There is an unmet need to develop potent therapeutics against cancer with minimal side effects and systemic toxicity. Thymol (TH) is an herbal medicine with anti-cancer properties that has been investigated scientifically. This study shows that TH induces apoptosis in cancerous cell lines such as MCF-7, AGS, and HepG2. Furthermore, this study reveals that TH can be encapsulated in a Polyvinyl alcohol (PVA)-coated niosome (Nio-TH/PVA) to enhance its stability and enable its controlled release as a model drug in the cancerous region. Materials and Methods TH-loaded niosome (Nio-TH) was fabricated and optimized using Box-Behnken method and the size, polydispersity index (PDI) and entrapment efficiency (EE) were characterized by employing DLS, TEM and SEM, respectively. Additionally, in vitro drug release and kinetic studies were performed. Cytotoxicity, antiproliferative activity, and the mechanism were assessed by MTT assay, quantitative real-time PCR, flow cytometry, cell cycle, caspase activity evaluation, reactive oxygen species investigation, and cell migration assays. Results This study demonstrated the exceptional stability of Nio-TH/PVA at 4 °C for two months and its pH-dependent release profile. It also showed its high toxicity on cancerous cell lines and high compatibility with HFF cells. It revealed the modulation of Caspase-3/Caspase-9, MMP-2/MMP-9 and Cyclin D/ Cyclin E genes by Nio-TH/PVA on the studied cell lines. It confirmed the induction of apoptosis by Nio-TH/PVA in flow cytometry, caspase activity, ROS level, and DAPI staining assays. It also verified the inhibition of metastasis by Nio-TH/PVA in migration assays. Conclusion Overall, the results of this study revealed that Nio-TH/PVA may effectively transport hydrophobic drugs to cancer cells with a controlled-release profile to induce apoptosis while exhibiting no detectable side effects due to their biocompatibility with normal cells.
Collapse
Affiliation(s)
- Mohammadreza Abdihaji
- Department of Biology, The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Farrokhzad
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zahra Kheradmand
- Department of Agriculture, Islamic Azad University Maragheh Branch, Maragheh, Iran
| | | | - Fardad Faress
- Department of Business, Data Analysis, The University of Texas Rio Grande Valley (UTRGV), Edinburg, TX, USA
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Varnamkhasti TJ, Jafarzadeh M, Sadeghizadeh M, Aghili M. Radiosensitizing effect of dendrosomal nanoformulation of curcumin on cancer cells. Pharmacol Rep 2022; 74:718-735. [PMID: 35819593 DOI: 10.1007/s43440-022-00383-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Curcumin was found to possess numerous pharmacological activities in clinical research, however, its biological effects together with radiation are yet to be addressed. The present study investigated whether the combined treatment of dendrosomal nanoformulation of curcumin (DNC) and gamma radiation can enhance the radiosensitivity of U87MG and MDA-MB-231 cell lines. METHODS U87MG and MDA-MB-231 cell lines were exposed to 2 Gray (Gy) and 10 μM DNC determined by MTT assay, then subjected to clonogenic assay, cell cycle assay, and flow cytometric apoptosis analysis. Acridine Orange/Ethidium Bromide (AO/EB) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) stained cells were used to study morphologic changes. The expression evaluation of putative cell cycle genes, i.e., P53, P21, CCND1, and CCNB1 was carried out by RT-qPCR. RESULTS Our findings indicated that the combined treatment with DNC and radiation might cooperatively augment the efficacy of ionizing radiation in the cancer cells and notably decrease the survival and viability of the cells in a time- and concentration-dependent manner. In addition to a synergistic effect deducted by sensitizer enhancement ratio (SER) assessment, co-treatment resulted in greater apoptotic cells than the individual treatments. Further experiments then indicated that DNC could effectively induce G2/M phase cell cycle arrest and apoptosis following irradiation. Conformably, there was a decrement of CCND1 and CCNB1 expression, and an increment of P53, P21 expression. CONCLUSIONS The data implied that DNC as a radiosensitizer can enhance the lethal effect of ionizing radiation on cancer cells which could be a promising adjuvant therapy in clinical treatments.
Collapse
Affiliation(s)
- Tahereh Jalali Varnamkhasti
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Meisam Jafarzadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran.
| | - Mahdi Aghili
- Radiation Oncology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, P.O. Box 13145-158, Tehran, Iran.
| |
Collapse
|
7
|
Thermoresponsive Pluronic based microgels for controlled release of curcumin against breast cancer cell line. Colloids Surf B Biointerfaces 2021; 205:111834. [PMID: 34015731 DOI: 10.1016/j.colsurfb.2021.111834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 01/31/2023]
Abstract
We developed here stimuli responsive curcumin loaded microgels based on Pluronic F-127. These microgels were prepared using coupling reaction between the amine modified Pluronic and EDTA. The microgel exhibited the affinity for hydrophobic drug, curcumin and showed pH as well as temperature-dependent release. Furthermore, the cytotoxicity study demonstrated dose-dependent inhibition of MDA-MB-231 cell growth with the most effective IC50 value (3.8 ± 0.2 μg mL-1 after 24 h). Based on these findings, the fabricated curcumin loaded microgels offered additional advantages over conventional drug therapies for treatment of cancer.
Collapse
|
8
|
Yu S, Wang S, Xie Z, Yu S, Li L, Xiao H, Song Y. Hyaluronic acid coating on the surface of curcumin-loaded ZIF-8 nanoparticles for improved breast cancer therapy: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2021; 203:111759. [PMID: 33892283 DOI: 10.1016/j.colsurfb.2021.111759] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
Despite developments in surgery and chemotherapy, effective treatment of breast cancer is still an urgent problem owing to recurrence and metastasis. By combining the advantages of curcumin (Cur), zeolitic imidazolate framework-8 nanoparticles (ZIF-8), and hyaluronic acid (HA) in breast cancer therapy, Cur-loaded and HA-coated ZIF-8 (Cur@ZIF-8@HA) were synthesized using a method based on the pH-dependent solubility of Cur and the electrostatic interactions between zinc ions and carboxyl groups of HA. Cur@ZIF-8 were also prepared as a control group. Comprehensive comparisons of the physicochemical properties and anticancer activities of Cur@ZIF-8@HA and Cur@ZIF-8 were conducted. The results indicated that the degradation of Cur during the synthesis of Cur@ZIF-8 was negligible. The obtained Cur@ZIF-8 and Cur@ZIF-8@HA were truncated cubes with hydrodynamic diameters of 174 and 217 nm, respectively. Cur@ZIF-8@HA possessed better stability during storage in different media, a slower drug release rate under neutral and acidic conditions, and a greater inhibitory effect on breast cancer than Cur@ZIF-8. For 4T1 cells, treatment using Cur@ZIF-8@HA induced more cellular uptake and higher cytotoxicity, accompanied by higher lactate dehydrogenase release, cell cycle arrest in G2/M and S phases, production of reactive oxygen species, and apoptosis. In 4T1 tumor-bearing mice models, Cur@ZIF-8@HA showed a stronger inhibitory effect on tumor growth and pulmonary metastasis. Therefore, Cur@ZIF-8@HA might hold great potential as an agent for the effective therapy of breast cancer.
Collapse
Affiliation(s)
- Shaoxuan Yu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Shanyu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Zhike Xie
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Shuyan Yu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Ling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Haifang Xiao
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China.
| |
Collapse
|
9
|
Javed Z, Khan K, Rasheed A, Sadia H, Shahwani MN, Irshad A, Raza S, Salehi B, Sharifi-Rad J, Suleria HAR, Cruz-Martins N, Quispe C. Targeting androgen receptor signaling with MicroRNAs and Curcumin: a promising therapeutic approach for Prostate Cancer Prevention and intervention. Cancer Cell Int 2021; 21:77. [PMID: 33499881 PMCID: PMC7836194 DOI: 10.1186/s12935-021-01777-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, DHA, Sector-C, Phase VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, PR China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammad Naeem Shahwani
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, DHA, Sector-C, Phase VI, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal. .,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile.
| |
Collapse
|