1
|
Isaic A, Motofelea AC, Costachescu D, Pop GN, Totolici B, Popovici D, Diaconescu RG. What Is the Comparative Efficacy of Surgical, Endoscopic, Transanal Resection, and Radiotherapy Modalities in the Treatment of Rectal Cancer? Healthcare (Basel) 2023; 11:2347. [PMID: 37628544 PMCID: PMC10454130 DOI: 10.3390/healthcare11162347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Rectal cancer is a significant healthcare burden, and effective treatment is crucial. This research aims to compare the effectiveness of surgical and endoscopic resection, transanal resection, and radiotherapy. METHODS A literature analysis was conducted in order to identify relevant studies, by comparing the different surgical approaches and variables affecting treatment decisions. The findings were analyzed and synthesized to provide a comprehensive overview. RESULTS Surgical treatment, particularly TME (total mesorectal excision), proved consistent efficacy in achieving complete tumor resection and improving long-term survival. Endoscopic treatment and transanal resection techniques were promising for early-stage tumors but were associated with higher local recurrence rates. Radiotherapy, especially in combination with chemotherapy, played a crucial role in locally advanced cases, improving local control and reducing recurrence risk. Patient data, tumor characteristics, and healthcare system factors were identified as important factors in treatment modality selection. CONCLUSION Surgical treatment, specifically TME, remains the recommended standard approach for rectal cancer, providing excellent oncological outcomes. Endoscopic treatment and transanal resection techniques can be considered for selected early-stage cases, while radiotherapy is beneficial for locally advanced tumors. Treatment decisions should be personalized based on patient and tumor characteristics, considering the available resources and expertise within the healthcare system.
Collapse
Affiliation(s)
- Alexandru Isaic
- IInd Surgery Clinic, Timisoara Emergency County Hospital, 300723 Timisoara, Romania;
- Department X of General Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dan Costachescu
- Department of Orthopedics-Traumatology, Urology, Radiology, and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
- Department of Oncology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Gheorghe Nicusor Pop
- Center for Modeling Biological Systems and Data Analysis, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Bogdan Totolici
- 1st Clinic of General Surgery, Arad County Emergency Clinical Hospital, 310158 Arad, Romania;
- Department of General Surgery, Faculty of Medicine, “Victor Babes” Western University of Arad, 310025 Arad, Romania
| | - Dorel Popovici
- Department of Oncology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Razvan Gheorghe Diaconescu
- OncoHelp Hospital, 300239 Timisoara, Romania;
- Department of Surgery, Faculty of Medicine, “Victor Babes” Western University of Arad, 310025 Arad, Romania
| |
Collapse
|
2
|
Golas MM, Gunawan B, Cakir M, Cameron S, Enders C, Liersch T, Füzesi L, Sander B. Evolutionary patterns of chromosomal instability and mismatch repair deficiency in proximal and distal colorectal cancer. Colorectal Dis 2022; 24:157-176. [PMID: 34623739 DOI: 10.1111/codi.15946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/04/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
AIM Colorectal carcinomas (CRCs) progress through heterogeneous pathways. The aim of this study was to analyse whether or not the cytogenetic evolution of CRC is linked to tumour site, level of chromosomal imbalance and metastasis. METHOD A set of therapy-naïve pT3 CRCs comprising 26 proximal and 49 distal pT3 CRCs was studied by combining immunohistochemistry of mismatch repair (MMR) proteins, microsatellite analyses and molecular karyotyping as well as clinical parameters. RESULTS A MMR deficient/microsatellite-unstable (dMMR/MSI-H) status was associated with location of the primary tumour proximal to the splenic flexure, and dMMR/MSI-H tumours presented with significantly lower levels of chromosomal imbalances compared with MMR proficient/microsatellite-stable (pMMR/MSS) tumours. Oncogenetic tree modelling suggested two evolutionary clusters characterized by dMMR/MSI-H and chromosomal instability (CIN), respectively, for both proximal and distal CRCs. In CIN cases, +13q, -18q and +20q were predicted as preferentially early events, and -1p, -4 -and -5q as late events. Separate oncogenetic tree models of proximal and distal cases indicated similar early events independent of tumour site. However, in cases with high CIN defined by more than 10 copy number aberrations, loss of 17p occurred earlier in cytogenetic evolution than in cases showing low to moderate CIN. Differences in the oncogenetic trees were observed for CRCs with lymph node and distant metastasis. Loss of 8p was modelled as an early event in node-positive CRC, while +7p and +8q comprised early events in CRC with distant metastasis. CONCLUSION CRCs characterized by CIN follow multiple, interconnected genetic pathways in line with the basic 'Vogelgram' concept proposed for the progression of CRC that places the accumulation of genetic changes at centre of tumour evolution. However, the timing of specific genetic events may favour metastatic potential.
Collapse
Affiliation(s)
- Mariola Monika Golas
- Department of Hematology and Medical Oncology, Comprehensive Cancer Center Augsburg, University Medical Center Augsburg, Augsburg, Germany
| | - Bastian Gunawan
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Meliha Cakir
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Cameron
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christina Enders
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Liersch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Laszlo Füzesi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology and Molecular Diagnostics, University Medical Center Augsburg, Augsburg, Germany
| | - Bjoern Sander
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Torabi K, Erola P, Alvarez-Mora MI, Díaz-Gay M, Ferrer Q, Castells A, Castellví-Bel S, Milà M, Lozano JJ, Miró R, Ried T, Ponsa I, Camps J. Quantitative analysis of somatically acquired and constitutive uniparental disomy in gastrointestinal cancers. Int J Cancer 2018; 144:513-524. [PMID: 30350313 PMCID: PMC6635747 DOI: 10.1002/ijc.31936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Somatically acquired uniparental disomies (aUPDs) are frequent events in solid tumors and have been associated with cancer‐related genes. Studies assessing their functional consequences across several cancer types are therefore necessary. Here, we aimed at integrating aUPD profiles with the mutational status of cancer‐related genes in a tumor‐type specific manner. Using TCGA datasets for 1,032 gastrointestinal cancers, including colon (COAD), rectum (READ), stomach (STAD), esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), we show a non‐random distribution of aUPD, suggesting the existence of a cancer‐specific landscape of aUPD events. Our analysis indicates that aUPD acts as a “second hit” in Knudson's model in order to achieve biallelic inactivation of tumor suppressor genes. In particular, APC, ARID1A and NOTCH1 were recurrently inactivated by the presence of homozygous mutation as a consequence of aUPD in COAD and READ, STAD and ESCC, respectively. Furthermore, while TP53 showed inactivation caused by aUPD at chromosome arm 17p across all tumor types, copy number losses at this genomic position were also frequent. By experimental and computationally inferring genome ploidy, we demonstrate that an increased number of aUPD events, both affecting the whole chromosome or segments of it, were present in highly aneuploid genomes compared to near‐diploid tumors. Finally, the presence of mosaic UPD was detected at a higher frequency in DNA extracted from peripheral blood lymphocytes of patients with colorectal cancer compared to healthy individuals. In summary, our study defines specific profiles of aUPD in gastrointestinal cancers and provides unequivocal evidence of their relevance in cancer. What's new? Somatically acquired uniparental disomies (aUPDs), in which two copies of a chromosome originate from the same parent, have been documented in various human cancers. Here, the authors examined the frequency of aUPDs in different gastrointestinal cancer types. Events involving aUPDs were found to occur at high incidence in gastrointestinal cancers and at increased frequency particularly in highly aneuploid genomes. The data also reveal a nonrandom distribution of aUPDs, with evidence of biallelic inactivation of tumor suppressor genes and activation of oncogenes in a tumor type‐specific manner. The findings suggest that aUPDs are functionally relevant in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Keyvan Torabi
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pau Erola
- Bioinformatics Unit, CIBEREHD, Barcelona, Catalonia, Spain.,Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | - Marcos Díaz-Gay
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Queralt Ferrer
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Sergi Castellví-Bel
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Montserrat Milà
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | | | - Rosa Miró
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Immaculada Ponsa
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
4
|
Chen W, Robertson AJ, Ganesamoorthy D, Coin LJM. sCNAphase: using haplotype resolved read depth to genotype somatic copy number alterations from low cellularity aneuploid tumors. Nucleic Acids Res 2017; 45:e34. [PMID: 27903916 PMCID: PMC5389684 DOI: 10.1093/nar/gkw1086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/26/2016] [Indexed: 02/03/2023] Open
Abstract
Accurate identification of copy number alterations is an essential step in understanding the events driving tumor progression. While a variety of algorithms have been developed to use high-throughput sequencing data to profile copy number changes, no tool is able to reliably characterize ploidy and genotype absolute copy number from tumor samples that contain less than 40% tumor cells. To increase our power to resolve the copy number profile from low-cellularity tumor samples, we developed a novel approach that pre-phases heterozygote germline single nucleotide polymorphisms (SNPs) in order to replace the commonly used ‘B-allele frequency’ with a more powerful ‘parental-haplotype frequency’. We apply our tool—sCNAphase—to characterize the copy number and loss-of-heterozygosity profiles of four publicly available breast cancer cell-lines. Comparisons to previous spectral karyotyping and microarray studies revealed that sCNAphase reliably identified overall ploidy as well as the individual copy number mutations from each cell-line. Analysis of artificial cell-line mixtures demonstrated the capacity of this method to determine the level of tumor cellularity, consistently identify sCNAs and characterize ploidy in samples with as little as 10% tumor cells. This novel methodology has the potential to bring sCNA profiling to low-cellularity tumors, a form of cancer unable to be accurately studied by current methods.
Collapse
Affiliation(s)
- Wenhan Chen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Alan J Robertson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Devika Ganesamoorthy
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
5
|
DNA copy number profiling in microsatellite-stable and microsatellite-unstable hereditary non-polyposis colorectal cancers by targeted CNV array. Funct Integr Genomics 2016; 17:85-96. [DOI: 10.1007/s10142-016-0532-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/19/2023]
|
6
|
Recurrent Amplification at 13q34 Targets at CUL4A, IRS2, and TFDP1 As an Independent Adverse Prognosticator in Intrahepatic Cholangiocarcinoma. PLoS One 2015; 10:e0145388. [PMID: 26684807 PMCID: PMC4686179 DOI: 10.1371/journal.pone.0145388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023] Open
Abstract
Amplification of genes at 13q34 has been reported to be associated with tumor proliferation and progression in diverse types of cancers. However, its role in intrahepatic cholangiocarcinoma (iCCA) has yet to be explored. We examined two iCCA cell lines and 86 cases of intrahepatic cholangiocarcinoma to analyze copy number of three target genes, including cullin 4A (CUL4A), insulin receptor substrate 2 (IRS2), and transcription factor Dp-1 (TFDP1) at 13q34 by quantitative real-time polymerase chain reaction. The cell lines and all tumor samples were used to test the relationship between copy number (CN) alterations and protein expression by western blotting and immunohistochemical assays, respectively. IRS2 was introduced, and each target gene was silenced in cell lines. The mobility potential of cells was compared in the basal condition and after manipulation using cell migration and invasion assays. CN alterations correlated with protein expression levels. The SNU1079 cell line containing deletions of the target genes demonstrated decreased protein expression levels and significantly lower numbers of migratory and invasive cells, as opposed to the RBE cell line, which does not contain CN alterations. Overexpression of IRS2 by introducing IRS2 in SUN1079 cells increased the mobility potential. In contrast, silencing each target gene showed a trend or statistical significance toward inhibition of migratory and invasive capacities in RBE cells. In tumor samples, the amplification of each of these genes was associated with poor disease-free survival. Twelve cases (13.9%) demonstrated copy numbers > 4 for all three genes tested (CUL4A, IRS2, and TFDP1), and showed a significant difference in disease-free survival by both univariate and multivariate survival analyses (hazard ratio, 2.69; 95% confidence interval, 1.23 to 5.88; P = 0.013). Our data demonstrate that amplification of genes at 13q34 plays an oncogenic role in iCCA featuring adverse disease-free survival, which may provide new directions for targeted therapy.
Collapse
|
7
|
Copy number alterations and allelic ratio in relation to recurrence of rectal cancer. BMC Genomics 2015; 16:438. [PMID: 26048403 PMCID: PMC4458034 DOI: 10.1186/s12864-015-1550-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/17/2015] [Indexed: 12/16/2022] Open
Abstract
Background In rectal cancer, total mesorectal excision surgery combined with preoperative (chemo)radiotherapy reduces local recurrence rates but does not improve overall patient survival, a result that may be due to the harmful side effects and/or co-morbidity of preoperative treatment. New biomarkers are needed to facilitate identification of rectal cancer patients at high risk for local recurrent disease. This would allow for preoperative (chemo)radiotherapy to be restricted to high-risk patients, thereby reducing overtreatment and allowing personalized treatment protocols. We analyzed genome-wide DNA copy number (CN) and allelic alterations in 112 tumors from preoperatively untreated rectal cancer patients. Sixty-six patients with local and/or distant recurrent disease were compared to matched controls without recurrence. Results were validated in a second cohort of tumors from 95 matched rectal cancer patients. Additionally, we performed a meta-analysis that included 42 studies reporting on CN alterations in colorectal cancer and compared results to our own data. Results The genomic profiles in our study were comparable to other rectal cancer studies. Results of the meta-analysis supported the hypothesis that colon cancer and rectal cancer may be distinct disease entities. In our discovery patient study cohort, allelic retention of chromosome 7 was significantly associated with local recurrent disease. Data from the validation cohort were supportive, albeit not statistically significant, of this finding. Conclusions We showed that retention of heterozygosity on chromosome 7 may be associated with local recurrence in rectal cancer. Further research is warranted to elucidate the mechanisms and effect of retention of chromosome 7 on the development of local recurrent disease in rectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1550-0) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Zarzour P, Boelen L, Luciani F, Beck D, Sakthianandeswaren A, Mouradov D, Sieber OM, Hawkins NJ, Hesson LB, Ward RL, Wong JWH. Single nucleotide polymorphism array profiling identifies distinct chromosomal aberration patterns across colorectal adenomas and carcinomas. Genes Chromosomes Cancer 2015; 54:303-14. [PMID: 25726927 DOI: 10.1002/gcc.22243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/11/2015] [Indexed: 11/07/2022] Open
Abstract
The progression of benign colorectal adenomas into cancer is associated with the accumulation of chromosomal aberrations. Even though patterns and frequencies of chromosomal aberrations have been well established in colorectal carcinomas, corresponding patterns of aberrations in adenomas are less well documented. The aim of this study was to profile chromosomal aberrations across colorectal adenomas and carcinomas to provide a better insight into key changes during tumor initiation and progression. Single nucleotide polymorphism array analysis was performed on 216 colorectal tumor/normal matched pairs, comprising 60 adenomas and 156 carcinomas. While many chromosomal aberrations were specific to carcinomas, those with the highest frequency in carcinomas (amplification of chromosome 7, 13q, and 20q; deletion of 17p and chromosome 18; LOH of 1p, chromosome 4, 5q, 8p, 17p, chromosome 18, and 20p) were also identified in adenomas. Hierarchical clustering using chromosomal aberrations revealed three distinct subtypes. Interestingly, these subtypes were only partially dependent on tumor staging. A cluster of colorectal cancer patients with frequent chromosomal deletions had the least favorable prognosis, and a number of adenomas (n = 9) were also present in the cluster suggesting that, at least in some tumors, the chromosomal aberration pattern is determined at a very early stage of tumor formation. Finally, analysis of LOH events revealed that copy-neutral/gain LOH (CN/G-LOH) is frequent (>10%) in carcinomas at 5q, 11q, 15q, 17p, chromosome 18, 20p, and 22q. Deletion of the corresponding region is sometimes present in adenomas, suggesting that LOH at these loci may play an important role in tumor initiation.
Collapse
Affiliation(s)
- Peter Zarzour
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Role of microRNA 30a targeting insulin receptor substrate 2 in colorectal tumorigenesis. Mol Cell Biol 2015; 35:988-1000. [PMID: 25582198 DOI: 10.1128/mcb.01242-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in many types of malignant diseases, including colorectal cancer. miRNA 30a (miR-30a) is a member of the miR-30 family and has been implicated in many types of cancers. In this study, we determined the expression of miR-30a in human colon cancer tissues and cell lines. miR-30a was found to be significantly downregulated in both the tissues and cell lines. Furthermore, overexpression of miR-30a inhibited, while silencing of miR-30a promoted, cell proliferation, migration, and invasion in vitro. Consistently, stable overexpression of miR-30a suppressed the growth of colon cancer cell xenografts in vivo. Moreover, bioinformatic algorithms and luciferase reporter assays revealed that insulin receptor substrate 2 (IRS2) is a direct target of miR-30a. Further functional studies suggested that repression of IRS2 by miR-30a partially mediated the tumor suppressor effect of miR-30a. In addition, miR-30a inhibited constitutive phosphorylation of Akt by targeting IRS2. Additionally, clinicopathological analysis indicated that miR-30a has an inverse correlation with the staging in patients with colon cancer. Taken together, our study provides the first evidence that miR-30a suppressed colon cancer cell growth through inhibition of IRS2. Thus, miR-30a might serve as a promising therapeutic strategy for colon cancer treatment.
Collapse
|
10
|
van Gijn W, Brehm V, de Graaf E, Neijenhuis PA, Stassen LPS, Leijtens JWA, Van De Velde CJH, Doornebosch PG. Unexpected rectal cancer after TEM: outcome of completion surgery compared with primary TME. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2013; 39:1225-9. [PMID: 23972571 DOI: 10.1016/j.ejso.2013.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/27/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Transanal endoscopic microsurgery (TEM) has gained wide-spread acceptance as a safe and useful technique for the resection of rectal adenomas and selected T1 malignant lesions. If the lesion appears >T1 rectal cancer after resection with TEM, a completion TME resection is recommended. The aim of this study was to investigate the results of TME surgery after TEM for rectal cancer. METHODS In four tertiary referral hospitals for TEM, all patients with completion TME surgery after initial TEM were selected. All eligible patients who were treated with 5 × 5 Gy radiotherapy followed by TME surgery from the Dutch TME trial were selected as reference group. A multivariate logistic regression model was used to calculate odds ratio's (OR) for colostomies and for colo- and ileostomies combined. Local recurrence and survival rates were compared in hazard ratio's (HR) using the multivariate Cox proportional hazard model. RESULTS Fifty-nine patients were included in the TEM-COMPLETION group and 881 patients from the TME trial. In the TEM-COMPLETION group, 50.8% of the patients had a colostomy compared to 45.9% in the TME trial, OR 2.51 (p < 0.006). There is no significant difference when ileo- and colostomies are analyzed together. In the TEM-COMPLETION group, 10.2% developed a local recurrence compared to 5.2% in the TME trial, HR 6.8 (p < 0.0001). CONCLUSIONS Completion TME surgery after TEM for unexpected rectal adenocarcinoma results in more colostomies and higher local recurrence rates compared to one stage TME surgery preceded with preoperative 5 × 5 Gy radiotherapy. Pre-operative investigations must be optimized to distinguish malignant and benign lesions and prevent avoidable local recurrence and colostomies.
Collapse
Affiliation(s)
- W van Gijn
- Netherlands Cancer Institute, Surgery Department, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Day E, Poulogiannis G, McCaughan F, Mulholland S, Arends MJ, Ibrahim AEK, Dear PH. IRS2 is a candidate driver oncogene on 13q34 in colorectal cancer. Int J Exp Pathol 2013; 94:203-211. [PMID: 23594372 PMCID: PMC3664965 DOI: 10.1111/iep.12021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/18/2013] [Indexed: 12/31/2022] Open
Abstract
Copy number alterations are frequently found in colorectal cancer (CRC), and recurrent gains or losses are likely to correspond to regions harbouring genes that promote or impede carcinogenesis respectively. Gain of chromosome 13q is common in CRC but, because the region of gain is frequently large, identification of the driver gene(s) has hitherto proved difficult. We used array comparative genomic hybridization to analyse 124 primary CRCs, demonstrating that 13q34 is a region of gain in 35% of CRCs, with focal gains in 4% and amplification in a further 1.6% of cases. To reduce the number of potential driver genes to consider, it was necessary to refine the boundaries of the narrowest copy number changes seen in this series and hence define the minimal copy region (MCR). This was performed using molecular copy-number counting, identifying IRS2 as the only complete gene, and therefore the likely driver oncogene, within the refined MCR. Analysis of available colorectal neoplasia data sets confirmed IRS2 gene gain as a common event. Furthermore, IRS2 protein and mRNA expression in colorectal neoplasia was assessed and was positively correlated with progression from normal through adenoma to carcinoma. In functional in vitro experiments, we demonstrate that deregulated expression of IRS2 activates the oncogenic PI3 kinase pathway and increases cell adhesion, both characteristics of invasive CRC cells. Together, these data identify IRS2 as a likely driver oncogene in the prevalent 13q34 region of gain/amplification and suggest that IRS2 over-expression may provide an additional mechanism of PI3 kinase pathway activation in CRC.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Department of Systems Biology, Harvard Medical SchoolBoston, MA, USA
- Department of Medicine-Division of Signal Transduction, Beth Israel Deaconess Medical CenterBoston, MA, USA
| | - Frank McCaughan
- MRC Laboratory of Molecular BiologyCambridge, UK
- Department of Pathology, University of CambridgeCambridge, UK
| | | | - Mark J Arends
- Department of Pathology, University of CambridgeCambridge, UK
| | | | - Paul H Dear
- MRC Laboratory of Molecular BiologyCambridge, UK
| |
Collapse
|
12
|
Zhang L, Mitani Y, Caulin C, Rao PH, Kies MS, Saintigny P, Zhang N, Weber RS, Lippman SM, El-Naggar AK. Detailed genome-wide SNP analysis of major salivary carcinomas localizes subtype-specific chromosome sites and oncogenes of potential clinical significance. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2048-57. [PMID: 23583282 DOI: 10.1016/j.ajpath.2013.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 01/31/2023]
Abstract
The molecular genetic alterations underlying the development and diversity of salivary gland carcinomas are largely unknown. To characterize these events, comparative genomic hybridization analysis was performed, using a single-nucleotide polymorphism microarray platform, of 60 fresh-frozen specimens that represent the main salivary carcinoma types: mucoepidermoid carcinoma (MEC), adenoid cystic carcinoma (ACC), and salivary duct carcinoma (SDC). The results were correlated with the clinicopathologic features and translocation statuses to characterize the genetic alterations. The most commonly shared copy number abnormalities (CNAs) in all types were losses at chromosomes 6q23-26 and the 9p21 region. Subtype-specific CNAs included a loss at 12q11-12 in ACC and a gain at 17q11-12 in SDC. Focal copy number losses included 1p36.33-p36-22 in ACC, 9p13.2 in MEC, and 3p12.3-q11-2, 6q21-22.1, 12q14.1, and 12q15 in SDC. Tumor-specific amplicons were identified at 11q23.3 (PVRL1) in ACC, 11q13.3 (NUMA1) in MEC, and 6p21.1 (CCND3), 9p13.2 (PAX5), 12q15 (CNOT2/RAB3IP), 12q21.1 (GLIPR1L1), and 17q12 (ERBB2/CCL4) in SDC. A comparative CNA analysis of fusion-positive and fusion-negative ACCs and MECs revealed relatively lower CNAs in fusion-positive tumors than in fusion-negative tumors in both tumor types. An association between CNAs and high grade and advanced stage was observed in MECs only. These findings support the pathogenetic segregation of these entities and define novel chromosomal sites for future identification of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
van Wezel T, Middeldorp A, Wijnen JT, Morreau H. A review of the genetic background and tumour profiling in familial colorectal cancer. Mutagenesis 2012; 27:239-45. [PMID: 22294773 DOI: 10.1093/mutage/ger071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited predisposition plays a role in 10-30% of colorectal cancer (CRC) cases. Of the large families with a clearly positive family history of CRC, ∼40% is not affected by known CRC syndromes. The existence of families with unexplained forms of inherited CRC--familial CRC--suggests the presence of still unknown high- or moderate-risk CRC predisposing factors. While the genomic profiles of sporadic CRCs have been studied extensively, few studies have analysed the tumour profiles of hereditary or familial CRC. Here, we review recent advances in genomic tumour profiling in familial CRC in comparison with sporadic CRC. In addition, we discuss the role of known CRC risk factors in familial CRC.
Collapse
Affiliation(s)
- Tom van Wezel
- Department of Pathology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
14
|
A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: opportunities for future personalized treatment. PLoS One 2012; 7:e31968. [PMID: 22363777 PMCID: PMC3282791 DOI: 10.1371/journal.pone.0031968] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/19/2012] [Indexed: 01/10/2023] Open
Abstract
In colorectal cancer (CRC), chromosomal instability (CIN) is typically studied using comparative-genomic hybridization (CGH) arrays. We studied paired (tumor and surrounding healthy) fresh frozen tissue from 86 CRC patients using Illumina's Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN) and B-allele frequency (BAF)--a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis). We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p). From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment.
Collapse
|
15
|
Molinari C, Ballardini M, Teodorani N, Giannini M, Zoli W, Emiliani E, Lucci E, Passardi A, Rosetti P, Saragoni L, Guidoboni M, Amadori D, Calistri D. Genomic alterations in rectal tumors and response to neoadjuvant chemoradiotherapy: an exploratory study. Radiat Oncol 2011; 6:161. [PMID: 22099067 PMCID: PMC3236016 DOI: 10.1186/1748-717x-6-161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/18/2011] [Indexed: 12/17/2022] Open
Abstract
Background Neoadjuvant chemoradiotherapy is the treatment of choice in advanced rectal cancer, even though there are many patients who will not benefit from it. There are still no effective methods for predicting which patients will respond or not. The present study aimed to define the genomic profile of rectal tumors and to identify alterations that are predictive of response in order to optimize therapeutic strategies. Methods Forty-eight candidates for neoadjuvant chemoradiotherapy were recruited and their pretherapy biopsies analyzed by array Comparative Genomic Hybridization (aCGH). Pathologic response was evaluated by tumor regression grade. Results Both Hidden Markov Model and Smoothing approaches identified similar alterations, with a prevalence of DNA gains. Non responsive patients had a different alteration profile from responsive ones, with a higher number of genome changes mainly located on 2q21, 3q29, 7p22-21, 7q21, 7q36, 8q23-24, 10p14-13, 13q12, 13q31-34, 16p13, 17p13-12 and 18q23 chromosomal regions. Conclusions This exploratory study suggests that an in depth characterization of chromosomal alterations by aCGH would provide useful predictive information on response to neoadjuvant chemoradiotherapy and could help to optimize therapy in rectal cancer patients. The data discussed in this study are available on the NCBI Gene Expression Omnibus [GEO: GSE25885].
Collapse
Affiliation(s)
- Chiara Molinari
- Biosciences Laboratories, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer. Biol Cell 2011; 103:303-17. [PMID: 21651501 DOI: 10.1042/bc20110013] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UPD (uniparental disomy) describes the inheritance of a pair of chromosomes from only one parent. Mechanisms that lead to UPD include trisomy rescue, gamete complementation, monosomy rescue and somatic recombination. Most of these mechanisms can involve aberrant chromosomes, particularly isochromosomes and Robertsonian translocations. In the last decade, the number of UPD cases reported in the literature has increased exponentially. This is partly due to the advances in genomic technologies that have allowed for high-resolution SNP (single nucleotide polymorphism) studies, which have complemented traditional methods relying on polymorphic microsatellite markers. In this review, we discuss aberrant cellular mechanisms leading to UPD and their impact on gene expression. Special emphasis is placed on the unmasking of mutant recessive alleles and the disruption of imprinted gene dosage, which give rise to specific and recurrent imprinting phenotypes. Finally, we discuss how copy number maps determined from SNP array datasets have helped identify not only deletions and duplications but also recurrent copy number neutral regions of loss-of-heterozygosity, which have been reported in many cancer types and that may constitute an important driving force in cancer. These tiny regions of UPD also alter imprinted gene dosage, which may have cumulative tumourgenic effects in addition to that of unmasking homozygous cancer-associated mutations.
Collapse
|
17
|
Middeldorp A, van Eijk R, Oosting J, Forte GI, van Puijenbroek M, van Nieuwenhuizen M, Corver WE, Ruano D, Caldes T, Wijnen J, Morreau H, van Wezel T. Increased frequency of 20q gain and copy-neutral loss of heterozygosity in mismatch repair proficient familial colorectal carcinomas. Int J Cancer 2011; 130:837-46. [PMID: 21445971 DOI: 10.1002/ijc.26093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/14/2011] [Indexed: 12/28/2022]
Abstract
Many hereditary nonpolyposis colorectal cancers (CRCs) cannot be explained by Lynch syndrome. Other high penetrance genetic risk factors are likely to play a role in these mismatch repair (MMR)-proficient CRC families. Because genomic profiles of CRC tend to vary with CRC susceptibility syndromes, our aim is to analyze the genomic profile of MMR-proficient familial CRC to obtain insight into the biological basis of MMR-proficient familial CRC. We studied 30 MMR-proficient familial colorectal carcinomas, from 15 families, for genomic aberrations, including gains, physical losses, and copy-neutral loss of heterozygosity LOH (cnLOH) using SNP array comparative genomic hybridization. In addition, we performed somatic mutation analysis for KRAS, BRAF, PIK3CA and GNAS. The frequency of 20q gain (77%) is remarkably increased when compared with sporadic CRC, suggesting that 20q gain is involved in tumor progression of familial CRC. There is also a significant increase in the frequency of cnLOH and, as a consequence, a reduced frequency of physical loss compared with sporadic CRC. The most frequent aberrations observed included gains of 7p, 7q, 8q, 13q, 20p and 20q as well as physical losses of 17p, 18p and 18q. Most of these changes are also observed in sporadic CRC. Mutations in KRAS were identified in 37% of the MMR-proficient CRCs, and mutations in BRAF were identified in 16%. No mutations were identified in PIK3CA or chromosome 20 candidate gene GNAS. We show that the patterns of chromosomal instability of MMR-proficient familial CRC are clearly distinct from those from sporadic CRC. Both the increased gain on chromosome 20 and the increased levels of cnLOH suggest the presence of yet undiscovered germline defects that can, in part, underlie the cancer risk in these families.
Collapse
Affiliation(s)
- A Middeldorp
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mocker K, Holland H, Ahnert P, Schober R, Bauer M, Kirsten H, Koschny R, Meixensberger J, Krupp W. Multiple meningioma with different grades of malignancy: case report with genetic analysis applying single-nucleotide polymorphism array and classical cytogenetics. Pathol Res Pract 2011; 207:67-72. [PMID: 20926204 DOI: 10.1016/j.prp.2010.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/06/2010] [Accepted: 09/03/2010] [Indexed: 11/30/2022]
Abstract
Multiple meningiomas with synchronous tumor lesions represent only 1-9% of all meningiomas and usually show a uniform histology. The simultaneous occurrence of different grades of malignancy in these nodules is observed in only one third of multiple meningiomas. We report a case of a sporadic multiple meningioma presenting with different histopathological grades (WHO I and II). The tumor genome of both nodules was analyzed by GTG-banding, spectral karyotyping (SKY), locus-specific FISH, and single nucleotide polymorphism array (SNP-A) karyotyping. GTG-banding and SKY revealed 25 structural and 33 numerical aberrations with a slightly increased aberration frequency in the WHO grade II nodule. We could confirm terminal deletions on chromosomes 1p [ish del(1)(p36)(p58-,pter-) 16.5% WHO grade I and 20.9% WHO grade II], partial deletions on 22q, and/or monosomy 22 (monosomy 22 14% WHO grade I and 34% WHO grade II) as the most frequent aberrations in both meningioma nodules. In the meningioma WHO grade II, in addition, a de novo paracentric inversion within chromosomal band 1p36 was detectable. Furthermore, for meningiomas de novo, dicentric chromosomes 4 could be identified in both tumor nodules. We also detected previously published segmental uniparental disomy regions 1p31.1, 6q14.1, 10q21.1, and 14q23.3 in normal control DNA of the patient and in both tumor nodules. Taken together, we describe a very rare case of multiple meningioma with overlapping but also distinct genetic aberration patterns in two nodules of different WHO grades of malignancy.
Collapse
Affiliation(s)
- Kristin Mocker
- Department of Neurosurgery, University of Leipzig, Liebigstrasse 20, D-04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
de Jong D, Verbeke SL, Meijer D, Hogendoorn PC, Bovee JV, Szuhai K. Opening the archives for state of the art tumour genetic research: sample processing for array-CGH using decalcified, formalin-fixed, paraffin-embedded tissue-derived DNA samples. BMC Res Notes 2011; 4:1. [PMID: 21205301 PMCID: PMC3024235 DOI: 10.1186/1756-0500-4-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/04/2011] [Indexed: 01/08/2023] Open
Abstract
Background Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research. Findings The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements. Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified. Conclusions We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.
Collapse
Affiliation(s)
- Danielle de Jong
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Tuna M, Smid M, Zhu D, Martens JWM, Amos CI. Association between acquired uniparental disomy and homozygous mutations and HER2/ER/PR status in breast cancer. PLoS One 2010; 5:e15094. [PMID: 21152100 PMCID: PMC2994899 DOI: 10.1371/journal.pone.0015094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/21/2010] [Indexed: 01/01/2023] Open
Abstract
Background Genetic alterations in cellular signaling networks are a hallmark of cancer, however, effective methods to discover them are lacking. A novel form of abnormality called acquired uniparental disomy (aUPD) was recently found to pinpoint the region of mutated genes in various cancers, thereby identifying the region for next-generation sequencing. Methods/Principal Findings We retrieved large genomic data sets from the Gene Expression Omnibus database to perform genome-wide analysis of aUPD in breast tumor samples and cell lines using approaches that can reliably detect aUPD. aUPD was identified in 52.29% of the tumor samples. The most frequent aUPD regions were located at chromosomes 2q, 3p, 5q, 9p, 9q, 10q, 11q, 13q, 14q and 17q. We evaluated the data for any correlation between the most frequent aUPD regions and HER2/neu, ER, and PR status, and found a statistically significant correlation between the recurrent regions of aUPD and triple negative (TN) breast cancers. aUPD at chromosome 17q (VEZF1, WNT3), 3p (SUMF1, GRM7), 9p (MTAP, NFIB) and 11q (CASP1, CASP4, CASP5) are predictors for TN. The frequency of aUPD was found to be significantly higher in TN breast cancer cases compared to HER2/neu-positive and/or ER or PR-positive cases. Furthermore, using previously published mutation data, we found TP53 homozygously mutated in cell lines having aUPD in that locus. Conclusions/Significance We conclude that aUPD is a common and non-random molecular feature of breast cancer that is most prominent in triple negative cases. As aUPD regions are different among the main pathological subtypes, specific aUPD regions may aid the sub-classification of breast cancer. In addition, we provide statistical support using TP53 as an example that identifying aUPD regions can be an effective approach in finding aberrant genes. We thus conclude that a genome-wide scale analysis of aUPD regions for homozygous sequence alterations can provide valuable insights into breast tumorigenesis.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | |
Collapse
|
21
|
Sugano N, Suda T, Godai TI, Tsuchida K, Shiozawa M, Sekiguchi H, Yoshihara M, Matsukuma S, Sakuma Y, Tsuchiya E, Kameda Y, Akaike M, Miyagi Y. MDM2 gene amplification in colorectal cancer is associated with disease progression at the primary site, but inversely correlated with distant metastasis. Genes Chromosomes Cancer 2010; 49:620-9. [PMID: 20461754 DOI: 10.1002/gcc.20774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MDM2 is a crucial negative regulator of the TP53 tumor suppressor and almost 10% of human tumors exhibit MDM2 amplification. Although TP53 pathway perturbation has been extensively examined in colorectal cancer (CRC), only one previous report has evaluated MDM2 amplification in relation to clinicopathological factors. In that report, MDM2 amplification was shown to be associated with disease progression from Dukes' Stages A to D. In this study, we investigated MDM2 amplification by quantitative PCR and fluorescence in situ hybridization (FISH) together with the SNP309 genotypes, and analyzed the correlations with TP53 and KRAS mutations and clinicopathological features in 211 Japanese CRC patients. MDM2 amplification was detected in 8% of the specimens and its incidence was significantly higher in Dukes' stage C than in the combined earlier Stages A and B (P = 0.025). Unexpectedly, the incidence was significantly decreased in Stage D metastatic disease (P = 0.043). The copy number gain ranged from four to eight copies and was generally concordant with gain of centromere 12 using FISH analysis. Together with the results of centromere 1 FISH and TP53 copy number assessment, the MDM2 increment most likely resulted from chromosome 12 gain. The mechanism of the copy number gain and incidence in Dukes' Stage D differed considerably from the previous report. Ethnic or geographic factors could be responsible for these differences. Several promising therapeutic strategies targeting the TP53-MDM2 system are being developed. Further understanding of the significance of MDM2 and MDM2 amplification in CRC is required to facilitate personalized treatment for CRC patients.
Collapse
Affiliation(s)
- Nobuhiro Sugano
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yoshida T, Kobayashi T, Itoda M, Muto T, Miyaguchi K, Mogushi K, Shoji S, Shimokawa K, Iida S, Uetake H, Ishikawa T, Sugihara K, Mizushima H, Tanaka H. Clinical omics analysis of colorectal cancer incorporating copy number aberrations and gene expression data. Cancer Inform 2010; 9:147-61. [PMID: 20706620 PMCID: PMC2918356 DOI: 10.4137/cin.s3851] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most frequently occurring cancers in Japan, and thus a wide range of methods have been deployed to study the molecular mechanisms of CRC. In this study, we performed a comprehensive analysis of CRC, incorporating copy number aberration (CRC) and gene expression data. For the last four years, we have been collecting data from CRC cases and organizing the information as an “omics” study by integrating many kinds of analysis into a single comprehensive investigation. In our previous studies, we had experienced difficulty in finding genes related to CRC, as we observed higher noise levels in the expression data than in the data for other cancers. Because chromosomal aberrations are often observed in CRC, here, we have performed a combination of CNA analysis and expression analysis in order to identify some new genes responsible for CRC. This study was performed as part of the Clinical Omics Database Project at Tokyo Medical and Dental University. The purpose of this study was to investigate the mechanism of genetic instability in CRC by this combination of expression analysis and CNA, and to establish a new method for the diagnosis and treatment of CRC. Materials and methods: Comprehensive gene expression analysis was performed on 79 CRC cases using an Affymetrix Gene Chip, and comprehensive CNA analysis was performed using an Affymetrix DNA Sty array. To avoid the contamination of cancer tissue with normal cells, laser micro-dissection was performed before DNA/RNA extraction. Data analysis was performed using original software written in the R language. Result: We observed a high percentage of CNA in colorectal cancer, including copy number gains at 7, 8q, 13 and 20q, and copy number losses at 8p, 17p and 18. Gene expression analysis provided many candidates for CRC-related genes, but their association with CRC did not reach the level of statistical significance. The combination of CNA and gene expression analysis, together with the clinical information, suggested UGT2B28, LOC440995, CXCL6, SULT1B1, RALBP1, TYMS, RAB12, RNMT, ARHGDIB, S1000A2, ABHD2, OIT3 and ABHD12 as genes that are possibly associated with CRC. Some of these genes have already been reported as being related to CRC. TYMS has been reported as being associated with resistance to the anti-cancer drug 5-fluorouracil, and we observed a copy number increase for this gene. RALBP1, ARHGDIB and S100A2 have been reported as oncogenes, and we observed copy number increases in each. ARHGDIB has been reported as a metastasis-related gene, and our data also showed copy number increases of this gene in cases with metastasis. Conclusion: The combination of CNA analysis and gene expression analysis was a more effective method for finding genes associated with the clinicopathological classification of CRC than either analysis alone. Using this combination of methods, we were able to detect genes that have already been associated with CRC. We also identified additional candidate genes that may be new markers or targets for this form of cancer.
Collapse
Affiliation(s)
- Tsuyoshi Yoshida
- Information Center for Medical Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Middeldorp A, Jagmohan-Changur SC, van der Klift HM, van Puijenbroek M, Houwing-Duistermaat JJ, Webb E, Houlston R, Tops C, Vasen HFA, Devilee P, Morreau H, van Wezel T, Wijnen J. Comprehensive genetic analysis of seven large families with mismatch repair proficient colorectal cancer. Genes Chromosomes Cancer 2010; 49:539-48. [PMID: 20222047 DOI: 10.1002/gcc.20763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Approximately 40% of colorectal cancer (CRC) families with a diagnosis of hereditary nonpolyposis CRC on the basis of clinical criteria are not a consequence of mismatch repair (MMR) deficiency. Such families provide supporting evidence for the existence of a hitherto unidentified highly penetrant gene mutation. To gain further understanding of MMR-competent familial colorectal cancer (FCC), we studied seven large families with an unexplained predisposition for CRC to identify genetic regions that could harbor CRC risk factors. First, we conducted a genome-wide linkage scan using 10K single-nucleotide polymorphism (SNP) arrays to search for disease loci. Second, we studied the genomic profiles of the tumors of affected family members to identify commonly altered genomic regions likely to harbor tumor suppressor genes. Finally, we studied the possible role of recently identified low-risk variants in the familial aggregation of CRC in these families. Linkage analysis did not reveal clear regions of linkage to CRC. However, our results provide support linkage to 3q, a region that has previously been linked to CRC susceptibility. Tumor profiling did not reveal any genomic regions commonly targeted in the tumors studied here. Overall, the genomic profiles of the tumors show some resemblance to sporadic CRC, but additional aberrations were also present. Furthermore, the FCC families did not appear to have an enrichment of low-risk CRC susceptibility loci. These data suggest that factors other than a highly penetrant risk factor, such as low or moderate-penetrance risk factors, may explain the increased cancer risk in a subset of familial CRCs.
Collapse
Affiliation(s)
- Anneke Middeldorp
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
de Maat MFG, van de Velde CJH, Benard A, Putter H, Morreau H, van Krieken JHJM, Meershoek Klein-Kranenbarg E, de Graaf EJ, Tollenaar RAEM, Hoon DSB. Identification of a quantitative MINT locus methylation profile predicting local regional recurrence of rectal cancer. Clin Cancer Res 2010; 16:2811-8. [PMID: 20460484 DOI: 10.1158/1078-0432.ccr-09-2717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Risk assessment for locoregional disease recurrence would be highly valuable in preoperative treatment planning for patients undergoing primary rectal tumor resection. Epigenetic aberrations such as DNA methylation have been shown to be significant prognostic biomarkers of disease outcome. In this study, we evaluated the significance of a quantitative epigenetic multimarker panel analysis of primary tumors to predict local recurrence in rectal cancer patients from a retrospective multicenter clinical trial. EXPERIMENTAL DESIGN Primary tumors were studied from patients enrolled in the trial who underwent total mesorectal excision for rectal cancer (n=325). Methylation levels of seven methylated-in-tumor (MINT) loci were assessed by absolute quantitative assessment of methylated alleles. Unsupervised random forest clustering of quantitative MINT methylation data was used to show subclassification into groups with matching methylation profiles. RESULTS Variable importance parameters [Gini-Index (GI)] of the clustering algorithm indicated MINT3 and MINT17 (GI, 20.2 and 20.7, respectively) to be informative for patient grouping compared with the other MINT loci (highest GI, 12.2). When using this two-biomarker panel, four different patient clusters were identified. One cluster containing 73% (184 of 251) of the patients was at significantly increased risk of local recurrence (hazard ratio, 10.23; 95% confidence interval, 1.38-75.91) in multivariate analysis, corrected for standard prognostic factors of rectal cancer. This group showed a significantly higher local recurrence probability than patients receiving preoperative radiation (P<0.0001). CONCLUSION Quantitative epigenetic subclassification of rectal cancers has clinical utility in distinguishing tumors with increased risk for local recurrence and may help tailor treatment regimens for locoregional control.
Collapse
Affiliation(s)
- Michiel F G de Maat
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California 90404, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Doornebosch PG, Tollenaar RAEM, De Graaf EJR. Is the increasing role of Transanal Endoscopic Microsurgery in curation for T1 rectal cancer justified? A systematic review. Acta Oncol 2009; 48:343-53. [PMID: 18855161 DOI: 10.1080/02841860802342408] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Driven by the aim to avoid a permanent colostomy and also the morbidity and mortality of major radical surgery for rectal cancer, the proportion of patients with rectal cancer treated by local excision has increased the last ten years or so. In T1 carcinomas local excision is considered a curative option in selected tumors. However, the scientific base upon which this treatment regimen is built remains controversial. In this systematic review we try to elucidate current literature regarding local excision for T1 rectal carcinomas. Several questions are addressed. First, is there enough evidence to propagate LE as a curative option in selected (T1) rectal carcinomas? Second, if LE is justified, which technique should be the method of choice? Third, can we adequately identify, pre- and postoperatively, tumors suitable for LE? Finally, future perspectives are discussed.
Collapse
|
26
|
Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van Wezel T, Morreau H, Sullivan K, Fielding S, Twiss P, Vijayakrishnan J, Casares F, Qureshi M, Gómez-Skarmeta JL, Houlston RS. The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. Genome Res 2009; 19:987-93. [PMID: 19395656 DOI: 10.1101/gr.092668.109] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent genome-wide scans for colorectal cancer (CRC) have revealed the SMAD7 (mothers against decapentaplegic homolog 7) gene as a locus associated with a modest, but highly significant increase in CRC risk. To identify the causal basis of the association between 18q21 variation and CRC, we resequenced the 17-kb region of linkage disequilibrium and evaluated all variants in 2532 CRC cases and 2607 controls. A novel C to G single nucleotide polymorphism (SNP) at 44,703,563 bp was maximally associated with CRC risk (P = 5.98 x 10(-7); > or =1.5-fold more likely to be causal than other variants). Using transgenic assays in Xenopus laevis as a functional model, we demonstrate that the G risk allele leads to reduced reporter gene expression in the colorectum (P = 5.4 x 10(-3)). Electrophoretic mobility shift assays provided evidence for the role of Novel 1 in transcription factor binding. We propose that the novel SNP we have identified is the functional change leading to CRC predisposition through differential SMAD7 expression and, hence, aberrant TGF-beta signaling.
Collapse
Affiliation(s)
- Alan M Pittman
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tuna M, Knuutila S, Mills GB. Uniparental disomy in cancer. Trends Mol Med 2009; 15:120-8. [PMID: 19246245 DOI: 10.1016/j.molmed.2009.01.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 02/03/2023]
Abstract
Uniparental disomy (UPD) results when both copies of a chromosome pair originate from one parent. In humans, this might result in developmental disease or cancer due to either the production of homozygosity (caused by mutated or methylated genes or by microRNA sequences) or an aberrant pattern of imprinting. Constitutional UPD is associated with meiotic errors, resulting in developmental diseases, whereas acquired UPD probably occurs as a result of a mitotic error in somatic cells, which can be an important step in cancer development and progression. This review summarizes the mechanisms underlying UPD and their emerging association with cancer.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | |
Collapse
|
28
|
Lips EH, van Eijk R, de Graaf EJR, Oosting J, de Miranda NFCC, Karsten T, van de Velde CJ, Eilers PHC, Tollenaar RAEM, van Wezel T, Morreau H. Integrating chromosomal aberrations and gene expression profiles to dissect rectal tumorigenesis. BMC Cancer 2008; 8:314. [PMID: 18959792 PMCID: PMC2584339 DOI: 10.1186/1471-2407-8-314] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 10/29/2008] [Indexed: 12/13/2022] Open
Abstract
Background Accurate staging of rectal tumors is essential for making the correct treatment choice. In a previous study, we found that loss of 17p, 18q and gain of 8q, 13q and 20q could distinguish adenoma from carcinoma tissue and that gain of 1q was related to lymph node metastasis. In order to find markers for tumor staging, we searched for candidate genes on these specific chromosomes. Methods We performed gene expression microarray analysis on 79 rectal tumors and integrated these data with genomic data from the same sample series. We performed supervised analysis to find candidate genes on affected chromosomes and validated the results with qRT-PCR and immunohistochemistry. Results Integration of gene expression and chromosomal instability data revealed similarity between these two data types. Supervised analysis identified up-regulation of EFNA1 in cases with 1q gain, and EFNA1 expression was correlated with the expression of a target gene (VEGF). The BOP1 gene, involved in ribosome biogenesis and related to chromosomal instability, was over-expressed in cases with 8q gain. SMAD2 was the most down-regulated gene on 18q, and on 20q, STMN3 and TGIF2 were highly up-regulated. Immunohistochemistry for SMAD4 correlated with SMAD2 gene expression and 18q loss. Conclusion On basis of integrative analysis this study identified one well known CRC gene (SMAD2) and several other genes (EFNA1, BOP1, TGIF2 and STMN3) that possibly could be used for rectal cancer characterization.
Collapse
Affiliation(s)
- Esther H Lips
- Department of Pathology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sengupta N, Gill KA, MacFie TS, Lai CS, Suraweera N, Mcdonald S, Silver A. Management of colorectal cancer: a role for genetics in prevention and treatment? Pathol Res Pract 2008; 204:469-77. [PMID: 18534770 DOI: 10.1016/j.prp.2008.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Colorectal cancer remains one of the most common cancers in the Western world and amongst the top three causes of cancer morbidity and death. Cancer is caused by genetic mutations, but currently there is little use of genetic information in the clinic with the exception of establishing germline mutations for the uncommon predisposing syndromes. Rapid advances in technologies allowing high throughput analysis of germline and somatic mutations raises the possibility that genetics will find a major role in the clinic distinguishing individuals at low to high risk of cancer, allowing early intervention and stratification of cancers based on mutational pathways for therapeutic interventions. In the future, this will lead to treatment regimes tailored to the individuals and their tumor. Here, we summarize the genetics underlying colorectal cancer and the future role of genetics in prevention, diagnosis, classification and treatment.
Collapse
Affiliation(s)
- Neel Sengupta
- Colorectal Cancer Genetics Group, Institute of Cell, and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Guled M, Myllykangas S, Frierson HF, Mills SE, Knuutila S, Stelow EB. Array comparative genomic hybridization analysis of olfactory neuroblastoma. Mod Pathol 2008; 21:770-8. [PMID: 18408657 DOI: 10.1038/modpathol.2008.57] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Olfactory neuroblastoma is an unusual neuroectodermal malignancy, which is thought to arise at the olfactory membrane of the sinonasal tract. Due to its rarity, little is understood regarding its molecular and cytogenetic abnormalities. The aim of the current study is to identify specific DNA copy number changes in olfactory neuroblastoma. Thirteen dissected tissue samples were analyzed using array comparative genomic hybridization. Our results show that gene copy number profiles of olfactory neuroblastoma samples are complex. The most frequent changes included gains at 7q11.22-q21.11, 9p13.3, 13q, 20p/q, and Xp/q, and losses at 2q31.1, 2q33.3, 2q37.1, 6q16.3, 6q21.33, 6q22.1, 22q11.23, 22q12.1, and Xp/q. Gains were more frequent than losses, and high-stage tumors showed more alterations than low-stage olfactory neuroblastoma. Frequent changes in high-stage tumors were gains at 13q14.2-q14.3, 13q31.1, and 20q11.21-q11.23, and loss of Xp21.1 (in 66% of cases). Gains at 5q35, 13q, and 20q, and losses at 2q31.1, 2q33.3, and 6q16-q22, were present in 50% of cases. The identified regions of gene copy number change have been implicated in a variety of tumors, especially carcinomas. In addition, our results indicate that gains in 20q and 13q may be important in the progression of this cancer, and that these regions possibly harbor genes with functional relevance in olfactory neuroblastoma.
Collapse
Affiliation(s)
- Mohamed Guled
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
31
|
Assié G, LaFramboise T, Platzer P, Bertherat J, Stratakis CA, Eng C. SNP arrays in heterogeneous tissue: highly accurate collection of both germline and somatic genetic information from unpaired single tumor samples. Am J Hum Genet 2008; 82:903-15. [PMID: 18355774 DOI: 10.1016/j.ajhg.2008.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 11/17/2022] Open
Abstract
SNP arrays provide reliable genotypes and can detect chromosomal aberrations at a high resolution. However, tissue heterogeneity is currently a major limitation for somatic tissue analysis. We have developed SOMATICs, an original program for accurate analysis of heterogeneous tissue samples. Fifty-four samples (42 tumors and 12 normal tissues) were processed through Illumina Beadarrays and then analyzed with SOMATICs. We demonstrate that tissue heterogeneity-related limitations not only can be overcome but can also be turned into an advantage. First, admixture of normal cells with tumor can be used as an internal reference, thereby enabling highly sensitive detection of somatic deletions without having corresponding normal tissue. Second, the presence of normal cells allows for discrimination of somatic from germline aberrations, and the proportion of cells in the tissue sample that are harboring the somatic events can be assessed. Third, relatively early versus late somatic events can also be distinguished, assuming that late events occur only in subsets of cancer cells. Finally, admixture by normal cells allows inference of germline genotypes from a cancer sample. All this information can be obtained from any cancer sample containing a proportion of 40-75% of cancer cells. SOMATICs is a ready-to-use open-source program that integrates all of these features into a simple format, comprehensively describing each chromosomal event.
Collapse
Affiliation(s)
- Guillaume Assié
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lips EH, van Eijk R, de Graaf EJ, Doornebosch PG, de Miranda NF, Oosting J, Karsten T, Eilers PH, Tollenaar RA, van Wezel T, Morreau H. Progression and Tumor Heterogeneity Analysis in Early Rectal Cancer. Clin Cancer Res 2008; 14:772-81. [DOI: 10.1158/1078-0432.ccr-07-2052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene 2007; 27:1951-60. [PMID: 17952125 DOI: 10.1038/sj.onc.1210832] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To identify genomic abnormalities characteristic of pancreatic ductal adenocarcinoma (PDAC) in vivo, a panel of 27 microdissected PDAC specimens were analysed using high-density microarrays representing approximately 116 000 single nucleotide polymorphism (SNP) loci. We detected frequent gains of 1q, 2, 3, 5, 7p, 8q, 11, 14q and 17q (> or =78% of cases), and losses of 1p, 3p, 6, 9p, 13q, 14q, 17p and 18q (> or =44%). Although the results were comparable with those from array CGH, regions of those genetic changes were defined more accurately by SNP arrays. Integrating the Ensembl public data, we have generated 'gene' copy number indices that facilitate the search for novel candidates involved in pancreatic carcinogenesis. Copy numbers in a subset of the genes were validated using quantitative real-time PCR. The SKAP2/SCAP2 gene (7p15.2), which belongs to the src family kinases, was most frequently (63%) amplified in our sample set and its recurrent overexpression (67%) was confirmed by reverse transcription-PCR. Furthermore, fluorescence in situ hybridization and in situ RNA hybridization analyses for this gene have demonstrated a significant correlation between DNA copy number and mRNA expression level in an independent sample set (P<0.001). These findings indicate that the dysregulation of SKAP2/SCAP2, which is mostly caused by its increased gene copy number, is likely to be associated with the development of PDAC.
Collapse
|