1
|
Hashimoto K, Yamamoto H, Ikeda Y, Isogai J, Hashimoto T. A case of biopsy-proven inflammatory dilated cardiomyopathy following heterologous mRNA-1273 third-dose immunization. ESC Heart Fail 2024; 11:4442-4449. [PMID: 38946583 PMCID: PMC11631250 DOI: 10.1002/ehf2.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Katsuya Hashimoto
- Department of Cardiovascular MedicineNarita‐Tomisato Tokushukai HospitalChibaJapan
| | - Hiroyuki Yamamoto
- Department of Cardiovascular MedicineNarita‐Tomisato Tokushukai HospitalChibaJapan
- Department of CardiologyTokyo Medical University HospitalTokyoJapan
| | - Yoshihiko Ikeda
- Department of PathologyNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Jun Isogai
- Department of RadiologyAsahi General HospitalAsahiJapan
| | - Toru Hashimoto
- Department of Cardiovascular MedicineNarita‐Tomisato Tokushukai HospitalChibaJapan
| |
Collapse
|
2
|
Izumi R, Hashimoto T, Kisanuki H, Ikuta K, Otsuru W, Asakawa S, Yamamoto S, Misumi K, Fujino T, Shinohara K, Matsushima S, Hosokawa K, Katsuki S, Mori T, Hashisako M, Tateishi Y, Iwasaki T, Oda Y, Kinugawa S, Abe K. Clinical and pathological characteristics of immune checkpoint inhibitor-related fulminant myocarditis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:82. [PMID: 39574216 PMCID: PMC11580468 DOI: 10.1186/s40959-024-00288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
The advent of immune checkpoint inhibitors (ICIs) has significantly improved cancer treatment. With the increasing use of ICIs, ICI-related myocarditis has been recognized. However, an evidence-based therapeutic strategy has not been established because of the limited knowledge on ICI-related myocarditis. Here, we present four cases of ICI-related fulminant myocarditis (FM). Three of the four cases resulted in fatal outcomes despite aggressive treatment with mechanical circulatory support and immunosuppressive therapy with corticosteroids. Given the poor prognosis of ICI-FM, the establishment of rapid and adequate therapeutic interventions on the basis of clinical and pathological evaluation is imperative.
Collapse
Affiliation(s)
- Ryo Izumi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Toru Hashimoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Hiroshi Kisanuki
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kei Ikuta
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Wataru Otsuru
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Soshun Asakawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shoei Yamamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kayo Misumi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takeo Fujino
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Advanced Cardiopulmonary Failure, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kazuya Hosokawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Taro Mori
- Department of Anatomic Pathology, Pathological Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan
| | - Mikiko Hashisako
- Department of Anatomic Pathology, Pathological Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan
| | - Yuki Tateishi
- Department of Anatomic Pathology, Pathological Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Pathological Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Clinical Research Building B 416, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Ozanne J, Lewis M, Schwenzer A, Kurian D, Brady J, Pritchard D, McLachlan G, Farquharson C, Midwood KS. Extracellular matrix complexity in biomarker studies: a novel assay detecting total serum tenascin-C reveals different distribution to isoform-specific assays. Front Immunol 2023; 14:1275361. [PMID: 38077374 PMCID: PMC10703424 DOI: 10.3389/fimmu.2023.1275361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Serum biomarkers are the gold standard in non-invasive disease diagnosis and have tremendous potential as prognostic and theranostic tools for patient stratification. Circulating levels of extracellular matrix molecules are gaining traction as an easily accessible means to assess tissue pathology. However, matrix molecules are large, multimodular proteins that are subject to a vast array of post-transcriptional and post-translational modifications. These modifications often occur in a tissue- and/or disease-specific manner, generating hundreds of different variants, each with distinct biological roles. Whilst this complexity can offer unique insight into disease processes, it also has the potential to confound biomarker studies. Tenascin-C is a pro-inflammatory matrix protein expressed at low levels in most healthy tissues but elevated in, and associated with the pathogenesis of, a wide range of autoimmune diseases, fibrosis, and cancer. Analysis of circulating tenascin-C has been widely explored as a disease biomarker. Hundreds of different tenascin-C isoforms can be generated by alternative splicing, and this protein is also modified by glycosylation and citrullination. Current enzyme-linked immunosorbent assays (ELISA) are used to measure serum tenascin-C using antibodies, recognising sites within domains that are alternatively spliced. These studies, therefore, report only levels of specific isoforms that contain these domains, and studies on the detection of total tenascin-C are lacking. As such, circulating tenascin-C levels may be underestimated and/or biologically relevant isoforms overlooked. We developed a highly specific and sensitive ELISA measuring total tenascin-C down to 0.78ng/ml, using antibodies that recognise sites in constitutively expressed domains. In cohorts of people with different inflammatory and musculoskeletal diseases, levels of splice-specific tenascin-C variants were lower than and distributed differently from total tenascin-C. Neither total nor splice-specific tenascin-C levels correlated with the presence of autoantibodies to citrullinated tenascin-C in rheumatoid arthritis (RA) patients. Elevated tenascin-C was not restricted to any one disease and levels were heterogeneous amongst patients with the same disease. These data confirm that its upregulation is not disease-specific, instead suggest that different molecular endotypes or disease stages exist in which pathology is associated with, or independent of, tenascin-C. This immunoassay provides a novel tool for the detection of total tenascin-C that is critical for further biomarker studies. Differences between the distribution of tenascin-C variants and total tenascin-C have implications for the interpretation of studies using isoform-targeted assays. These data highlight the importance of assay design for the detection of multimodular matrix molecules and reveal that there is still much to learn about the intriguingly complex biological roles of distinct matrix proteoforms.
Collapse
Affiliation(s)
- James Ozanne
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mel Lewis
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - Anja Schwenzer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford University, Oxford, United Kingdom
| | - Dominic Kurian
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeff Brady
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - David Pritchard
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - Gerry McLachlan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Farquharson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
4
|
Lasica R, Djukanovic L, Savic L, Krljanac G, Zdravkovic M, Ristic M, Lasica A, Asanin M, Ristic A. Update on Myocarditis: From Etiology and Clinical Picture to Modern Diagnostics and Methods of Treatment. Diagnostics (Basel) 2023; 13:3073. [PMID: 37835816 PMCID: PMC10572782 DOI: 10.3390/diagnostics13193073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Although the frequency of myocarditis in the general population is very difficult to accurately determine due to the large number of asymptomatic cases, the incidence of this disease is increasing significantly due to better defined criteria for diagnosis and the development of modern diagnostic methods. The multitude of different etiological factors, the diversity of the clinical picture, and the variability of the diagnostic findings make this disease often demanding both for the selection of the diagnostic modality and for the proper therapeutic approach. The previously known most common viral etiology of this disease is today overshadowed by new findings based on immune-mediated processes, associated with diseases that in their natural course can lead to myocardial involvement, as well as the iatrogenic cause of myocarditis, which is due to use of immune checkpoint inhibitors in the treatment of cancer patients. Suspecting that a patient with polymorphic and non-specific clinical signs and symptoms, such as changes in ECG and echocardiography readings, has myocarditis is the starting point in the diagnostic algorithm. Cardio magnetic resonance imaging is non-invasive and is the gold standard for diagnosis and clinical follow-up of these patients. Endomyocardial biopsy as an invasive method is the diagnostic choice in life-threatening cases with suspicion of fulminant myocarditis where the diagnosis has not yet established or there is no adequate response to the applied therapeutic regimen. The treatment of myocarditis is increasingly demanding and includes conservative methods of treating heart failure, immunomodulatory and immunospressive therapy, methods of mechanical circulatory support, and heart transplantation. The goal of developing new diagnostic and therapeutic methods is to reduce mortality from this complex disease, which is still high.
Collapse
Affiliation(s)
- Ratko Lasica
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.D.); (L.S.); (G.K.); (M.A.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Lazar Djukanovic
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.D.); (L.S.); (G.K.); (M.A.)
| | - Lidija Savic
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.D.); (L.S.); (G.K.); (M.A.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gordana Krljanac
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.D.); (L.S.); (G.K.); (M.A.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Department of Cardiology, University Medical Center Bezanijska Kosa, 11000 Belgrade, Serbia
| | - Marko Ristic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | | | - Milika Asanin
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.D.); (L.S.); (G.K.); (M.A.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Arsen Ristic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Shinkai T, Kuriyama N, Usui M, Hayasaki A, Fujii T, Iizawa Y, Tanemura A, Murata Y, Kishiwada M, Katoh D, Matsumoto T, Wada H, Yoshida T, Isaji S, Mizuno S. Clinical Significance of Plasma Tenascin-C Levels in Recipients With Prolonged Jaundice After Living Donor Liver Transplantation. Transplant Proc 2023; 55:913-923. [PMID: 36973145 DOI: 10.1016/j.transproceed.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/26/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Focusing on tenascin-C (TNC), whose expression is enhanced during the tissue remodeling process, the present study aimed to clarify whether plasma TNC levels after living donor liver transplantation (LDLT) could be a predictor of irreversible liver damage in the recipients with prolonged jaundice (PJ). METHODS Among 123 adult recipients who underwent LDLT between March 2002 and December 2016, the subjects were 79 recipients in whom we could measure plasma TNC levels preoperatively (pre-) and on postoperative days 1 to 14 (POD1 to POD14). Prolonged jaundice was defined as serum total bilirubin level >10 mg/dL on POD14, and 79 recipients were divided into 2 groups: 56 in the non-PJ (NJ) group and 23 in the PJ group. RESULTS The PJ group had significantly increased pre-TNC; smaller grafts; decreased platelet counts POD14; increased TB-POD1, -POD7, and -POD14; increased prothrombin time-international normalized ratio on POD7 and POD14; and higher 90-day mortality than the NJ group. As for the risk factors for 90-day mortality, multivariate analysis identified TNC-POD14 as a single significant independent prognostic factor (P = .015). The best cut-off value of TNC-POD14 for 90-day survival was determined to be 193.7 ng/mL. In the PJ group, the patients with low TNC-POD14 (<193.7 ng/mL) had satisfactory survival, with 100.0 % at 90 days, while the patients with high TNC-POD14 (≥193.7 ng/mL) had significantly poor survival, with 38.5 % at 90 days (P = .004). CONCLUSIONS In PJ after LDLT, plasma TNC-POD14 is very useful for diagnosing postoperative irreversible liver damage early.
Collapse
Affiliation(s)
- Toru Shinkai
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan; Department of Disaster and Emergency Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naohisa Kuriyama
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | - Masanobu Usui
- Department of Palliative Medicine, Fujita Health University Faculty of Medicine, Toyoake, Aichi, Japan
| | - Aoi Hayasaki
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takehiro Fujii
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yusuke Iizawa
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akihiro Tanemura
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Murata
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masashi Kishiwada
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daisuke Katoh
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takeshi Matsumoto
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hideo Wada
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shuji Isaji
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
6
|
Tenascin-C in fibrosis in multiple organs: Translational implications. Semin Cell Dev Biol 2022; 128:130-136. [PMID: 35400564 PMCID: PMC10119770 DOI: 10.1016/j.semcdb.2022.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex disease with a pathogenic triad of autoimmunity, vasculopathy, and fibrosis involving the skin and multiple internal organs [1]. Because fibrosis accounts for as much as 45% of all deaths worldwide and appears to be increasing in prevalence [2], understanding its pathogenesis and progression is an urgent scientific challenge. Fibroblasts and myofibroblasts are the key effector cells executing physiologic tissue repair on one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify innate immune signaling via toll-like receptors (TLRs) as a key driver of persistent fibrotic response in SSc. Repeated injury triggers the in-situ generation of "damage-associated molecular patterns" (DAMPs) or danger signals. Sensing of these danger signals by TLR4 on resident cells elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation triggering the self-limited tissue repair response to self-sustained pathological fibrosis characteristic of SSc. Our unbiased survey for DAMPs associated with SSc identified extracellular matrix glycoprotein tenascin-C as one of the most highly up-regulated ECM proteins in SSc skin and lung biopsies [3,4]. Furthermore, tenascin C is responsible for driving sustained fibroblasts activation, thereby progression of fibrosis [3]. This review summarizes recent studies examining the regulation and complex functional role of tenascin C, presenting tenascin-TLR4 axis in pathological fibrosis, and novel anti-fibrotic approaches targeting their signaling.
Collapse
|
7
|
Li Y, Xu Z, Wu L, Liang X, Zhao L, Liu F, Wang F. Tenascin-C predicts IVIG non-responsiveness and coronary artery lesions in kawasaki disease in a Chinese cohort. Front Pediatr 2022; 10:979026. [PMID: 36582508 PMCID: PMC9792982 DOI: 10.3389/fped.2022.979026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To assess the predictive value of tenascin-C (TN-C) for intravenous immunoglobulin (IVIG) non-responsiveness and coronary artery lesions (CALs) development at the acute stage of Kawasaki disease, and to build novel scoring systems for identifying IVIG non-responsiveness and CALs. METHODS A total of 261 patients in acute-stage Kawasaki disease were included. Serum samples before IVIG initiation were collected and TN-C expression levels were measured using an enzyme-linked immunosorbent assay. In addition to TN-C, another fifteen clinical and laboratory parameters collected before treatment were compared between IVIG responsive and non-responsive groups, and between groups with and without CALs. Multiple logistic regression analyses were performed to construct new scoring systems for the prediction of IVIG non-responsiveness and CALs development. RESULTS IVIG non-responsive group (n = 51) had significantly higher TN-C level compared to IVIG responsive group (n = 210) (15.44 vs. 12.38 IU/L, P < 0.001). A novel scoring system composed of TN-C, total bilirubin, serum sodium and albumin was established to predict IVIG non-responsiveness. Patients with a total score ≥ 2 points were classified as high-risk cases. With the sensitivity of 78.4% and specificity of 73.8%, the efficiency of our scoring system for predicting IVIG non-responsiveness was comparable to the Kobayashi system. Consistently, the group developing CALs at the acute stage (n = 42) had significantly higher TN-C level compared to the group without CALs (n = 219) (19.76 vs. 12.10 IU/L, P < 0.001). A new scoring system showed that patients with elevated TN-C, platelet count ≥ 450 × 109/L, and delayed initial infusion of IVIG had a higher risk of developing CALs. Individuals with a total score ≥ 3 points were classified as high-risk cases. The sensitivity and specificity of the novel simple system for predicting CALs development were 83.3% and 74.0%, respectively, yielding a better efficiency than the Harada score. CONCLUSION Elevated TN-C appeared to be an independent risk factor for both IVIG non-responsiveness and CALs in Chinese children with KD. Our scoring systems containing TN-C is simple and efficient in the early identification of high-risk KD cases that could benefit from more individualized medications.
Collapse
Affiliation(s)
- Yujie Li
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Ziqing Xu
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Wu
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Xuecun Liang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Lu Zhao
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Liu
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Xu Y, Li N, Gao J, Shang D, Zhang M, Mao X, Chen R, Zheng J, Shan Y, Chen M, Xie Q, Hao CM. Elevated Serum Tenascin-C Predicts Mortality in Critically Ill Patients With Multiple Organ Dysfunction. Front Med (Lausanne) 2021; 8:759273. [PMID: 34901073 PMCID: PMC8661593 DOI: 10.3389/fmed.2021.759273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Multiple organ dysfunction is a complex and lethal clinical feature with heterogeneous causes and is usually characterized by tissue injury of multiple organs. Tenascin-C (TNC) is a matricellular protein that is rarely expressed in most of the adult tissues, but re-induced following injury. This study aimed to evaluate serum TNC in predicting mortality in critically ill patients with multiple organ dysfunction. Methods: Adult critically ill patients with at least two organs dysfunction and an increase of Sequential Organ Failure Assess (SOFA) score ≥ 2 points within 7 days were prospectively enrolled into two independent cohorts. The emergency (derivation) cohort was a consecutive series and the patients were from Emergency Department. The inpatient (validation) cohort was a convenience series and the patients were from medical wards. Their serum samples at the first 24 h after enrollment were collected and subjected to TNC measurement using ELISA. The association between serum TNC level and 28-day all-cause mortality was investigated, and then the predictive value of serum TNC was analyzed. Results: A total of 110 patients with a median age of 64 years (53, 73) were enrolled in the emergency cohort. Compared to the survivors, serum TNC in the non-survivors was significantly higher (467.7 vs. 197.5 ng/ml, p < 0.001). Multivariate logistic regression analysis revealed that the association between serum TNC and 28-day mortality was independent of sepsis or critical illness scores such as SOFA, Acute Physiology and Chronic Health Evaluation (APACHE II), and Simplified Acute Physiology Score (SAPS II), respectively (p < 0.001 for each). The area under receiver operating characteristic curve of serum TNC for predicting mortality was 0.803 (0.717-0.888) (p < 0.001), similar with SOFA 0.808 (0.725-0.891), APACHE II 0.762 (0.667-0.857), and SAPS II 0.779 (0.685-0.872). The optimal cut-off value of serum TNC was 298.2 ng/ml. Kaplan-Meier analysis showed that the survival of patients with serum TNC ≥ 300 ng/ml was significantly worse than that of patients with serum TNC < 300 ng/ml. This result was validated in the inpatient cohort. The sensitivity and specificity of serum TNC ≥ 300 ng/ml for predicting mortality were 74.3 and 74.7% in the emergency cohort, and 63.0 and 70.1% in the inpatient cohort, respectively. Conclusion: Serum TNC was associated with mortality in critically ill patients with multiple organ dysfunction, and would be used as a prognostic tool for predicting mortality in this population.
Collapse
Affiliation(s)
- Yunyu Xu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nanyang Li
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiamin Gao
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Da Shang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Mao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiying Chen
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Shan
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingquan Chen
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Imanaka-Yoshida K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int J Mol Sci 2021; 22:ijms22115828. [PMID: 34072423 PMCID: PMC8198581 DOI: 10.3390/ijms22115828] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Mie University Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
10
|
Tajiri K, Yonebayashi S, Li S, Ieda M. Immunomodulatory Role of Tenascin-C in Myocarditis and Inflammatory Cardiomyopathy. Front Immunol 2021; 12:624703. [PMID: 33692798 PMCID: PMC7938317 DOI: 10.3389/fimmu.2021.624703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence suggests that the breakdown of immune tolerance plays an important role in the development of myocarditis triggered by cardiotropic microbial infections. Genetic deletion of immune checkpoint molecules that are crucial for maintaining self-tolerance causes spontaneous myocarditis in mice, and cancer treatment with immune checkpoint inhibitors can induce myocarditis in humans. These results suggest that the loss of immune tolerance results in myocarditis. The tissue microenvironment influences the local immune dysregulation in autoimmunity. Recently, tenascin-C (TN-C) has been found to play a role as a local regulator of inflammation through various molecular mechanisms. TN-C is a nonstructural extracellular matrix glycoprotein expressed in the heart during early embryonic development, as well as during tissue injury or active tissue remodeling, in a spatiotemporally restricted manner. In a mouse model of autoimmune myocarditis, TN-C was detectable before inflammatory cell infiltration and myocytolysis became histologically evident; it was strongly expressed during active inflammation and disappeared with healing. TN-C activates dendritic cells to generate pathogenic autoreactive T cells and forms an important link between innate and acquired immunity.
Collapse
Affiliation(s)
- Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Saori Yonebayashi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Siqi Li
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Matsumoto KI, Aoki H. The Roles of Tenascins in Cardiovascular, Inflammatory, and Heritable Connective Tissue Diseases. Front Immunol 2020; 11:609752. [PMID: 33335533 PMCID: PMC7736112 DOI: 10.3389/fimmu.2020.609752] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Tenascins are a family of multifunctional extracellular matrix (ECM) glycoproteins with time- and tissue specific expression patterns during development, tissue homeostasis, and diseases. There are four family members (tenascin-C, -R, -X, -W) in vertebrates. Among them, tenascin-X (TNX) and tenascin-C (TNC) play important roles in human pathologies. TNX is expressed widely in loose connective tissues. TNX contributes to the stability and maintenance of the collagen network, and its absence causes classical-like Ehlers-Danlos syndrome (clEDS), a heritable connective tissue disorder. In contrast, TNC is specifically and transiently expressed upon pathological conditions such as inflammation, fibrosis, and cancer. There is growing evidence that TNC is involved in inflammatory processes with proinflammatory or anti-inflammatory activity in a context-dependent manner. In this review, we summarize the roles of these two tenascins, TNX and TNC, in cardiovascular and inflammatory diseases and in clEDS, and we discuss the functional consequences of the expression of these tenascins for tissue homeostasis.
Collapse
Affiliation(s)
- Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| |
Collapse
|
12
|
Uno AT, Hitosugi M, Nakamura M, Nakanishi T, Mima T, Higuchi Y. Complement C9 expression is associated with damaged myocardial cells in pediatric sudden death cases of fulminant myocarditis. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2020. [DOI: 10.1186/s41935-020-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Abstract
Background
Because disease progression is so fast in sudden death of acute fulminant myocarditis, damage of myocardial cells is not evident in routine hematoxylin and eosin staining. To understand damage to myocardial cells and the mechanism of sudden death, immunohistochemical staining was performed for two forensic autopsy cases.
Case presentation
The patients were a healthy 5-year-old girl and 8-year-old boy. They suddenly died within 2 days of appearance of flu-like symptoms. An autopsy showed accumulation of yellowish-clear pericardial fluid containing fibrin deposits, fluid blood in the heart, and congestion of visceral organs. Histologically, minor necrosis or degeneration of myocardial cells with mainly lymphocytic infiltration was observed sometimes in tissue sections. Immunohistochemically, positive complement C9 staining and negative sirtuin 1 staining were found. These findings suggested wide damage of myocardial cells, even in regions with no marked changes in myocardial cells with hematoxylin and eosin staining. These areas corresponded to those with strong accumulation of lymphocytes.
Conclusions
Immunohistochemistry for complement C9 and sirtuin 1 might become a new tool for evaluating damage of myocardial cells of fulminant acute myocarditis.
Collapse
|
13
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
14
|
Santer D, Nagel F, Gonçalves IF, Kaun C, Wojta J, Fagyas M, Krššák M, Balogh Á, Papp Z, Tóth A, Bánhegyi V, Trescher K, Kiss A, Podesser BK. Tenascin-C aggravates ventricular dilatation and angiotensin-converting enzyme activity after myocardial infarction in mice. ESC Heart Fail 2020; 7:2113-2122. [PMID: 32639674 PMCID: PMC7524253 DOI: 10.1002/ehf2.12794] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Tenascin-C (TN-C) is suggested to be detrimental in cardiac remodelling after myocardial infarction (MI). The aim of this study is to reveal the effects of TN-C on extracellular matrix organization and its haemodynamic influence in an experimental mouse model of MI and in myocardial cell culture during hypoxic conditions. METHODS AND RESULTS Myocardial infarction was induced in TN-C knockout (TN-C KO) and wild-type mice. Six weeks later, cardiac function was studied by magnetic resonance imaging and under isolated working heart conditions. Myocardial mRNA levels and immunoreactivity of TN-C, TIMP-1, TIMP-3, and matrix metalloproteinase (MMP)-9, as well as serum and tissue activities of angiotensin-converting enzyme (ACE), were determined at 1 and 6 weeks after infarction. Cardiac output and external heart work were higher, while left ventricular wall stress and collagen expression were decreased (P < 0.05) in TN-C KO mice as compared with age-matched controls at 6 weeks after infarction. TIMP-1 expression was down-regulated at 1 and 6 weeks, and TIMP-3 expression was up-regulated at 1 week (P < 0.01) after infarction in knockout mice. MMP-9 level was lower in TN-C KO at 6 weeks after infarction (P < 0.05). TIMP-3/MMP-9 ratio was higher in knockout mice at 1 and 6 weeks after infarction (P < 0.01). ACE activity in the myocardial border zone (i.e. between scar and free wall) was significantly lower in knockout than in wild-type mice 1 week after MI (P < 0.05). CONCLUSIONS Tenascin-C expression is induced by hypoxia in association with ACE activity and MMP-2 and MMP-9 elevations, thereby promoting left ventricular dilatation after MI.
Collapse
Affiliation(s)
- David Santer
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, University Hospital of Basel, Basel, Switzerland
| | - Felix Nagel
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| | - Inês Fonseca Gonçalves
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Miklós Fagyas
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Krššák
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Ágnes Balogh
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktor Bánhegyi
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Karola Trescher
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| |
Collapse
|
15
|
Kimura T, Tajiri K, Sato A, Sakai S, Wang Z, Yoshida T, Uede T, Hiroe M, Aonuma K, Ieda M, Imanaka-Yoshida K. Tenascin-C accelerates adverse ventricular remodelling after myocardial infarction by modulating macrophage polarization. Cardiovasc Res 2020; 115:614-624. [PMID: 30295707 DOI: 10.1093/cvr/cvy244] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/03/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Tenascin-C (TN-C) is an extracellular matrix protein undetected in the normal adult heart, but expressed in several heart diseases associated with inflammation. We previously reported that serum TN-C levels of myocardial infarction (MI) patients were elevated during the acute stage, and that patients with high peak TN-C levels were at high risk of left ventricular (LV) remodelling and poor outcome, suggesting that TN-C could play a significant role in the progression of ventricular remodelling. However, the detailed molecular mechanisms associated with this process remain unknown. We aimed to elucidate the role and underlying mechanisms associated with TN-C in adverse remodelling after MI. METHODS AND RESULTS MI was induced by permanent ligation of the coronary artery of TN-C knockout (TN-C-KO) and wild type (WT) mice. In WT mice, TN-C was expressed at the borders between intact and necrotic areas, with a peak at 3 days post-MI and observed in the immediate vicinity of infiltrating macrophages. TN-C-KO mice were protected from ventricular adverse remodelling as evidenced by a higher LV ejection fraction as compared with WT mice (19.0 ± 6.3% vs. 10.6 ± 4.4%; P < 0.001) at 3 months post-MI. During the acute phase, flow-cytometric analyses showed a decrease in F4/80+CD206lowCD45+ M1 macrophages and an increase in F4/80+CD206highCD45+ M2 macrophages in the TN-C-KO heart. To clarify the role of TN-C on macrophage polarization, we examined the direct effect of TN-C on bone marrow-derived macrophages in culture, observing that TN-C promoted macrophage shifting into an M1 phenotype via Toll-like receptor 4 (TLR4). Under M2-skewing conditions, TN-C suppressed the expression of interferon regulatory factor 4, a key transcription factor that controls M2-macrophage polarization, via TLR4, thereby inhibiting M2 polarization. CONCLUSION These results suggested that TN-C accelerates LV remodelling after MI, at least in part, by modulating M1/M2-macrophage polarization.
Collapse
Affiliation(s)
- Taizo Kimura
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Satoshi Sakai
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Zheng Wang
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimitsu Uede
- Department of Matrix Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Michiaki Hiroe
- Mie University Research Center for Matrix Biology, Tsu, Japan.,National Center of Global Health and Medicine, Tokyo, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
16
|
Imanaka-Yoshida K. Inflammation in myocardial disease: From myocarditis to dilated cardiomyopathy. Pathol Int 2019; 70:1-11. [PMID: 31691489 DOI: 10.1111/pin.12868] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy (DCM) is a heterogeneous group of myocardial diseases clinically defined by the presence of left ventricular dilatation and contractile dysfunction. Among various causes of DCM, a progression from viral myocarditis to DCM has long been hypothesized. Supporting this possibility, studies by endomyocardial biopsy, the only method to obtain a definite diagnosis of myocarditis at present, have provided evidence of inflammation in the myocardium in DCM patients. A number of experimental studies have elucidated a cell-mediated autoimmune mechanism triggered by viral infection in the progression of myocarditis to DCM. In addition, the important role of inflammation in the pathogenesis of heart failure has been recognized, and many terms including myocarditis, inflammatory cardiomyopathy, and inflammatory DCM have been used for myocardial diseases associated with inflammation. This review discusses the pathophysiology of inflammation in the myocardium, and refers to diagnosis and treatment based on these concepts.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Mie, Japan.,Mie University Research Center for Matrix Biology, Mie, Japan
| |
Collapse
|
17
|
Abbadi D, Laroumanie F, Bizou M, Pozzo J, Daviaud D, Delage C, Calise D, Gaits-Iacovoni F, Dutaur M, Tortosa F, Renaud-Gabardos E, Douin-Echinard V, Prats AC, Roncalli J, Parini A, Pizzinat N. Local production of tenascin-C acts as a trigger for monocyte/macrophage recruitment that provokes cardiac dysfunction. Cardiovasc Res 2019; 114:123-137. [PMID: 29136112 DOI: 10.1093/cvr/cvx221] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
Aims Tenascin-C (TNC) is an endogenous danger signal molecule strongly associated with inflammatory diseases and with poor outcome in patients with cardiomyopathies. Its function within pathological cardiac tissue during pressure overload remains poorly understood. Methods and results We showed that TNC accumulates after 1 week of transverse aortic constriction (TAC) in the heart of 12-week-old male mice. By cross bone marrow transplantation experiments, we determined that TNC deposition relied on cardiac cells and not on haematopoietic cells. The expression of TNC induced by TAC, or by administration of a recombinant lentivector coding for TNC, triggered a pro-inflammatory cardiac microenvironment, monocyte/macrophage (MO/MΦ) accumulation, and systolic dysfunction. TNC modified macrophage polarization towards the pro-inflammatory phenotype and stimulated RhoA/Rho-associated protein kinase (ROCK) pathways to promote mesenchymal to amoeboid transition that enhanced macrophage migration into fibrillar collagen matrices. The amplification of inflammation and MO/MΦ recruitment by TNC was abrogated by genetic invalidation of TNC in knockout mice. These mice showed less ventricular remodelling and an improved cardiac function after TAC as compared with wild-type mice. Conclusions By promoting a pro-inflammatory microenvironment and macrophage migration, TNC appears to be a key factor to enable the MO/MΦ accumulation within fibrotic hearts leading to cardiac dysfunction. As TNC is highly expressed during inflammation and sparsely during the steady state, its inhibition could be a promising therapeutic strategy to control inflammation and immune cell infiltration in heart disease.
Collapse
Affiliation(s)
- Dounia Abbadi
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France
| | | | - Mathilde Bizou
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France
| | - Joffrey Pozzo
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France.,Department of Cardiology, University Hospital of Rangueil, Toulouse, France
| | | | - Christine Delage
- UMS006-Microsurgery Facility, 1, avenue du Professeur Jean Poulhés, Toulouse, France
| | - Denis Calise
- UMS006-Microsurgery Facility, 1, avenue du Professeur Jean Poulhés, Toulouse, France
| | | | | | | | | | | | | | - Jerome Roncalli
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France.,Department of Cardiology, University Hospital of Rangueil, Toulouse, France
| | - Angelo Parini
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France
| | | |
Collapse
|
18
|
Nagel F, Santer D, Stojkovic S, Kaun C, Schaefer AK, Krššák M, Abraham D, Bencsik P, Ferdinandy P, Kenyeres E, Szabados T, Wojta J, Trescher K, Kiss A, Podesser BK. The impact of age on cardiac function and extracellular matrix component expression in adverse post-infarction remodeling in mice. Exp Gerontol 2019; 119:193-202. [PMID: 30763602 DOI: 10.1016/j.exger.2019.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 01/18/2023]
Abstract
The aim of this study was to describe the potential associations of the expression of matricellular components in adverse post-infarction remodeling of the geriatric heart. In male geriatric (OM, age: 18 months) and young (YM, age: 11 weeks) OF1 mice myocardial infarction (MI) was induced by permanent ligation of the left anterior descending coronary artery. Cardiac function was evaluated by MRI. Plasma and myocardial tissue samples were collected 3d, 7d, and 32d post-MI. Age and MI were associated with impaired cardiac function accompanied by left-ventricular (LV) dilatation. mRNA expression of MMP-2 (7d: p < 0.05), TIMP-1 (7d: p < 0.05), TIMP-2 (7d: p < 0.05), Collagen-1 (3d and 7d: p < 0.05) and Collagen-3 (7d: p < 0.05) in LV non-infarcted myocardium was significantly higher in YM than in OM after MI. MMP-9 activity in plasma was increased in OM after MI (3d: p < 0.01). Tenascin-C protein levels assessed by ELISA were decreased in OM as compared to YM after MI in plasma (3d: p < 0.001, 7d: p < 0.05) and LV non-infarcted myocardium (7d: p < 0.01). Dysregulation in ECM components in non-infarcted LV might be associated and contribute to adverse LV remodeling and impaired cardiac function. Thus, targeting ECM might be a potential therapeutic approach to enhance cardiac function in geriatric patients following MI.
Collapse
Affiliation(s)
- Felix Nagel
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Cardiac Surgery, University Hospital St. Poelten, Dunant-Platz 1, 3100 St. Poelten, Austria
| | - David Santer
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Cardiovascular Surgery, Hospital Hietzing, Wolkersbergenstr. 1, 1130 Wien, Austria
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Anne-Kristin Schaefer
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria; High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Lazarettg. 14, 1090 Wien, Austria
| | - Dietmar Abraham
- Laboratory for Molecular Cellular Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Wien, Austria
| | - Péter Bencsik
- Pharmahungary Group, Szeged, Hungary; Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dom ter 12, 6721 Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4, Budapest 1089, Hungary
| | - Eva Kenyeres
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dom ter 12, 6721 Szeged, Hungary
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Dom ter 12, 6721 Szeged, Hungary
| | - Johann Wojta
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Karola Trescher
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Cardiac Surgery, University Hospital St. Poelten, Dunant-Platz 1, 3100 St. Poelten, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Leitstelle 1Q, 1090 Wien, Austria; Department of Cardiac Surgery, University Hospital St. Poelten, Dunant-Platz 1, 3100 St. Poelten, Austria.
| |
Collapse
|
19
|
Expression of tenascin C in cardiovascular lesions of Kawasaki disease. Cardiovasc Pathol 2018; 38:25-30. [PMID: 30419479 DOI: 10.1016/j.carpath.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/05/2018] [Accepted: 10/13/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND/OBJECTIVE To examine tenascin C (TN-C) expression in coronary artery lesions (CALs) and myocardial lesions (MLs) in Kawasaki disease (KD). METHODS AND RESULTS Twenty-five KD autopsy cases (post-KD-onset range of 6 days to 17 years) were examined in this study. Time-course analysis based on the disease day was performed of the histological findings for the CALs and MLs, as well as the localization and intensity of expression of TN-C. TN-C expression was observed to coincide with the areas where inflammatory cell infiltration was present in both coronary arteries and myocardium during the acute stage of KD, and the intensity of its expression correlated with the degree of inflammation. Obvious TN-C expression persisted in the thickened intima and media of CALs even after Disease Day 27. However, in spite of the presence of inflammatory cell infiltration, TN-C expression became weaker in the adventitia and surrounding connective tissue. After 8 months or more, TN-C was not expressed in the vasculitis scars of most cases, but expression was observed around newly formed vessels in the thickened intima and around recanalized vessels after thrombotic occlusion. CONCLUSIONS The findings suggest a correlation between the degree of inflammation and TN-C expression in the cardiovascular lesions of acute-stage Kawasaki disease.
Collapse
|
20
|
Labrousse-Arias D, Martínez-Ruiz A, Calzada MJ. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications. Antioxid Redox Signal 2017; 27:802-822. [PMID: 28715969 DOI: 10.1089/ars.2017.7275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. CRITICAL ISSUES Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. FUTURE DIRECTIONS Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Collapse
Affiliation(s)
- David Labrousse-Arias
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Madrid, Spain
| | - María J Calzada
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Departmento de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
21
|
Tanimura M, Dohi K, Imanaka-Yoshida K, Omori T, Moriwaki K, Nakamori S, Yamada N, Ito M. Fulminant Myocarditis With Prolonged Active Lymphocytic Infiltration After Hemodynamic Recovery. Int Heart J 2017; 58:294-297. [PMID: 28320995 DOI: 10.1536/ihj.16-225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fulminant myocarditis is a highly mortal syndrome. Meanwhile, the clinical course in surviving patients is generally self-limiting. This is a rare case of fulminant myocarditis with prolonged lymphocytic infiltration after hemodynamic recovery. A 64-year-old man was diagnosed with fulminant myocarditis and required intensive care with veno-arterial extracorporeal membrane oxygenation. Left ventricular function gradually improved but complete atrioventricular block (CAVB) persisted. Follow-up endomyocardial biopsies (EMBs) showed prolonged active infiltration of lymphocytes along with 18F-FDG uptake in 18F-FDG PET/CT until about 70 days after the onset. Therefore, he underwent immunosuppressive therapy for 3 months. Follow-up EMB revealed no evidence of infiltration of lymphocytes and no abnormal 18F-FDG uptake despite irreversible CAVB. Although repeated EMB and 18F-FDG PET/CT was not a standard strategy, it played an important role in the treatment decision in the present case.
Collapse
Affiliation(s)
- Muneyoshi Tanimura
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Santana ET, Feliciano RDS, Serra AJ, Brigidio E, Antonio EL, Tucci PJF, Nathanson L, Morris M, Silva JA. Comparative mRNA and MicroRNA Profiling during Acute Myocardial Infarction Induced by Coronary Occlusion and Ablation Radio-Frequency Currents. Front Physiol 2016; 7:565. [PMID: 27932994 PMCID: PMC5123550 DOI: 10.3389/fphys.2016.00565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
The ligation of the left anterior descending coronary artery is the most commonly used experimental model to induce myocardial infarction (MI) in rodents. A high mortality in the acute phase and the heterogeneity of the size of the MI obtained are drawbacks recognized in this model. In an attempt to solve the problem, our group recently developed a new MI experimental model which is based on application of myocardial ablation radio-frequency currents (AB-RF) that yielded MI with homogeneous sizes and significantly reduce acute mortality. In addition, cardiac structural, and functional changes aroused by AB-RF were similar to those seen in animals with MI induced by coronary artery ligation. Herein, we compared mRNA expression of genes that govern post-MI milieu in occlusion and ablation models. We analyzed 48 mRNAs expressions of nine different signal transduction pathways (cell survival and metabolism signs, matrix extracellular, cell cycle, oxidative stress, apoptosis, calcium signaling, hypertrophy markers, angiogenesis, and inflammation) in rat left ventricle 1 week after MI generated by both coronary occlusion and AB-RF. Furthermore, high-throughput miRNA analysis was also assessed in both MI procedures. Interestingly, mRNA expression levels and miRNA expressions showed strong similarities between both models after MI, with few specificities in each model, activating similar signal transduction pathways. To our knowledge, this is the first comparison of genomic alterations of mRNA and miRNA contents after two different MI procedures and identifies key signaling regulators modulating the pathophysiology of these two models that might culminate in heart failure. Furthermore, these analyses may contribute with the current knowledge concerning transcriptional and post-transcriptional changes of AB-RF protocol, arising as an alternative and effective MI method that reproduces most changes seem in coronary occlusion.
Collapse
Affiliation(s)
- Eduardo T Santana
- Rehabilitation Department, Universidade Nove de Julho São Paulo, Brazil
| | - Regiane Dos Santos Feliciano
- Biophotonics Department, Universidade Nove de JulhoSão Paulo, Brazil; Medicine Department, Universidade Nove de JulhoSão Paulo, Brazil
| | - Andrey J Serra
- Biophotonics Department, Universidade Nove de Julho São Paulo, Brazil
| | - Eduardo Brigidio
- Medicine Department, Universidade Nove de Julho São Paulo, Brazil
| | - Ednei L Antonio
- Cardiac Physiology Department, Universidade Federal de São Paulo São Paulo, Brazil
| | - Paulo J F Tucci
- Cardiac Physiology Department, Universidade Federal de São Paulo São Paulo, Brazil
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Nova Southeastern University Fort Lauderdale, FL, USA
| | - Mariana Morris
- Institute for Neuro-Immune Medicine, Nova Southeastern University Fort Lauderdale, FL, USA
| | - José A Silva
- Medicine Department, Universidade Nove de Julho São Paulo, Brazil
| |
Collapse
|
23
|
Detection of Soluble ED-A(+) Fibronectin and Evaluation as Novel Serum Biomarker for Cardiac Tissue Remodeling. DISEASE MARKERS 2016; 2016:3695454. [PMID: 27635109 PMCID: PMC5007333 DOI: 10.1155/2016/3695454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/10/2016] [Indexed: 01/22/2023]
Abstract
Background and Aims. Fibronectin containing the extra domain A (ED-A+ Fn) was proven to serve as a valuable biomarker for cardiac remodeling. The study was aimed at establishing an ELISA to determine ED-A+ Fn in serum of heart failure patients. Methods. ED-A+ Fn was quantified in serum samples from 114 heart failure patients due to ischemic (ICM, n = 44) and dilated (DCM, n = 39) cardiomyopathy as well as hypertensive heart disease (HHD, n = 31) compared to healthy controls (n = 12). Results. In comparison to healthy volunteers, heart failure patients showed significantly increased levels of ED-A+ Fn (p < 0.001). In particular in ICM patients there were significant associations between ED-A+ Fn serum levels and clinical parameters, for example, increased levels with rising NYHA class (p = 0.013), a negative correlation with left ventricular ejection fraction (p = 0.026, r: −0.353), a positive correlation with left atrial diameter (p = 0.008, r: 0.431), and a strong positive correlation with systolic pulmonary artery pressure (p = 0.002, r: 0.485). In multivariate analysis, ED-A+ Fn was identified as an independent predictor of an ischemic heart failure etiology. Conclusions. The current study could clearly show that ED-A+ Fn is a promising biomarker in cardiovascular diseases, especially in heart failure patients due to an ICM. We presented a valid ELISA method, which could be applied for further studies investigating the value of ED-A+ Fn.
Collapse
|
24
|
Maqbool A, Spary EJ, Manfield IW, Ruhmann M, Zuliani-Alvarez L, Gamboa-Esteves FO, Porter KE, Drinkhill MJ, Midwood KS, Turner NA. Tenascin C upregulates interleukin-6 expression in human cardiac myofibroblasts via toll-like receptor 4. World J Cardiol 2016; 8:340-350. [PMID: 27231521 PMCID: PMC4877363 DOI: 10.4330/wjc.v8.i5.340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of Tenascin C (TNC) on the expression of pro-inflammatory cytokines and matrix metalloproteinases in human cardiac myofibroblasts (CMF).
METHODS: CMF were isolated and cultured from patients undergoing coronary artery bypass grafting. Cultured cells were treated with either TNC (0.1 μmol/L, 24 h) or a recombinant protein corresponding to different domains of the TNC protein; fibrinogen-like globe (FBG) and fibronectin type III-like repeats (TNIII 5-7) (both 1 μmol/L, 24 h). The expression of the pro-inflammatory cytokines; interleukin (IL)-6, IL-1β, TNFα and the matrix metalloproteinases; MMPs (MMP1, 2, 3, 9, 10, MT1-MMP) was assessed using real time RT-PCR and western blot analysis.
RESULTS: TNC increased both IL-6 and MMP3 (P < 0.01) mRNA levels in cultured human CMF but had no significant effect on the other markers studied. The increase in IL-6 mRNA expression was mirrored by an increase in protein secretion as assessed by enzyme-linked immunosorbant assay (P < 0.01). Treating CMF with the recombinant protein FBG increased IL-6 mRNA and protein (P < 0.01) whereas the recombinant protein TNIII 5-7 had no effect. Neither FBG nor TNIII 5-7 had any significant effect on MMP3 expression. The expression of toll-like receptor 4 (TLR4) in human CMF was confirmed by real time RT-PCR, western blot and immunohistochemistry. Pre-incubation of cells with TLR4 neutralising antisera attenuated the effect of both TNC and FBG on IL-6 mRNA and protein expression.
CONCLUSION: TNC up-regulates IL-6 expression in human CMF, an effect mediated through the FBG domain of TNC and via the TLR4 receptor.
Collapse
|
25
|
An autopsy case of cardiac tamponade caused by a ruptured ventricular aneurysm associated with acute myocarditis. Leg Med (Tokyo) 2016; 18:44-8. [DOI: 10.1016/j.legalmed.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 11/18/2022]
|
26
|
Franz M, Jung C, Lauten A, Figulla HR, Berndt A. Tenascin-C in cardiovascular remodeling: potential impact for diagnosis, prognosis estimation and targeted therapy. Cell Adh Migr 2015; 9:90-5. [PMID: 25562641 DOI: 10.1080/19336918.2014.1000075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Fetal variants of tenascin-C are not expressed in healthy adult myocardium. But, there is a relevant re-occurrence during pathologic cardiac tissue and vascular remodeling. Thus, these molecules, in particular B and C domain containing tenascin-C, might qualify as promising novel biomarkers for diagnosis and prognosis estimation. Since a stable extracellular deposition of fetal tenascin-C variants is present in diseased cardiac tissue, the molecules are excellent target structures for antibody-based delivery of diagnostic (e.g., radionuclides) or therapeutic (bioactive payloads) agents directly to the site of disease. Against the background that fetal tenascin-C variants are functionally involved in cardiovascular tissue remodeling, therapeutic functional blocking strategies could be experimentally tested in the future.
Collapse
Affiliation(s)
- Marcus Franz
- a Department of Internal Medicine I; Jena University Hospital ; Jena , Germany
| | | | | | | | | |
Collapse
|
27
|
Shimojo N, Hashizume R, Kanayama K, Hara M, Suzuki Y, Nishioka T, Hiroe M, Yoshida T, Imanaka-Yoshida K. Tenascin-C may accelerate cardiac fibrosis by activating macrophages via the integrin αVβ3/nuclear factor-κB/interleukin-6 axis. Hypertension 2015; 66:757-66. [PMID: 26238448 DOI: 10.1161/hypertensionaha.115.06004] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/05/2015] [Indexed: 12/21/2022]
Abstract
Tenascin-C (TN-C) is an extracellular matrix protein not detected in normal adult heart, but expressed in several heart diseases closely associated with inflammation. Accumulating data suggest that TN-C may play a significant role in progression of ventricular remodeling. In this study, we aimed to elucidate the role of TN-C in hypertensive cardiac fibrosis and underlying molecular mechanisms. Angiotensin II was administered to wild-type and TN-C knockout mice for 4 weeks. In wild-type mice, the treatment induced increase of collagen fibers and accumulation of macrophages in perivascular areas associated with deposition of TN-C and upregulated the expression levels of interleukin-6 and monocyte chemoattractant protein-1 as compared with wild-type/control mice. These changes were significantly reduced in TN-C knockout/angiotensin II mice. In vitro, TN-C accelerated macrophage migration and induced accumulation of integrin αVβ3 in focal adhesions, with phosphorylation of focal adhesion kinase (FAK) and Src. TN-C treatment also induced nuclear translocation of phospho-NF-κB and upregulated interleukin-6 expression of macrophages in an NF-κB-dependent manner; this being suppressed by inhibitors for integrin αVβ3 and Src. Furthermore, interleukin-6 upregulated expression of collagen I by cardiac fibroblasts. TN-C may enhance inflammatory responses by accelerating macrophage migration and synthesis of proinflammatory/profibrotic cytokines via integrin αVβ3/FAK-Src/NF-κB, resulting in increased fibrosis.
Collapse
Affiliation(s)
- Naoshi Shimojo
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.).
| | - Ryotaro Hashizume
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.)
| | - Kazuki Kanayama
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.)
| | - Mari Hara
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.)
| | - Yuka Suzuki
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.)
| | - Tomohiro Nishioka
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.)
| | - Michiaki Hiroe
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.)
| | - Toshimichi Yoshida
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.)
| | - Kyoko Imanaka-Yoshida
- From the Department of Pathology and Matrix Biology (N.S., R.H., M.H., Y.S., T.N., M.H., T.Y., K.I.-Y.), and Department of Pathologic Oncology (K.K.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, Japan (N.S., R.H., T.Y., K.I.-Y.); and Department of Cardiology, National Center of Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan (M.H.)
| |
Collapse
|
28
|
Taki J, Inaki A, Wakabayashi H, Matsunari I, Imanaka-Yoshida K, Ogawa K, Hiroe M, Shiba K, Yoshida T, Kinuya S. Effect of postconditioning on dynamic expression of tenascin-C and left ventricular remodeling after myocardial ischemia and reperfusion. EJNMMI Res 2015; 5:21. [PMID: 25883880 PMCID: PMC4393400 DOI: 10.1186/s13550-015-0100-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Tenascin-C (TNC), an extracellular matrix glycoprotein, is expressed transiently in distinct areas in association with active tissue remodeling. This study aimed to explore how ischemic postconditioning (PC) affects myocardial expression of TNC and ventricular remodeling using 125I-labeled anti-TNC antibody (125I-TNC-Ab) in a rat model of ischemia and reperfusion. Methods In control rats (n = 27), the left coronary artery (LCA) was occluded for 30 min followed by reperfusion for 1, 3, 7, and 14 days. PC (n = 27) was performed just after the reperfusion. At the time of the study, 125I-TNC-Ab (1.0 to 2.5 MBq) was injected. Six to 9 h later, to verify the area at risk, 99mTc-MIBI (100 to 200 MBq) was injected intravenously just after the LCA reocclusion, with the rats sacrificed 1 min later. Dual tracer autoradiography was performed to assess 125I-TNC-Ab uptake and area at risk. To examine the ventricular remodeling, echocardiography was performed 2 M after reperfusion in both groups. Results In control rats, 125I-TNC-Ab uptake ratio at 1 day after reperfusion was 3.73 ± 0.71 and increased at 3 days (4.65 ± 0.87), followed by a significant reduction at 7 days (2.91 ± 0.55, P < 0.005 vs 3 days) and14 days (2.01 ± 0.17, P < 0.005 vs 1 and 3 days). PC attenuated the 125I-TNC-Ab uptake throughout the reperfusion time from 1 to 14 days; 2.59 ± 0.59 at 1 day, P < 0.05: 3.10 ± 0.42 at 3 days, P < 0.005: 1.93 ± 0.37 at 7 days, P < 0.05: 1.40 ± 0.07 at 14 days, P < 0.001. In echocardiography, PC reduced the ventricular end-diastolic and systolic dimensions (1.00 ± 0.06 cm to 0.83 ± 0.14 cm (P < 0.05) and 0.90 ± 0.15 cm to 0.62 ± 0.19 cm (P < 0.05), respectively) and prevented a decline of ventricular percentage fractional shortening (10.5 ± 3.7 to 28.2 ± 10.7, P < 0.005). Conclusions These data indicate that 125I-TNC-Ab imaging may be a way to monitor myocardial injury, the subsequent repair process, and its response to novel therapeutic interventions like PC by visualizing TNC expression.
Collapse
Affiliation(s)
- Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Ichiro Matsunari
- The Medical and Pharmacological Research Center Foundation, Wo 32, Inoyama, Hakui, 925-0613 Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University School of Medicine, 2-174 Edobashi, Tsu, 514-8507 Japan
| | - Kazuma Ogawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Michiaki Hiroe
- Department of Nephrology and Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655 Japan
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640 Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University School of Medicine, 2-174 Edobashi, Tsu, 514-8507 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
29
|
Machino-Ohtsuka T, Tajiri K, Kimura T, Sakai S, Sato A, Yoshida T, Hiroe M, Yasutomi Y, Aonuma K, Imanaka-Yoshida K. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. J Am Heart Assoc 2014; 3:e001052. [PMID: 25376187 PMCID: PMC4338691 DOI: 10.1161/jaha.114.001052] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Tenascin‐C (TN‐C), an extracellular matrix glycoprotein, appears at several important steps of cardiac development in the embryo, but is sparse in the normal adult heart. TN‐C re‐expresses under pathological conditions including myocarditis, and is closely associated with tissue injury and inflammation in both experimental and clinical settings. However, the pathophysiological role of TN‐C in the development of myocarditis is not clear. We examined how TN‐C affects the initiation of experimental autoimmune myocarditis, immunologically. Methods and Results A model of experimental autoimmune myocarditis was established in BALB/c mice by immunization with murine α‐myosin heavy chains. We found that TN‐C knockout mice were protected from severe myocarditis compared to wild‐type mice. TN‐C induced synthesis of proinflammatory cytokines, including interleukin (IL)‐6, in dendritic cells via activation of a Toll‐like receptor 4, which led to T‐helper (Th)17 cell differentiation and exacerbated the myocardial inflammation. In the transfer experiment, dendritic cells loaded with cardiac myosin peptide acquired the functional capacity to induce myocarditis when stimulated with TN‐C; however, TN‐C‐stimulated dendritic cells generated from Toll‐like receptor 4 knockout mice did not induce myocarditis in recipients. Conclusions Our results demonstrated that TN‐C aggravates autoimmune myocarditis by driving the dendritic cell activation and Th17 differentiation via Toll‐like receptor 4. The blockade of Toll‐like receptor 4‐mediated signaling to inhibit the proinflammatory effects of TN‐C could be a promising therapeutic strategy against autoimmune myocarditis.
Collapse
Affiliation(s)
- Tomoko Machino-Ohtsuka
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Kazuko Tajiri
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Taizo Kimura
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Satoshi Sakai
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Akira Sato
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Toshimichi Yoshida
- Mie University Research Center for Matrix Biology and Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan (T.Y., K.I.Y.)
| | - Michiaki Hiroe
- Department of Cardiology, National Center of Global Health and Medicine, Tokyo, Japan (M.H.)
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institution of Biomedical Innovation, Tsukuba, Japan (Y.Y.)
| | - Kazutaka Aonuma
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Kyoko Imanaka-Yoshida
- Mie University Research Center for Matrix Biology and Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan (T.Y., K.I.Y.)
| |
Collapse
|
30
|
Dalzell JR, Cannon JA, Jackson CE, Lang NN, Gardner RS. Emerging biomarkers for heart failure: an update. Biomark Med 2014; 8:833-40. [DOI: 10.2217/bmm.14.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A growing array of biological pathways underpins the syndrome we recognize as heart failure. These include both deleterious pathways promoting its development and progression, as well as compensatory cardioprotective pathways. Components of these pathways can be utilized as biomarkers of this condition to aid diagnosis, prognostication and potentially guide management. As our understanding of the pathophysiology of heart failure deepens further candidate biomarkers are being identified. We provide an overview of the more recently emerging biomarkers displaying potential promise for future clinical use.
Collapse
Affiliation(s)
- Jonathan R Dalzell
- Scottish Advanced Heart Failure Unit, Golden Jubilee National Hospital, Glasgow, G81 4DY, UK
| | - Jane A Cannon
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Colette E Jackson
- Scottish Advanced Heart Failure Unit, Golden Jubilee National Hospital, Glasgow, G81 4DY, UK
| | - Ninian N Lang
- Scottish Advanced Heart Failure Unit, Golden Jubilee National Hospital, Glasgow, G81 4DY, UK
| | - Roy S Gardner
- Scottish Advanced Heart Failure Unit, Golden Jubilee National Hospital, Glasgow, G81 4DY, UK
| |
Collapse
|
31
|
Hao H, Ishibashi-Ueda H, Nishida N, Kawakami R, Tsukamoto Y, Tsujimoto M, Hirota S. Distribution of myofibroblast and tenascin-C in cystic adventitial disease: Comparison with ganglion. Pathol Int 2014; 63:591-8. [DOI: 10.1111/pin.12119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/14/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Hiroyuki Hao
- Department of Surgical Pathology; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology; National Cerebral and Cardiovascular Center; Suita Osaka Japan
| | - Naoki Nishida
- Department of Pathology; National Cerebral and Cardiovascular Center; Suita Osaka Japan
| | - Rika Kawakami
- Department of Surgical Pathology; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - Yoshitane Tsukamoto
- Department of Surgical Pathology; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | | | - Seiichi Hirota
- Department of Surgical Pathology; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| |
Collapse
|
32
|
Karatas Z, Baysal T, Alp H, Toker A. Serum tenascin-C: a novel biomarker for diagnosis and predicting prognosis of rheumatic carditis? J Trop Pediatr 2013; 59:476-82. [PMID: 23868575 DOI: 10.1093/tropej/fmt058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Tenascin-C (TnC) is an extracellular matrix glycoprotein that has a major role in tissue remodeling. OBJECTIVE To evaluate the serum TnC level in acute rheumatic fever (ARF) and chronic rheumatic heart disease (CRHD) during childhood. METHODS Twenty-five patients with ARF, 25 patients with CRHD and 20 control subjects were included in the study. The TnC levels were analyzed using the enzyme-linked immunosorbent assay method in the ARF group. RESULTS The TnC levels were lower in the acute carditis group compared with the control group (p < 0.001). The cut-off level was estimated as 2.08 ng/ml for diagnosing carditis with 93.3% sensitivity and 95% specificity. On second analysis, prominent decrease was detected in valve insufficiency patients with markedly elevated TnC levels. In the CRHD group, TnC level was significantly lower in cases with severe valve insufficiency (p < 0.001). CONCLUSIONS Serum TnC level can be used as a new biochemical marker for diagnosis and predicting the prognosis of rheumatic carditis.
Collapse
Affiliation(s)
- Zehra Karatas
- Department of Pediatric Cardiology, Necmettin Erbakan University Meram Medical Faculty, Konya, TR-42080, Turkey
| | | | | | | |
Collapse
|
33
|
Can serum tenascin-C be used as a marker of inflammation in patients with dilated cardiomyopathy? Int J Pediatr 2013; 2013:608563. [PMID: 24106506 PMCID: PMC3782834 DOI: 10.1155/2013/608563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 11/17/2022] Open
Abstract
Background. Tenascin-C (TN-C) is an extracellular matrix glycoprotein that appears at sites of inflammation in cardiac pathologies. Aim of the Work. To evaluate the role of TN-C as a marker for active inflammation in children with dilated cardiomyopathy (DCM). Subjects and Methods. 24 consecutive patients with primary nonfamilial DCM aged 6–72 months (mean 45.19 ± 11.03) were divided into group I, twelve patients with acute onset DCM (<6 months duration), and group II, twelve patients with chronic DCM (>6 months duration), and compared to 20 healthy age- and sex-matched controls. Investigations included estimation of serum TN-C and echocardiographic evaluation using M-mode and 2D speckle tracking echocardiography (STE). Results. Serum TN-C showed a higher significant statistical elevation among patients than controls (P < 0.001) and in group I than group II (P < 0.001). EF was significantly decreased, and LVEDD and EDV increased in patients than controls and in GI than GII. STE showed a statistically significant difference in global peak strain longitudinal (GPSL) average in patients than controls (P < 0.05) and between GI and GII (P < 0.001). STE wall motion scoring showed normokinesia (33.5%), hypokinesia (8.33%), and akinesia (50%) in GI and hypokinesia (100%) in GII. There was a statistically significant positive correlation between serum TN-C and GPSL average. Conclusions. Increased serum TN-C can be used as a marker of inflammation in DCM and is associated with the severity of heart failure and LV dysfunction as detected by STE.
Collapse
|
34
|
Sarli B, Topsakal R, Kaya EG, Akpek M, Lam YY, Kaya MG. Tenascin-C as Predictor of Left Ventricular Remodeling and Mortality in Patients with Dilated Cardiomyopathy. J Investig Med 2013; 61:728-732. [DOI: 10.2310/jim.0b013e3182880c11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Background Several cardiac biomarkers, especially brain natriuretic peptide (BNP) and N-terminal (NT)-proBNP, have been used as predictors of prognosis and negative remodeling in DCM. In the present study, we aimed to evaluate the prognostic value of tenascin-C in dilated cardiomyopathy (DCM) and whether it can be used to determine reverse remodeling in patients with DCM. Methods Sixty-six patients with DCM were followed up for 12 months after initiation of medical treatment including carvedilol, ramipril (candesartan if ramipril was not tolerated), spironolactone, and furosemide. Tenascin-C and NT-proBNP measurements and transthoracic echocardiography were performed at baseline and at 12 months. Results At 12 months, a significant improvement in New York Heart Association class (2.57 ± 0.6 vs. 1.87 ± 0.5; P < 0.0001), left ventricular end-diastolic volume (217 ± 47 vs 203 ± 48; P < 0.0001), left ventricular ejection fraction (29.1 ± 5.5 vs 30.9 ± 3.8; P < 0.0001), NT-proBNP (2019 ± 558 vs 1462 ± 805; P < 0.0001), and tenascin-C (76 ± 19 vs 48 ± 28; P < 0.0001) values were observed, compared with baseline. Importantly, decrease in tenascin-C values were correlated with increase in left ventricular ejection fraction. Tenascin-C (odds ratio [OR], 1.896; <95% confidence interval [CI], 1.543–2.670; P = 0.02), diabetes mellitus (OR, 2.456; G95% CI, 1.987–3.234; P = 0.01) and hypertension (OR: 2.106, <95% CI, 1.876–2.897; P = 0.03) were independent predictors of mortality in patients with DCM. Conclusion Reverse ventricular remodeling obtained with carvedilol, ramipril/candesartan, and spironolacton is associated with decreases in left ventricular end-diastolic volume, left ventricular end-systolic volume, tenascin-C levels, and NT-proBNP levels. Consequently, tenascin-C may be used to evaluate reverse remodeling in patients with DCM.
Collapse
Affiliation(s)
- Bahadir Sarli
- Departments of Cardiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Ramazan Topsakal
- Departments of Cardiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Esma G. Kaya
- Departments of Microbiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Mahmut Akpek
- Departments of Cardiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Yat Yin Lam
- Division of Cardiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Mehmet G. Kaya
- Departments of Cardiology, Erciyes University School of Medicine, Kayseri, Turkey
| |
Collapse
|
35
|
Yao HC, Han QF, Zhao AP, Yao DK, Wang LX. Prognostic Values of Serum Tenascin-C in Patients with Ischaemic Heart Disease and Heart Failure. Heart Lung Circ 2013. [DOI: 10.1016/j.hlc.2012.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Fujita S, Shimojo N, Terasaki F, Otsuka K, Hosotani N, Kohda Y, Tanaka T, Nishioka T, Yoshida T, Hiroe M, Kitaura Y, Ishizaka N, Imanaka-Yoshida K. Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessels 2013; 28:646-57. [PMID: 23277455 DOI: 10.1007/s00380-012-0311-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/30/2012] [Indexed: 01/17/2023]
Abstract
We aimed to investigate whether atrial natriuretic peptide (ANP) attenuates angiotensin II (Ang II)-induced myocardial remodeling and to clarify the possible molecular mechanisms involved. Thirty-five 8-week-old male Wistar-Kyoto rats were divided into control, Ang II, Ang II + ANP, and ANP groups. The Ang II and Ang II + ANP rats received 1 μg/kg/min Ang II for 14 days. The Ang II + ANP and ANP rats also received 0.1 μg/kg/min ANP intravenously. The Ang II and Ang II + ANP rats showed comparable blood pressure. Left ventricular fractional shortening and ejection fraction were lower in the Ang II rats than in controls; these indices were higher (P < 0.001) in the Ang II + ANP rats than in the Ang II rats. In the Ang II rats, the peak velocity of mitral early inflow and its ratio to atrial contraction-related peak flow velocity were lower, and the deceleration time of mitral early inflow was significantly prolonged; these changes were decreased by ANP. Percent fibrosis was higher (P < 0.001) and average myocyte diameters greater (P < 0.01) in the Ang II rats than in controls. ANP decreased both myocardial fibrosis (P < 0.01) and myocyte hypertrophy (P < 0.01). Macrophage infiltration, expression of mRNA levels of collagen types I and III, monocyte chemotactic protein-1, and a profibrotic/proinflammatory molecule, tenascin-C (TN-C) were increased in the Ang II rats; ANP significantly decreased these changes. In vitro, Ang II increased expression of TN-C and endothelin-1 (ET-1) in cardiac fibroblasts, which were reduced by ANP. ET-1 upregulated TN-C expression via endothelin type A receptor. These results suggest that ANP may protect the heart from Ang II-induced remodeling by attenuating inflammation, at least partly through endothelin 1/endothelin receptor A cascade.
Collapse
Affiliation(s)
- Shuichi Fujita
- Department of Cardiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The term matricellular proteins describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell-cell and cell-matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines, and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondin (TSP)-1, -2, and -4 as well as tenascin-C and -X secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, and members of the CCN family (including CCN1 and CCN2/connective tissue growth factor) are involved in a variety of cardiac pathophysiological conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy, and valvular disease. This review discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer G46B, Bronx, NY 10461, USA.
| |
Collapse
|
38
|
Niebroj-Dobosz I. Tenascin-C in human cardiac pathology. Clin Chim Acta 2012; 413:1516-8. [PMID: 22687648 DOI: 10.1016/j.cca.2012.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/28/2012] [Accepted: 06/04/2012] [Indexed: 01/15/2023]
Abstract
Tenascin-C (TN-C), a hexameric extracellular matrix glycoprotein, is a pleiotropic regulator of a variety of cell functions associated with embryogenesis, wound healing, cell proliferation, differentiation, motility, and nerve regeneration. Due to its role in remodeling processes, TN-C is involved with many pathologic states including cardiac and vascular diseases as well as inflammation and cancer. Assessment of circulating TN-C may help with identification of heart disease, especially in conjunction other cardiac biomarkers. It may be considered a specific biomarker useful in detecting cardiac pathology, especially in early disease stages and subsequent monitoring of cardiologic therapy. This review will highlight the biochemistry and usefulness of TN-C in clinical laboratory diagnostics to date.
Collapse
Affiliation(s)
- Irena Niebroj-Dobosz
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw 02-106, Poland.
| |
Collapse
|
39
|
A case of fulminant myocarditis ultimately diagnosed by tenascin C staining. Int J Cardiol 2012; 157:e33-4. [DOI: 10.1016/j.ijcard.2011.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 09/17/2011] [Indexed: 11/18/2022]
|
40
|
Sato A, Hiroe M, Akiyama D, Hikita H, Nozato T, Hoshi T, Kimura T, Wang Z, Sakai S, Imanaka-Yoshida K, Yoshida T, Aonuma K. Prognostic value of serum tenascin-C levels on long-term outcome after acute myocardial infarction. J Card Fail 2012; 18:480-6. [PMID: 22633306 DOI: 10.1016/j.cardfail.2012.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tenascin-C (TN-C), an extracellular matrix glycoprotein, is not normally expressed in the adult heart but transiently reappears under various pathologic conditions to play important roles in tissue remodeling. It is unclear whether serum TN-C levels add prognostic information independent from traditional prognostic markers. METHODS AND RESULTS We assessed 239 patients with first ST-segment elevation myocardial infarction who underwent successful percutaneous coronary intervention. We measured serum TN-C and plasma B-type natriuretic peptide (BNP) levels on day 5 after admission and compared long-term clinical outcome. During the follow-up period (24.3 ± 13 months), 54 patients experienced primary composite cardiac events (cardiac death or hospitalization for worsening heart failure). Multivariable Cox proportional hazards analysis indicated that serum TN-C (hazard ratio 2.92, 95% confidence interval [CI] 1.55-5.67; P < .001) and plasma BNP levels (hazard ratio 1.84, 95% CI 1.17-2.97; P = .008) were significant independent predictors for cardiac events after adjustment for multiple confounders. The combination of TN-C and BNP resulted in an increase of the c-statistic from 0.821 to 0.877 (P < .001) and an integrated discrimination improvement gain of 14.0% (P < .001). CONCLUSIONS Serum TN-C level on day 5 after admission is potentially useful for early risk stratification after AMI beyond established prognostic markers.
Collapse
Affiliation(s)
- Akira Sato
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Advances in tenascin-C biology. Cell Mol Life Sci 2011; 68:3175-99. [PMID: 21818551 PMCID: PMC3173650 DOI: 10.1007/s00018-011-0783-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
Abstract
Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology.
Collapse
|
42
|
Okamoto H, Imanaka-Yoshida K. Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther 2011; 30:e198-209. [PMID: 21884011 DOI: 10.1111/j.1755-5922.2011.00276.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Matricellular proteins are highly expressed in reparative responses to pressure and volume overload, ischemia, oxidative stress after myocardial injury, and modulate the inflammatory and fibrotic process in ventricular remodeling, which leads to cardiac dysfunction and eventually overt heart failure. Generally, matricellular proteins loosen strong adhesion of cardiomyocytes to extracellular matrix, which would help cells to move for rearrangement and allow inflammatory cells and capillary vessels to spread during tissue remodeling. Among matricellular proteins, osteopontin (OPN) and tenascin-C (TN-C) are de-adhesion proteins and upregulate the expression and activity of matrix metalloproteinases. These matricellular proteins could be key molecules to diagnose cardiac remodeling and also might be targets for the prevention of adverse ventricular remodeling. This review provides an overview of the role of matricellular proteins such as OPN and TN-C in cardiac function and remodeling, as determined by both in basic and in clinical studies.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Cardiovascular Medicine, Hokkaido Medical Center, Sapporo, Japan. okamotoh@ med.hokudai.ac.jp
| | | |
Collapse
|
43
|
Niebroj-Dobosz I, Madej-Pilarczyk A, Marchel M, Sokołowska B, Hausmanowa-Petrusewicz I. Circulating tenascin-C levels in patients with dilated cardiomyopathy in the course of Emery-Dreifuss muscular dystrophy. Clin Chim Acta 2011; 412:1533-8. [DOI: 10.1016/j.cca.2011.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
44
|
Interactions between the extracellular matrix and inflammation during viral myocarditis. Immunobiology 2011; 217:503-10. [PMID: 21907443 DOI: 10.1016/j.imbio.2011.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/24/2011] [Accepted: 07/05/2011] [Indexed: 01/17/2023]
Abstract
Viral myocarditis is a life-threatening disease characterized by severe cardiac inflammation that can result in heart failure or sudden cardiac death in previously healthy adults. In a subset of patients, it may result in the development of dilated cardiomyopathy due to the chronic inflammatory process. Despite its clinical need, specific treatments for myocarditis are currently not available. The extracellular matrix (ECM) under normal conditions, functions to maintain the mechanical and structural integrity of the heart but can adapt under pathological circumstances to preserve cardiac function. Recent studies have revealed a crucial role of the ECM in the reparative process after cardiac insult, not only as a key component in cardiac remodeling but also as a regulator of the inflammatory process. Increasing our understanding of the impact the ECM has in the disease pathogenesis and progression of viral myocarditis, might lead to much needed therapeutic interventions. In this review we will describe the pathology of viral myocarditis and illustrate the interplay between inflammation and the ECM in general terms, and during viral myocarditis.
Collapse
|
45
|
Kimura T, Yoshimura K, Aoki H, Imanaka-Yoshida K, Yoshida T, Ikeda Y, Morikage N, Endo H, Hamano K, Imaizumi T, Hiroe M, Aonuma K, Matsuzaki M. Tenascin-C is expressed in abdominal aortic aneurysm tissue with an active degradation process. Pathol Int 2011; 61:559-64. [PMID: 21951663 DOI: 10.1111/j.1440-1827.2011.02699.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a common disease caused by segmental weakening of the aortic walls and progressive aortic dilation leading to the eventual rupture of the aorta. Currently no biomarkers have been established to indicate the disease status of AAA. Tenascin-C (TN-C) is a matricellular protein that is synthesized under pathological conditions. In the current study, we related TN-C expression to the clinical course and the histopathology of AAA to investigate whether the pattern of TN-C expression could indicate the status of AAA. We found that TN-C and matrix metalloproteinase (MMP)-9 were highly expressed in human AAA. In individual human AAA TN-C deposition associated with the tissue destruction, overlapped mainly with the smooth muscle actin-positive cells, and showed a pattern distinct from macrophages and MMP-9. In the mouse model of AAA high TN-C expression was associated with rapid expansion of the AAA diameter. Histological analysis revealed that TN-C was produced mainly by vascular smooth muscle cells and was deposited in the medial layer of the aorta during tissue inflammation and excessive destructive activities. Our findings suggest that TN-C may be a useful biomarker for indicating the pathological status of smooth muscle cells and interstitial cells in AAA.
Collapse
Affiliation(s)
- Taizo Kimura
- Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Franz M, Grün K, Richter P, Brehm BR, Fritzenwanger M, Hekmat K, Neri D, Gummert J, Figulla HR, Kosmehl H, Berndt A, Renner A. Extra cellular matrix remodelling after heterotopic rat heart transplantation: gene expression profiling and involvement of ED-A+ fibronectin, alpha-smooth muscle actin and B+ tenascin-C in chronic cardiac allograft rejection. Histochem Cell Biol 2010; 134:503-17. [PMID: 20931338 DOI: 10.1007/s00418-010-0750-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2010] [Indexed: 11/29/2022]
Abstract
Chronic cardiac rejection is represented by cardiac allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) known to cause severe complications. These processes are accompanied by remarkable changes in the cardiac extra cellular matrix (cECM). The aim of our study was to analyse the cECM remodelling in chronic rejection and to elucidate a potential role of ED-A domain containing fibronectin (ED-A(+) Fn), alpha smooth muscle actin (ASMA) and B domain containing tenascin-C (B(+) Tn-C). A model of chronic rejection after heterotopic rat heart transplantation was used. Allografts, recipient and control hearts were subjected to histological assessment of rejection grade, to real-time PCR based analysis of 84 genes of ECM and adhesion molecules and to immunofluorescence labelling procedures, including ED-A(+) Fn, ASMA and B(+) Tn-C antibodies. Histological analysis revealed different grades of chronic rejection. By gene expression analysis, a relevant up-regulation of the majority of ECM genes in association with chronic rejection could be shown. For 8 genes, there was a relevant up-regulation in allografts as well as in the corresponding recipient hearts. Association of ASMA positive cells with the grade of chronic rejection could be proven. In CAV and also in CIF there were extensive co-depositions of ED-A(+) Fn, ASMA and B(+) Tn-C. In conclusion, chronic cardiac allograft rejection is associated with a cECM remodelling. ASMA protein deposition in CAV, and CIF is a valuable marker to detect chronic rejection. Interactions of VSMCs and Fibro-/Myofibroblasts with ED-A(+) Fn and B(+) Tn-C might functionally contribute to the development of chronic cardiac rejection.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, University Hospital of Jena, Erlanger Allee 101, 07740, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Taki J, Inaki A, Wakabayashi H, Imanaka-Yoshida K, Ogawa K, Hiroe M, Shiba K, Yoshida T, Kinuya S. Dynamic expression of tenascin-C after myocardial ischemia and reperfusion: assessment by 125I-anti-tenascin-C antibody imaging. J Nucl Med 2010; 51:1116-22. [PMID: 20554738 DOI: 10.2967/jnumed.109.071340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Tenascin-C, an extracellular matrix glycoprotein, appears only in the early stages of embryonic development. It is not normally expressed in the adult heart but does reappear transiently in distinct areas in association with active tissue remodeling. The aim of this study was to explore serial changes in the expression of tenascin-C after myocardial ischemia and reperfusion, using (125)I-labeled anti-tenascin-C antibody ((125)I-TNC-Ab) in a rat model of acute ischemia and reperfusion. METHODS The left coronary artery was occluded for 20 or 30 min, followed by reperfusion for 1, 3, or 7 d in rats with 20 min of ischemia and for 1, 3, 7, 14, or 28 d in rats with 30 min of ischemia. At the time of the study, (125)I-TNC-Ab (1.0-2.5 MBq) was injected. Three to 5 h later, to verify the area at risk, (99m)Tc-methoxyisobutylisonitrile (100-200 MBq) was injected intravenously just after the left coronary artery reocclusion and the rats were sacrificed 1 min later. Dual-tracer autoradiography was performed to assess (125)I-TNC-Ab uptake and the area at risk. RESULTS In rats with 20 min of ischemia, (125)I-TNC-Ab uptake peaked at 3 d after reperfusion, followed by faint uptake after 7 d (uptake ratios at 1, 3, and 7 d after reperfusion were 1.81 +/- 0.53, 2.46 +/- 0.79, and 1.23 +/- 0.17, respectively [P < 0.05 vs. 3 d]). In rats with 30 min of ischemia, uptake was high at 1 and 3 d after reperfusion (2.99 +/- 0.90 and 2.71 +/- 0.80, respectively), decreased at 7 and 14 d (1.94 +/- 0.23 and 2.06 +/- 0.37, respectively), and was weak at 28 d (1.47 +/- 0.27, P < 0.005 vs. 1 d, P < 0.05 vs. 3 d). CONCLUSION These data indicate that (125)I-TNC-Ab imaging may be a way to monitor myocardial injury and its repair process after ischemia and reperfusion by visualizing tenascin-C expression.
Collapse
Affiliation(s)
- Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Franz M, Brehm BR, Richter P, Gruen K, Neri D, Kosmehl H, Hekmat K, Renner A, Gummert J, Figulla HR, Berndt A. Changes in extra cellular matrix remodelling and re-expression of fibronectin and tenascin-C splicing variants in human myocardial tissue of the right atrial auricle: implications for a targeted therapy of cardiovascular diseases using human SIP format antibodies. J Mol Histol 2010; 41:39-50. [PMID: 20232238 DOI: 10.1007/s10735-010-9260-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 02/26/2010] [Indexed: 11/29/2022]
Abstract
Cardiovascular diseases are accompanied by changes in the extracellular matrix (ECM) including the re-expression of fibronectin and tenascin-C splicing variants. Using human recombinant small immunoprotein (SIP) format antibodies, a molecular targeting of these proteins is of therapeutic interest. Tissue samples of the right atrial auricle from patients with coronary artery disease and valvular heart disease were analysed by PCR based ECM gene expression profiling. Moreover, the re-expression of fibronectin and tenascin-C splicing variants was investigated by immunofluoerescence labelling. We demonstrated changes in ECM gene expression depending on histological damage or underlying cardiac disease. An increased expression of fibronectin and tenascin-C mRNA in association to histological damage and in valvular heart disease compared to coronary artery disease could be shown. There was a distinct re-expression of ED-A containing fibronectin and A1 domain containing tenascin-C detectable with human recombinant SIP format antibodies in diseased myocardium. ED-A containing fibronectin showed a clear vessel positivity. For A1 domain containing tenascin-C, there was a particular positivity in areas of interstitial and perivascular fibrosis. Right atrial myocardial tissue is a valuable model to investigate cardiac ECM remodelling. Human recombinant SIP format antibodies usable for an antibody-mediated targeted delivery of drugs might offer completely new therapeutic options in cardiac diseases.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Erlanger Allee 101, 07740, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nishioka T, Onishi K, Shimojo N, Nagano Y, Matsusaka H, Ikeuchi M, Ide T, Tsutsui H, Hiroe M, Yoshida T, Imanaka-Yoshida K. Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2010; 298:H1072-8. [PMID: 20081106 DOI: 10.1152/ajpheart.00255.2009] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tenascin-C (TN-C) is an extracellular matrix glycoprotein with high bioactivity. It is expressed at low levels in normal adult heart, but upregulated under pathological conditions, such as myocardial infarction (MI). Recently, we (Ref. 34) reported that MI patients with high serum levels of TN-C have a greater incidence of maladaptive cardiac remodeling and a worse prognosis. We hypothesized that TN-C may aggravate left ventricular remodeling. To examine the effects of TN-C, MI was induced by ligating coronary arteries of TN-C knockout (KO) mice under anesthesia and comparing them with sibling wild-type (WT) mice. In WT+MI mice, TN-C expression was upregulated at day 1, peaked at day 5, downregulated and disappeared by day 28, and the molecule was localized in the border zone between intact myocardium and infarct lesions. The morphometrically determined infarct size and survival rate on day 28 were comparable between the WT+MI and KO+MI groups. Echocardiography and hemodynamic analyses demonstrated left ventricular end-diastolic diameter, myocardial stiffness, and left ventricular end-diastolic pressure to be significantly increased in both WT+MI and KO+MI mice compared with sham-operated mice. However, end-diastolic pressure and dimension and myocardial stiffness of KO+MI were lower than those of the WT+MI mice. Histological examination revealed normal tissue healing, but interstitial fibrosis in the residual myocardium in peri-infarcted areas was significantly less pronounced in KO+MI mice than in WT+MI mice. TN-C may thus accelerate adverse ventricular remodeling, cardiac failure, and fibrosis in the residual myocardium after MI.
Collapse
Affiliation(s)
- Tomohiro Nishioka
- Dept. of Pathology and Matrix Biology, Mie Univ. Graduate School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Incremental Prognostic Values of Serum Tenascin-C Levels With Blood B-type Natriuretic Peptide Testing at Discharge in Patients With Dilated Cardiomyopathy and Decompensated Heart Failure. J Card Fail 2009; 15:898-905. [DOI: 10.1016/j.cardfail.2009.06.443] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 11/19/2022]
|