1
|
Li Q, Liu Y, Li B, Zheng C, Yu B, Niu K, Qiao Y. Bioinformatics analysis of oxidative stress genes in the pathogenesis of ulcerative colitis based on a competing endogenous RNA regulatory network. PeerJ 2024; 12:e17213. [PMID: 39161963 PMCID: PMC11332386 DOI: 10.7717/peerj.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/19/2024] [Indexed: 08/21/2024] Open
Abstract
Background Ulcerative colitis (UC) is a common chronic disease associated with inflammation and oxidative stress. This study aimed to construct a long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network based on bioinformatics analysis and to explore oxidative stress-related genes underlying the pathogenesis of UC. Methods The GSE75214, GSE48959, and GSE114603 datasets were downloaded from the Gene Expression Omnibus database. Following differentially expressed (DE) analysis, the regulatory relationships among these DERNAs were identified through miRDB, miRTarBase, and TargetScan; then, the lncRNA-miRNA-mRNA network was established. The Molecular Signatures Database (MSigDB) was used to search oxidative stress-related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for functional annotation and enrichment analyses. Based on the drug gene interaction database DGIdb, drugs that interact with oxidative stress-associated genes were explored. A dextran sulfate sodium (DSS)-induced UC mouse model was used for experimental validation. Results A total of 30 DE-lncRNAs, 3 DE-miRNAs, and 19 DE-mRNAs were used to construct a lncRNA-miRNA-mRNA network. By comparing these 19 DE-mRNAs with oxidative stress-related genes in MSigDB, three oxidative stress-related genes (CAV1, SLC7A11, and SLC7A5) were found in the 19 DEM sets, which were all negatively associated with miR-194. GO and KEGG analyses showed that CAV1, SLC7A11, and SLC7A5 were associated with immune inflammation and steroid hormone synthesis. In animal experiments, the results showed that dexamethasone, a well-known glucocorticoid drug, could significantly decrease the expression of CAV1, SLC7A11, and SLC7A5 as well as improve UC histology, restore antioxidant activities, inhibit inflammation, and decrease myeloperoxidase activity. Conclusion SLC7A5 was identified as a representative gene associated with glucocorticoid therapy resistance and thus may be a new therapeutic target for the treatment of UC in the clinic.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/chemically induced
- Computational Biology
- Databases, Genetic
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Gene Expression Profiling
- Gene Regulatory Networks/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Oxidative Stress/genetics
- Oxidative Stress/drug effects
- RNA, Competitive Endogenous/genetics
- RNA, Competitive Endogenous/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Qifang Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yuan Liu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Bingbing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Canlei Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Kai Niu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Yi Qiao
- School of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Al-Taie A, Sancar M, Izzettin FV. 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Matsuda R, Miyasaka Y, Yamada Y, Kawata J, Sakihama K, Yamamoto T, Saeki K, Yamamoto H, Ohishi Y, Koga Y, Nakamura M, Oda Y. Chronic inflammatory changes and oxidative stress in the background of "pancreatic ductal adenocarcinoma concomitant with intraductal papillary mucinous neoplasm". Virchows Arch 2020; 477:799-806. [PMID: 32468246 DOI: 10.1007/s00428-020-02844-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
Cases of "pancreatic ductal adenocarcinoma (PDAC) concomitant with intraductal papillary mucinous neoplasm" (IPMN) have multiple PDAC lesions more frequently than cases of "PDAC without IPMN". However, the mechanism of carcinogenesis in this former disease category remains unknown. The main objective of this work was thus to investigate the effects of chronic inflammation on carcinogenesis in PDAC cases. We selected 31 "PDAC concomitant with IPMN" patients and 58 "PDAC without IPMN" patients and pathologically evaluated their background pancreatic parenchyma. Fibrosis and inflammation scores of background pancreas were higher in "PDAC concomitant with IPMN" than in "PDAC without IPMN" (P < 0.0001 and P < 0.0001, respectively), whereas the fatty infiltration score of background pancreas was high in "PDAC without IPMN" (P = 0.0024). Immunohistochemically, the expression of 8-hydroxy-2'-deoxyguanosine (8-OHDG), an oxidative stress marker, in the background pancreas was high in "PDAC concomitant with IPMN" compared with that in "PDAC without IPMN" (P < 0.0001). Chronic inflammation activates oxidative stress in tissue throughout the pancreas and probably confers susceptibility to tumorigenesis in "PDAC concomitant with IPMN".
Collapse
Affiliation(s)
- Ryota Matsuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Kawata
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kukiko Sakihama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Saeki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ohishi
- Department of Diagnostic Pathology, Iizuka Hospital, Iizuka, Japan
| | - Yutaka Koga
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
5
|
Kumagae Y, Hirahashi M, Takizawa K, Yamamoto H, Gushima M, Esaki M, Matsumoto T, Nakamura M, Kitazono T, Oda Y. Overexpression of MTH1 and OGG1 proteins in ulcerative colitis-associated carcinogenesis. Oncol Lett 2018; 16:1765-1776. [PMID: 30008864 DOI: 10.3892/ol.2018.8812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress, demonstrated by an accumulation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), results in DNA damage, which is normally repaired by base excision repair enzymes including 8-OHdG DNA glycosylase (OGG1) and human MutY homolog (MUTYH), in addition to nucleotide pool sanitizing enzymes including MutT Homolog 1 (MTH1). Abnormalities of this repair system are present in various cancer types. The present study aimed to elucidate the clinicopathological significance of altered expression levels of inducible nitric oxide synthase (iNOS), 8-OHdG, OGG1, MTH1 and MUTYH in ulcerative colitis (UC) and UC-associated neoplasms. Immunohistochemical staining for these markers and p53 in 23 cases of UC-associated neoplasm (Group A, 14 carcinomas and nine dysplasias), 16 cases of UC without neoplasm (Group B) and 17 cases of normal colon specimens (Group C) was performed. Mutation analyses was conducted for KRAS proto-oncogene, GTPase (K-ras), tumor protein P53 (TP53) and isocitrate dehydrogenase (NADP (+)) 1, cytosolic (IDH1) genes. Immunohistochemically, the iNOS, 8-OHdG, OGG1 and MTH1 expression levels were increased in Groups A and B compared with Group C. The OGG1 and MTH1 expression levels in Group A were also increased compared with Group B. Group A and Group B exhibited increased cytoplasmic expression and decreased nuclear expression of MUTYH compared with Group C. Mutations of K-ras and TP53 were detected in 2/21 (9.5%) and 10/22 (45.5%) cases of Group A, respectively. IDH1 mutation was not detected in any cases. These findings suggest that, as a response to oxidative damage, OGG1 and MTH1 may be upregulated in UC through an inflammatory condition that progresses to cancer formation. Persisting oxidative damage stress may play a role in the pathogenesis of UC-associated tumors.
Collapse
Affiliation(s)
- Yoshiteru Kumagae
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Minako Hirahashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Katsumi Takizawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaki Gushima
- Department of Medical Gastroenterology, Shimonoseki Hospital, Yamaguchi, Yamaguchi 750-8520, Japan
| | - Motohiro Esaki
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Masafumi Nakamura
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
7
|
The MUTYH base excision repair gene protects against inflammation-associated colorectal carcinogenesis. Oncotarget 2016; 6:19671-84. [PMID: 26109431 PMCID: PMC4637313 DOI: 10.18632/oncotarget.4284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 12/19/2022] Open
Abstract
MUTYH DNA glycosylase removes mismatched adenine opposite 7, 8-dihydro-8-oxoguanine (8-oxoG), which is the major mutagenic lesion induced by oxidative stress. Biallelic mutations in MUTYH are associated with MUTYH-Associated polyposis (MAP) and increased risk in colorectal cancer (CRC). We investigated cancer susceptibility associated with MUTYH inactivation in a mouse model of inflammation-dependent carcinogenesis induced by azoxymethane (AOM) and dextran sulphate (DSS). Mutyh−/− mice were more sensitive than wild-type (WT) animals to AOM/DSS toxicity and accumulated DNA 8-oxoG in their gastrointestinal tract. AOM/DSS-induced colonic adenomas were significantly more numerous in Mutyh−/− than in WT animals, and frequently showed a tubulo-villous feature along with high-grade dysplasia and larger size lesions. This condition resulted in a greater propensity to develop adenocarcinomas. The colon of untreated Mutyh−/− mice expressed higher basal levels of pro-inflammatory cytokines GM-CSF and IFNγ, and treatment with AOM/DSS induced an early decrease in circulating CD4+ and CD8+ T lymphocytes and an increase in myeloid-derived suppressor cells (MDSCs). Adenomas from Mutyh−/− mice had a greater infiltrate of Foxp3+ T regulatory cells, granulocytes, macrophages, MDSCs and strong expression of TGF-β-latency-associated peptide and IL6. Our findings indicate that MUTYH loss is associated with an increase in CRC risk, which involves immunosuppression and altered inflammatory response. We propose that the AOM/DSS initiation/promotion protocol in Mutyh−/− mice provides a good model for MAP.
Collapse
|
8
|
Park JM, Han NY, Han YM, Chung MK, Lee HK, Ko KH, Kim EH, Hahm KB. Predictive proteomic biomarkers for inflammatory bowel disease-associated cancer: Where are we now in the era of the next generation proteomics? World J Gastroenterol 2014; 20:13466-13476. [PMID: 25309077 PMCID: PMC4188898 DOI: 10.3748/wjg.v20.i37.13466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/10/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in genomic medicine have opened up the possibility of tailored medicine that may eventually replace traditional “one-size-fits all” approaches to the treatment of inflammatory bowel disease (IBD). In addition to exploring the interactions between hosts and microbes, referred to as the microbiome, a variety of strategies that can be tailored to an individual in the coming era of personalized medicine in the treatment of IBD are being investigated. These include prompt genomic screening of patients at risk of developing IBD, the utility of molecular discrimination of IBD subtypes among patients diagnosed with IBD, and the discovery of proteome biomarkers to diagnose or predict cancer risks. Host genetic factors influence the etiology of IBD, as do microbial ecosystems in the human bowel, which are not uniform, but instead represent many different microhabitats that can be influenced by diet and might affect processes essential to bowel metabolism. Further advances in basic research regarding intestinal inflammation may reveal new insights into the role of inflammatory mediators, referred to as the inflammasome, and the macromolecular complex of metabolites formed by intestinal bacteria. Collectively, knowledge of the inflammasome and metagenomics will lead to the development of biomarkers for IBD that target specific pathogenic mechanisms involved in the spontaneous progress of IBD. In this review article, our recent results regarding the discovery of potential proteomic biomarkers using a label-free quantification technique are introduced and on-going projects contributing to either the discrimination of IBD subtypes or to the prediction of cancer risks are accompanied by updated information from IBD biomarker research.
Collapse
|
9
|
Tasaki M, Kuroiwa Y, Inoue T, Hibi D, Matsushita K, Kijima A, Maruyama S, Nishikawa A, Umemura T. Lack of nrf2 results in progression of proliferative lesions to neoplasms induced by long-term exposure to non-genotoxic hepatocarcinogens involving oxidative stress. ACTA ACUST UNITED AC 2013; 66:19-26. [PMID: 23988840 DOI: 10.1016/j.etp.2013.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023]
Abstract
To explore the role of oxidative stress in chemical carcinogenesis driven by non-genotoxic mechanisms, nrf2-deficient (nrf2(-/-)) and nrf2-wild-type (nrf2(+/+)) mice were exposed to pentachlorophenol (PCP) at concentrations of 600 or 1200 ppm for 60 weeks, or piperonyl butoxide (PBO) at concentrations of 3000 or 6000 ppm in the diet for 52 weeks, respectively. Additional studies were performed to examine 8-hydroxydeoxyguanosine (8-OHdG) levels in liver DNA and hepatotoxicological parameters in serum following 8 weeks of exposure of each group to PBO at the same doses as in the long-term study. Exposure to 600 ppm PCP caused cholangiofibrosis (CF) only in nrf2(-/-) mice, while 1200 ppm PCP induced CF in both genotypes. Moreover, cholangiocarcinomas were found with significant incidence only in nrf2(-/-) mice treated with 1200 ppm PCP. Short-term exposure to 6000 ppm PBO caused significant elevation of 8-OHdG levels in both genotypes, while exposure to 3000 ppm caused a significant increase in 8-OHdG only in nrf2(-/-) mice. There were no inter-genotype changes in the incidences of regenerative hepatocellular hyperplasia (RHH) following long-term exposure to PBO. However, the incidence and multiplicity of hepatocellular adenomas, especially those observed in RHH, were much higher in nrf2-/- mice treated with 6000 ppm PBO than in nrf2+/+ mice treated with 6000 ppm PBO. Therefore, oxidative stress generated through PCP or PBO metabolism may promote the proliferation and progression of preneoplastic lesions to neoplasms.
Collapse
Affiliation(s)
- Masako Tasaki
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ge J, Wood DK, Weingeist DM, Prasongtanakij S, Navasumrit P, Ruchirawat M, Engelward BP. Standard fluorescent imaging of live cells is highly genotoxic. Cytometry A 2013; 83:552-60. [PMID: 23650257 DOI: 10.1002/cyto.a.22291] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/01/2013] [Accepted: 03/09/2013] [Indexed: 12/19/2022]
Abstract
Fluorescence microscopy is commonly used for imaging live mammalian cells. Here, we describe studies aimed at revealing the potential genotoxic effects of standard fluorescence microscopy. To assess DNA damage, a high throughput platform for single cell gel electrophoresis is used (e.g., the CometChip). Light emitted by three standard filters was studied: (a) violet light [340-380 nm], used to excite DAPI and other blue fluorophores, (b) blue light [460-500 nm] commonly used to image green fluorescent protein (GFP) and Calcein AM, and (c) green light [528-553 nm], useful for imaging red fluorophores. Results show that exposure of samples to light during imaging is indeed genotoxic even when the selected wavelengths are outside the range known to induce significant damage levels. Shorter excitation wavelengths and longer irradiation times lead to higher levels of DNA damage. We have also measured DNA damage in cells expressing enhanced GFP or stained with Calcein AM, a widely used green fluorophore. Data show that Calcein AM leads to a synergistic increase in the levels of DNA damage and that even cells that are not being directly imaged sustain significant DNA damage from exposure to indirect light. The nature of light-induced DNA damage during imaging was assessed using the Fpg glycosylase, an enzyme that enables quantification of oxidative DNA damage. Oxidative damage was evident in cells exposed to violet light. Furthermore, the Fpg glycosylase revealed the presence of oxidative DNA damage in blue-light exposed cells for which DNA damage was not detected using standard analysis conditions. Taken together, the results of these studies call attention to the potential confounding effects of DNA damage induced by standard imaging conditions, and identify wavelength, exposure time, and fluorophore as parameters that can be modulated to reduce light-induced DNA damage.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Mazzei F, Viel A, Bignami M. Role of MUTYH in human cancer. Mutat Res 2013; 743-744:33-43. [PMID: 23507534 DOI: 10.1016/j.mrfmmm.2013.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 06/01/2023]
Abstract
MUTYH, a human ortholog of MutY, is a post-replicative DNA glycosylase, highly conserved throughout evolution, involved in the correction of mismatches resulting from a faulty replication of the oxidized base 8-hydroxyguanine (8-oxodG). In particular removal of adenine from A:8-oxodG mispairs by MUTYH activity is followed by error-free base excision repair (BER) events, leading to the formation of C:8-oxodG base pairs. These are the substrate of another BER enzyme, the OGG1 DNA glycosylase, which then removes 8-oxodG from DNA. Thus the combined action of OGG1 and MUTYH prevents oxidative damage-induced mutations, i.e. GC->TA transversions. Germline mutations in MUTYH are associated with a recessively heritable colorectal polyposis, now referred to as MUTYH-associated polyposis (MAP). Here we will review the phenotype(s) associated with MUTYH inactivation from bacteria to mammals, the structure of the MUTYH protein, the molecular mechanisms of its enzymatic activity and the functional characterization of MUTYH variants. The relevance of these results will be discussed to define the role of specific human mutations in colorectal cancer risk together with the possible role of MUTYH inactivation in sporadic cancer.
Collapse
Affiliation(s)
- Filomena Mazzei
- Department of Environment, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Alessandra Viel
- Experimental Oncology 1, Centro di Riferimento Oncologico, IRCCS, Via F.Gallini 2, 33081 Aviano, PN, Italy
| | - Margherita Bignami
- Department of Environment, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| |
Collapse
|
12
|
Tasaki M, Kuroiwa Y, Inoue T, Hibi D, Matsushita K, Ishii Y, Maruyama S, Nohmi T, Nishikawa A, Umemura T. Oxidative DNA damage andin vivomutagenicity caused by reactive oxygen species generated in the livers ofp53-proficient or -deficientgptdelta mice treated with non-genotoxic hepatocarcinogens. J Appl Toxicol 2012; 33:1433-41. [DOI: 10.1002/jat.2807] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Masako Tasaki
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Yuichi Kuroiwa
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Tomoki Inoue
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Daisuke Hibi
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Kohei Matsushita
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Yuji Ishii
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Science; Nihon University; 1866, Kameino Fujisawa-city Kanagawa 252-8510 Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Akiyoshi Nishikawa
- Biological Safety Research Center; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Takashi Umemura
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| |
Collapse
|
13
|
Jena G, Trivedi PP, Sandala B. Oxidative stress in ulcerative colitis: an old concept but a new concern. Free Radic Res 2012; 46:1339-45. [PMID: 22856328 DOI: 10.3109/10715762.2012.717692] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis is an idiopathic, chronic and relapsing inflammatory bowel disease, which elicits the risk of colorectal cancer, the third most common malignancy in humans. It has been known for a long time that oxidative stress is a major pathogenic factor in the inflamed tissue that can pave the way towards DNA damage and carcinogenesis. However, the DNA damage produced due to oxidative stress in the inflamed tissue is not limited to the local site but extends globally, thereby augmenting the risk of global carcinogenesis. Targeting oxidative stress may provide an exciting avenue to combat inflammation-associated local as well as global DNA damage and the subsequent carcinogenesis. The present review portrays the role of oxidative stress in the pathogenesis of ulcerative colitis and the associated local as well as global DNA damage, which may lead to carcinogenesis.
Collapse
Affiliation(s)
- Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| | | | | |
Collapse
|
14
|
Waldner MJ, Neurath MF. Potential avenues for immunotherapy of colitis-associated neoplasia. Immunotherapy 2012; 4:397-405. [PMID: 22512634 DOI: 10.2217/imt.12.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In patients with inflammatory bowel disease, chronic intestinal inflammation severely increases the risk for cancer development. In fact, various aspects of inflammation such as oxidative stress, cyclooxygenases and proinflammatory cytokines have been shown to support many aspects of cancer growth. During recent years, various experimental studies have increased our understanding of the molecular mechanisms leading to colitis-associated cancer. In particular, cytokines such as TNF-α or IL-6, which are involved in the pathogenesis of inflammation and cancer development, could be promising targets for the molecular prevention of colitis-associated cancer.
Collapse
Affiliation(s)
- Maximilian J Waldner
- Department of Medicine 1, University of Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany
| | | |
Collapse
|
15
|
Venesio T, Balsamo A, D'Agostino VG, Ranzani GN. MUTYH-associated polyposis (MAP), the syndrome implicating base excision repair in inherited predisposition to colorectal tumors. Front Oncol 2012; 2:83. [PMID: 22876359 PMCID: PMC3410368 DOI: 10.3389/fonc.2012.00083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
In 2002, Al-Tassan and co-workers described for the first time a recessive form of inherited polyposis associated with germline mutations of MUTYH, a gene encoding a base excision repair (BER) protein that counteracts the DNA damage induced by the oxidative stress. MUTYH-associated polyposis (MAP) is now a well-defined cancer susceptibility syndrome, showing peculiar molecular features that characterize disease progression. However, some aspects of MAP, including diagnostic criteria, genotype-phenotype correlations, pathogenicity of variants, as well as relationships between BER and other DNA repair pathways, are still poorly understood. A deeper knowledge of the MUTYH expression pattern is likely to refine our understanding of the protein role and, finally, to improve guidances for identifying and handling MAP patients.
Collapse
Affiliation(s)
- Tiziana Venesio
- Unit of Pathology, Institute for Cancer Research and Treatment Candiolo, Torino, Italy
| | | | | | | |
Collapse
|
16
|
Casper M, Plotz G, Juengling B, Zeuzem S, Lammert F, Raedle J. MUTYH hotspot mutations in unselected colonoscopy patients. Colorectal Dis 2012; 14:e238-44. [PMID: 22469480 DOI: 10.1111/j.1463-1318.2012.02920.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Biallelic MutY human homologue (MUTYH) germline mutations predispose to recessively inherited adenomatous polyposis, designated MUTYH-associated polyposis (MAP), and colorectal cancer (CRC). The hotspot mutations p.Y179C and p.G396D account for the majority of pathogenic variants of MUTYH in Caucasians. Our aim was to evaluate the prevalence of MUTYH mutations in a prospective cohort of unselected patients with different colorectal diseases. METHOD The hotspot mutations p.Y179C and p.G396D were genotyped in 352 consecutive patients undergoing colonoscopy at our tertiary referral centre. Exons 2-14 were sequenced in hotspot mutation carriers to exclude additional variants. RESULTS Overall, we identified five heterozygous p.Y179C mutations and three heterozygous p.G396D mutations in seven hotspot mutation carriers (risk allele frequencies 0.7% and 0.4%, respectively). Two of these hotspot mutation carriers harboured a heterozygous p.Q338H variant, which is of uncertain clinical significance, on the other allele. Three individuals were biallelic MUTYH variant carriers (p.Y179C/p.G382D: typical MAP; p.Y179C/p.Q338H: atypical MAP with late onset and lower polyp burden; p.G382D/p.Q338H: inflammatory bowel disease), and four subjects were monoallelic mutation carriers. CONCLUSION MUTYH-associated disease, and hence genetic counselling and MUTYH genetic testing, should be considered in the clinical routine of an endoscopy unit, but the wide range of phenotypes represents a challenge for patient identification. The clinical significance of p.Q338H should be evaluated in future case-control studies because compound heterozygotes for pathogenic mutations and p.Q338H may be at increased risk for mild polyposis or CRC. In addition, MUTYH should be assessed as a potential susceptibility gene for the development of colitis-associated CRC in future.
Collapse
Affiliation(s)
- M Casper
- Department of Medicine II, Saarland University Medical Centre, Homburg, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Prá D, Franke SIR, Henriques JAP, Fenech M. Iron and genome stability: an update. Mutat Res 2012; 733:92-9. [PMID: 22349350 DOI: 10.1016/j.mrfmmm.2012.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/02/2012] [Accepted: 02/05/2012] [Indexed: 01/07/2023]
Abstract
Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7mg/day to 18mg/day depending on life stage and gender. Pregnant women need 27mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.
Collapse
Affiliation(s)
- Daniel Prá
- PPG em Promoção da Saúde, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS, Brazil. daniel
| | | | | | | |
Collapse
|
18
|
Gushima M, Hirahashi M, Matsumoto T, Fujita K, Ohuchida K, Oda Y, Yao T, Iida M, Tsuneyoshi M. Expression of activation-induced cytidine deaminase in ulcerative colitis-associated carcinogenesis. Histopathology 2012; 59:460-9. [PMID: 22034886 DOI: 10.1111/j.1365-2559.2011.03965.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Activation-induced cytidine deaminase (AID) is a DNA/RNA-editing enzyme that is essential for hypermutation and class-switch recombination in immunoglobulin genes. The aim of this study was to investigate the expression of AID and its association with p53 mutation in ulcerative colitis (UC)-associated carcinogenesis. METHODS AND RESULTS The expression of AID was examined in 25 patients with UC-associated neoplasia, 20 UC patients without neoplasia, 18 patients with non-inflamed colorectal mucosa unaffected by UC, and 19 patients with sporadic colorectal cancer, by immunohistochemistry and quantitative reverse transcription polymerase chain reaction analysis. Mutational analysis and immunohistochemistry for p53 were also performed. The degree of AID expression was not different between UC-associated neoplasia and sporadic colorectal cancer. However, AID was expressed in both UC-associated neoplasia and UC without neoplasia. Whereas AID expression in UC-associated neoplasia was not correlated with the grade of dysplasia, expression in non-neoplastic mucosa of UC was correlated with the histological grade of inflammation. In UC-associated neoplasia, there was no significant correlation between AID expression and p53 mutation. CONCLUSIONS AID is associated with inflammation in UC, whereas it may not specifically contribute to carcinogenesis in UC.
Collapse
Affiliation(s)
- Masaki Gushima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ock CY, Kim EH, Choi DJ, Lee HJ, Hahm KB, Chung MH. 8-Hydroxydeoxyguanosine: Not mere biomarker for oxidative stress, but remedy for oxidative stress-implicated gastrointestinal diseases. World J Gastroenterol 2012; 18:302-8. [PMID: 22294836 PMCID: PMC3261525 DOI: 10.3748/wjg.v18.i4.302] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/26/2011] [Accepted: 09/02/2011] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) attack guanine bases in DNA easily and form 8-hydroxydeoxyguanosine (8-OHdG), which can bind to thymidine rather than cytosine, based on which, the level of 8-OHdG is generally regarded as a biomarker of mutagenesis consequent to oxidative stress. For example, higher levels of 8-OHdG are noted in Helicobacter pylori-associated chronic atrophic gastritis as well as gastric cancer. However, we have found that exogenous 8-OHdG can paradoxically reduce ROS production, attenuate the nuclear factor-κB signaling pathway, and ameliorate the expression of proinflammatory mediators such as interleukin (IL)-1, IL-6, cyclo-oxygenase-2, and inducible nitric oxide synthase in addition to expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX)-1, NOX organizer-1 and NOX activator-1 in various conditions of inflammation-based gastrointestinal (GI) diseases including gastritis, inflammatory bowel disease, pancreatitis, and even colitis-associated carcinogenesis. Our recent finding that exogenous 8-OHdG was very effective in either inflammation-based or oxidative-stress-associated diseases of stress-related mucosal damage has inspired the hope that synthetic 8-OHdG can be a potential candidate for the treatment of inflammation-based GI diseases, as well as the prevention of inflammation-associated GI cancer. In this editorial review, the novel fact that exogenous 8-OHdG can be a functional molecule regulating oxidative-stress-induced gastritis through either antagonizing Rac-guanosine triphosphate binding or blocking the signals responsible for gastric inflammatory cascade is introduced.
Collapse
|
20
|
Abstract
Oxidatively damaged DNA is implicated in various diseases, including neurodegenerative disorders, cancer, diabetes, cardiovascular and inflammatory diseases as well as aging. Several methods have been developed to detect oxidatively damaged DNA. They include chromatographic techniques, the Comet assay, (32)P-postlabelling and immunochemical methods that use antibodies to detect oxidized lesions. In this review, we discuss the detection of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG), the most abundant oxidized nucleoside. This lesion is frequently used as a marker of exposure to oxidants, including environmental pollutants, as well as a potential marker of disease progression. We concentrate on studies published between the years 2000 and 2011 that used enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry to detect 8-oxodG in humans, laboratory animals and in cell lines. Oxidative damage observed in these organisms resulted from disease, exposure to environmental pollutants or from in vitro treatment with various chemical and physical factors.
Collapse
Affiliation(s)
- Pavel Rossner
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague, Czech Republic.
| | | |
Collapse
|
21
|
Thorsteinsdottir S, Gudjonsson T, Nielsen OH, Vainer B, Seidelin JB. Pathogenesis and biomarkers of carcinogenesis in ulcerative colitis. Nat Rev Gastroenterol Hepatol 2011; 8:395-404. [PMID: 21647200 DOI: 10.1038/nrgastro.2011.96] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the most serious complications of ulcerative colitis is the development of colorectal cancer. Screening patients with ulcerative colitis by standard histological examination of random intestinal biopsy samples might be inefficient as a method of cancer surveillance. This Review focuses on the current understanding of the pathogenesis of ulcerative colitis-associated colorectal cancer and how this knowledge can be transferred into patient management to assist clinicians and pathologists in identifying patients with ulcerative colitis who have an increased risk of colorectal cancer. Inflammation-driven mechanisms of DNA damage, including the generation and effects of reactive oxygen species, microsatellite instability, telomere shortening and chromosomal instability, are reviewed, as are the molecular responses to genomic stress. We also discuss how these mechanisms can be translated into usable biomarkers. Although progress has been made in the understanding of inflammation-driven carcinogenesis, markers based on these findings possess insufficient sensitivity or specificity to be usable as reliable biomarkers for risk of colorectal cancer development in patients with ulcerative colitis. However, screening for mutations in p53 could be relevant in the surveillance of patients with ulcerative colitis. Several other new biomarkers, including senescence markers and α-methylacyl-CoA-racemase, might be future candidates for preneoplastic markers in ulcerative colitis.
Collapse
Affiliation(s)
- Sigrun Thorsteinsdottir
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 75 Herlev Ringvej, DK-2730 Herlev, Denmark
| | | | | | | | | |
Collapse
|
22
|
Oka S, Nakabeppu Y. DNA glycosylase encoded by MUTYH functions as a molecular switch for programmed cell death under oxidative stress to suppress tumorigenesis. Cancer Sci 2011; 102:677-82. [PMID: 21235684 DOI: 10.1111/j.1349-7006.2011.01869.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
8-oxoguanine is a major base lesion in DNA or in nucleotides caused by oxidative stress, and is highly mutagenic because it can pair with adenine as well as cytosine. Adenine DNA glycosylase, encoded by the human mutY homolog gene, MUTYH, excises adenine in the nascent strand when inserted opposite 8-oxoguanine in template DNA, and thus suppresses mutagenesis caused by 8-oxoguanine that has accumulated in DNA due to oxidative stress. Several germ-line mutations in MUTYH are predisposed to MUTYH-associated polyposis, an autosomal recessive disorder characterized by multiple colorectal adenomas and carcinomas. Loss of function of MUTYH leads to an accumulation of somatic mutations in APC and KRAS genes, resulting in the development of adenomas/carcinomas. We recently demonstrated that accumulation of 8-oxoguanine in nuclear and mitochondrial DNA triggers two distinct cell death pathways that are independent of each other. Both pathways are initiated by the accumulation of MUTYH-generated single-strand breaks (SSBs) in nuclear or mitochondrial DNA. Our findings indicate that MUTYH-induced cell death due to oxidative stress results in an efficient elimination of mutagenic cells that have accumulated high levels of 8-oxoguanine in their DNAs. It is most likely that loss of function of MUTYH in stem or progenitor cells in the intestinal epithelium of MUTYH-associated polyposis patients results in escape from programmed cell death; however, accumulated 8-oxoguanine causes various mutations in APC or KRAS genes in these proliferative cells, thereby promoting tumorigenesis. We thus propose that MUTYH suppresses tumorigenesis under conditions of oxidative stress by inducing cell death and by suppressing mutagenesis.
Collapse
Affiliation(s)
- Sugako Oka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
23
|
Tasaki M, Umemura T, Suzuki Y, Hibi D, Inoue T, Okamura T, Ishii Y, Maruyama S, Nohmi T, Nishikawa A. Oxidative DNA damage and reporter gene mutation in the livers of gpt delta rats given non-genotoxic hepatocarcinogens with cytochrome P450-inducible potency. Cancer Sci 2010; 101:2525-30. [PMID: 20735435 PMCID: PMC11159437 DOI: 10.1111/j.1349-7006.2010.01705.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous reports have proposed that reactive oxygen species resulting from induction of cytochrome P450 (CYP) isozymes might be involved in the modes of action of hepatocarcinogens with CYP-inducible potency. In the present study, we investigated 8-hydroxydeoxyguanosine (8-OHdG) levels, in vivo mutagenicity and glutathione S-transferase placental form (GST-P)-positive foci in the livers of gpt delta rats treated with piperonyl butoxide (PBO) or phenobarbital (PhB) for 4 and 13 weeks. Significant elevations in Cyp 1A1 and Cyp 1A2 mRNA levels after PBO treatment, and in Cyp 2B1 mRNA levels after PBO or PhB treatment, appeared together with remarkable hepatomegaly through the experimental period. Time-dependent and statistically significant increases in 8-OHdG levels were observed in the PBO treatment group along with significant increases in proliferating cell nuclear antigen (PCNA)-positive hepatocytes at 4 weeks, while no increase in 8-OHdG levels was found in PhB-treated rats. No changes in mutant frequencies of gpt and red/gam (Spi(-)) genes in liver DNA from PBO- or PhB-treated rats were observed at 4 or 13 weeks. A 13-week exposure to either PBO or PhB did not affect the number and area of GST-P-positive hepatocytes. CYP 1A1 and 1A2 induction may be responsible for elevated levels of 8-OHdG in PBO-treated rats. However, neither GC:TA transversions nor deletion mutations, typically regarded as 8-OHdG-related mutations, were observed in any of the treated rats. We conclude that reactive oxygen species, possibly produced through CYP catalytic pathways, likely induced genomic DNA damage but did not give rise to permanent gene mutation.
Collapse
Affiliation(s)
- Masako Tasaki
- Division of Pathology, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee IK, Kang KA, Lim CM, Kim KC, Kim HS, Kim DH, Kim BJ, Chang WY, Choi JH, Hyun JW. Compound K, a metabolite of ginseng saponin, induces mitochondria-dependent and caspase-dependent apoptosis via the generation of reactive oxygen species in human colon cancer cells. Int J Mol Sci 2010; 11:4916-4931. [PMID: 21614182 PMCID: PMC3100836 DOI: 10.3390/ijms11124916] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to elucidate the cytotoxic mechanism of Compound K, with respect to the involvement of reactive oxygen species (ROS) and the mitochondrial involved apoptosis, in HT-29 human colon cancer cells. Compound K exhibited a concentration of 50% growth inhibition (IC(50)) at 20 μg/mL and cytotoxicity in a time dependent manner. Compound K produced intracellular ROS in a time dependent fashion; however, N-acetylcysteine (NAC) pretreatment resulted in the inhibition of this effect and the recovery of cell viability. Compound K induced a mitochondria-dependent apoptotic pathway via the modulation of Bax and Bcl-2 expressions, resulting in the disruption of the mitochondrial membrane potential (Δψ(m)). Loss of the Δψ(m) was followed by cytochrome c release from the mitochondria, resulting in the activation of caspase-9, -3, and concomitant poly ADP-ribosyl polymerase (PARP) cleavage, which are the indicators of caspase-dependent apoptosis. The apoptotic effect of Compound K, exerted via the activation of c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), was abrogated by specific MAPK inhibitors. This study demonstrated that Compound K-mediated generation of ROS led to apoptosis through the modulation of a mitochondria-dependent apoptotic pathway and MAPK pathway.
Collapse
Affiliation(s)
- In Kyung Lee
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea; E-Mails: (I.K.L.); (B.J.K.)
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Chae Moon Lim
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Ki Cheon Kim
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Hee Sun Kim
- Department of Neuroscience, College of Medicine, Ewha Womans University, Seoul 110-783, Korea; E-Mail:
| | - Dong Hyun Kim
- Department of Microbial Chemistry, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea; E-Mail:
| | - Bum Joon Kim
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea; E-Mails: (I.K.L.); (B.J.K.)
| | - Weon Young Chang
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Jae Hyuck Choi
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| |
Collapse
|
25
|
The Mutyh base excision repair gene influences the inflammatory response in a mouse model of ulcerative colitis. PLoS One 2010; 5:e12070. [PMID: 20706593 PMCID: PMC2919403 DOI: 10.1371/journal.pone.0012070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/11/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh(-/-) mice to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS). The Mutyh(-/-) phenotype was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh(-/-) mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh(-/-) mice. Lymphoid hyperplasia and a significant reduction in Foxp3(+) regulatory T cells were observed only in Mutyh(-/-) mice. CONCLUSIONS The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.
Collapse
|
26
|
Nielsen M, Morreau H, Vasen HFA, Hes FJ. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol 2010; 79:1-16. [PMID: 20663686 DOI: 10.1016/j.critrevonc.2010.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/11/2010] [Accepted: 05/27/2010] [Indexed: 12/13/2022] Open
Abstract
The human mutY homologue (MUTYH) gene is responsible for inheritable polyposis and colorectal cancer. This review discusses the molecular genetic aspects of the MUTYH gene and protein, the clinical impact of mono- and biallelic MUTYH mutations and histological aspects of the MUTYH tumors. Furthermore, the relationship between MUTYH and the mismatch repair genes in colorectal cancer (CRC) families is examined. Finally, the role of other base excision repair genes in polyposis and CRC patients is discussed.
Collapse
Affiliation(s)
- Maartje Nielsen
- Department Clinical Genetics, Leiden University Medical Centre, Albinusdreef, Leiden, The Netherlands.
| | | | | | | |
Collapse
|