1
|
Olteanu GE, Mihai IM, Bojin F, Gavriliuc O, Paunescu V. The natural adaptive evolution of cancer: The metastatic ability of cancer cells. Bosn J Basic Med Sci 2020; 20:303-309. [PMID: 32020846 PMCID: PMC7416172 DOI: 10.17305/bjbms.2019.4565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of cancer to adapt renders it one of the most challenging pathologies of all time. It is the most dreaded pathological entity because of its capacity to metastasize to distant sites in the body, and 90% of all cancer-related deaths recorded to date are attributed to metastasis. Currently, three main theories have been proposed to explain the metastatic pathway of cancer: the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) hypothesis (1), the cancer stem cell hypothesis (2), and the macrophage-cancer cell fusion hybrid hypothesis (3). We propose a new hypothesis, i.e., under the effect of particular biochemical and/or physical stressors, cancer cells can undergo nuclear expulsion with subsequent macrophage engulfment and fusion, with the formation of cancer fusion cells (CFCs). The existence of CFCs, if confirmed, would represent a novel metastatic pathway and a shift in the extant dogma of cancer; consequently, new treatment targets would be available for this adaptive pathology.
Collapse
Affiliation(s)
- Gheorghe-Emilian Olteanu
- Department of Microscopic Morphology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara – OncoGen, Timisoara, Romania
| | - Ioana-Maria Mihai
- Department of Microscopic Morphology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Florina Bojin
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara – OncoGen, Timisoara, Romania
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Oana Gavriliuc
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara – OncoGen, Timisoara, Romania
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Virgil Paunescu
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara – OncoGen, Timisoara, Romania
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
2
|
Gao XL, Wu JS, Cao MX, Gao SY, Cen X, Jiang YP, Wang SS, Tang YJ, Chen QM, Liang XH, Tang Y. Cytokeratin-14 contributes to collective invasion of salivary adenoid cystic carcinoma. PLoS One 2017; 12:e0171341. [PMID: 28152077 PMCID: PMC5289574 DOI: 10.1371/journal.pone.0171341] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023] Open
Abstract
Collective invasion of cells plays a fundamental role in tissue growth, wound healing, immune response and cancer metastasis. This paper aimed to investigate cytokeratin-14 (CK14) expression and analyze its association with collective invasion in the invasive front of salivary adenoid cystic carcinoma (SACC) to uncover the role of collective invasion in SACC. Here, in the clinical data of 121 patients with SACC, the positive expression of CK14 was observed in 35/121(28.93%) of the invasive front of SACC. CK14 expression in the invasive front, local regional recurrence and distant metastasis were independent and significant prognostic factors in SACC patients. Then, we found that in an ex vivo 3D culture assay, CK14 siRNA receded the collective invasion, and in 2D monolayer culture, CK14 overexpression induced a collective SACC cell migration. These data indicated that the presence of characterized CK14+ cells in the invasive front of SACC promoted collective cell invasion of SACC and may be a biomarker of SACC with a worse prognosis.
Collapse
Affiliation(s)
- Xiao-lei Gao
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Jia-shun Wu
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Min-xin Cao
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Shi-yu Gao
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Ya-ping Jiang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Sha-sha Wang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Ya-jie Tang
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, People’s Republic of China
| | - Qian-ming Chen
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Inertial particle dynamics in large artery flows – Implications for modeling arterial embolisms. J Biomech 2017; 52:155-164. [DOI: 10.1016/j.jbiomech.2016.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
4
|
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2016; 11:5-27. [PMID: 28085224 PMCID: PMC5423224 DOI: 10.1002/1878-0261.12019] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities. We propose that targeting master regulators controlling plasticity is needed to hinder tumour dissemination and metastasis.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| |
Collapse
|
5
|
Wang R, Chu GCY, Mrdenovic S, Annamalai AA, Hendifar AE, Nissen NN, Tomlinson JS, Lewis M, Palanisamy N, Tseng HR, Posadas EM, Freeman MR, Pandol SJ, Zhau HE, Chung LWK. Cultured circulating tumor cells and their derived xenografts for personalized oncology. Asian J Urol 2016; 3:240-253. [PMID: 29264192 PMCID: PMC5730836 DOI: 10.1016/j.ajur.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Recent cancer research has demonstrated the existence of circulating tumor cells (CTCs) in cancer patient's blood. Once identified, CTC biomarkers will be invaluable tools for clinical diagnosis, prognosis and treatment. In this review, we propose ex vivo culture as a rational strategy for large scale amplification of the limited numbers of CTCs from a patient sample, to derive enough CTCs for accurate and reproducible characterization of the biophysical, biochemical, gene expressional and behavioral properties of the harvested cells. Because of tumor cell heterogeneity, it is important to amplify all the CTCs in a blood sample for a comprehensive understanding of their role in cancer metastasis. By analyzing critical steps and technical issues in ex vivo CTC culture, we developed a cost-effective and reproducible protocol directly culturing whole peripheral blood mononuclear cells, relying on an assumed survival advantage in CTCs and CTC-like cells over the normal cells to amplify this specified cluster of cancer cells.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gina C Y Chu
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefan Mrdenovic
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alagappan A Annamalai
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew E Hendifar
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicholas N Nissen
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James S Tomlinson
- Department of Surgery, West Los Angeles VA Hospital, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Michael Lewis
- Department of Pathology, West Los Angeles VA Hospital, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | | | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Edwin M Posadas
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Pandol
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Gandalovičová A, Vomastek T, Rosel D, Brábek J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget 2016; 7:25022-49. [PMID: 26872368 PMCID: PMC5041887 DOI: 10.18632/oncotarget.7214] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.
Collapse
Affiliation(s)
- Aneta Gandalovičová
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Tomáš Vomastek
- Institute of Microbiology, Academy of Sciences of The Czech Republic, Videňská, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| |
Collapse
|
7
|
Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity. Mol Aspects Med 2015; 45:3-13. [PMID: 26024970 DOI: 10.1016/j.mam.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor's perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor's inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor's proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies.
Collapse
|
8
|
Bill R, Christofori G. The relevance of EMT in breast cancer metastasis: Correlation or causality? FEBS Lett 2015; 589:1577-87. [DOI: 10.1016/j.febslet.2015.05.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022]
|
9
|
Beck TN, Chikwem AJ, Solanki NR, Golemis EA. Bioinformatic approaches to augment study of epithelial-to-mesenchymal transition in lung cancer. Physiol Genomics 2014; 46:699-724. [PMID: 25096367 PMCID: PMC4187119 DOI: 10.1152/physiolgenomics.00062.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022] Open
Abstract
Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-β (TGFB1), NEDD9/HEF1, β-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals.
Collapse
Affiliation(s)
- Tim N Beck
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Adaeze J Chikwem
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Nehal R Solanki
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
10
|
Kato T, Enomoto A, Watanabe T, Haga H, Ishida S, Kondo Y, Furukawa K, Urano T, Mii S, Weng L, Ishida-Takagishi M, Asai M, Asai N, Kaibuchi K, Murakumo Y, Takahashi M. TRIM27/MRTF-B-dependent integrin β1 expression defines leading cells in cancer cell collectives. Cell Rep 2014; 7:1156-67. [PMID: 24794433 DOI: 10.1016/j.celrep.2014.03.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/23/2014] [Accepted: 03/27/2014] [Indexed: 01/03/2023] Open
Abstract
For collective invasion, cancer cells form cohesive groups comprised of leading cells (LCs) at the forefront and following cells (FCs) at the rear. However, the molecular mechanisms that define LCs and FCs remain elusive. Here, we demonstrated that LCs, but not FCs, upregulated the expression of integrin β1 after the loss of intercellular adhesion. The LC-specific expression of integrin β1 was posttranscriptionally regulated by the TRIM27/MRTF-B complex in response to the loss of intercellular adhesion, thereby regulating the stability and translation of integrin β1 mRNA via microRNA-124 in LCs. Accordingly, depletion of TRIM27 and MRTF-B abrogated the upregulation of integrin β1 in LCs and blocked the invasion of cancer cell groups in vitro and in vivo. Therefore, our findings revealed that the specific function of LCs was defined by intrinsic mechanisms related to the presence of the cell's free surface, providing insights into the regulation of intratumor heterogeneity.
Collapse
Affiliation(s)
- Takuya Kato
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hisashi Haga
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan; Research Center for Cooperative Projects, Graduate School of Medicine, Hokkaido University, N15-W7, Kita-ku, Sapporo 060-8638, Japan
| | - Sumire Ishida
- Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
| | - Yuji Kondo
- Department of Biochemistry II, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1 Izumo, Shimane 693-8501, Japan
| | - Shinji Mii
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Liang Weng
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Maki Ishida-Takagishi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masato Asai
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naoya Asai
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Pathology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Division of Molecular Pathology, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
11
|
Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 2014; 69-70:29-41. [PMID: 24636868 DOI: 10.1016/j.addr.2014.03.001] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022]
Abstract
Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models.
Collapse
|
12
|
Abstract
Metastasis involves the spread of cancer cells from the primary tumor to surrounding tissues and to distant organs and is the primary cause of cancer morbidity and mortality. In order to complete the metastatic cascade, cancer cells must detach from the primary tumor, intravasate into the circulatory and lymphatic systems, evade immune attack, extravasate at distant capillary beds, and invade and proliferate in distant organs. Currently, several hypotheses have been advanced to explain the origin of cancer metastasis. These involve an epithelial mesenchymal transition, an accumulation of mutations in stem cells, a macrophage facilitation process, and a macrophage origin involving either transformation or fusion hybridization with neoplastic cells. Many of the properties of metastatic cancer cells are also seen in normal macrophages. A macrophage origin of metastasis can also explain the long-standing "seed and soil" hypothesis and the absence of metastasis in plant cancers. The view of metastasis as a macrophage metabolic disease can provide novel insight for therapeutic management.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | | |
Collapse
|
13
|
Ghislin S, Obino D, Middendorp S, Boggetto N, Alcaide-Loridan C, Deshayes F. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro. BMC Cancer 2012; 12:455. [PMID: 23039186 PMCID: PMC3495854 DOI: 10.1186/1471-2407-12-455] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022] Open
Abstract
Background Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18) expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. Methods A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. Results We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Conclusion Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration.
Collapse
Affiliation(s)
- Stephanie Ghislin
- Team Regulation des Reponses Immunitaires, Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, F-75205, France
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Most invasive solid tumours display predominantly collective invasion, in which groups of cells invade the peritumoral stroma while maintaining cell-cell contacts. As the concepts and experimental models for functional analysis of collective cancer cell invasion are rapidly developing, we propose a framework for addressing potential mechanisms, experimental strategies and technical challenges to study this process.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, NCMLS, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Abstract
All human cells, including cancer cells, need oxygen and nutrients to survive. A widely used strategy to combat cancer is therefore the starvation of tumor cells by cutting off the blood supply of tumors. Clinical experience indeed shows that tumor progression can be delayed by anti-angiogenic agents. However, emerging evidence indicates that in certain experimental conditions, hypoxia as a result of pruning of the tumor microvasculature can promote tumor invasion and metastasis, although these findings are contextual and debated. Genetic studies in mice unveiled that vascular-targeting strategies that avoid aggravation of tumor hypoxia or even promote tumor oxygenation might prevent such an invasive metastatic switch. In this article, we will discuss the emerging link between hypoxia signaling and the various steps of metastasis.
Collapse
|
16
|
Calbo J, van Montfort E, Proost N, van Drunen E, Beverloo HB, Meuwissen R, Berns A. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 2011; 19:244-56. [PMID: 21316603 DOI: 10.1016/j.ccr.2010.12.021] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/25/2010] [Accepted: 11/17/2010] [Indexed: 01/06/2023]
Abstract
Small cell lung cancer (SCLC) is the lung neoplasia with the poorest prognosis, due to its high metastatic potential and chemoresistance upon relapse. Using the previously described mouse model for SCLC, we found that the tumors are often composed of phenotypically different cells with either a neuroendocrine or a mesenchymal marker profile. These cells had a common origin because they shared specific genomic aberrations. The transition from neuroendocrine to mesenchymal phenotype could be achieved by the ectopic expression of oncogenic Ras(V12). Crosstalk between mesenchymal and neuroendocrine cells strongly influenced their behavior. When engrafted as a mixed population, the mesenchymal cells endowed the neuroendocrine cells with metastatic capacity, illustrating the potential relevance of tumor cell heterogeneity in dictating tumor properties.
Collapse
Affiliation(s)
- Joaquim Calbo
- Division of Molecular Genetics and Center of Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Emerging evidence suggests that many metastatic cancers arise from cells of the myeloid/macrophage lineage regardless of the primary tissue of origin. A myeloid origin of metastatic cancer stands apart from origins involving clonal evolution or epithelial-mesenchymal transitions. Evidence is reviewed demonstrating that numerous human cancers express multiple properties of macrophages including phagocytosis, fusogenicity, and gene/protein expression. It is unlikely that the macrophage properties expressed in metastatic cancers arise from sporadic random mutations in epithelial cells, but rather from damage to an already existing mesenchymal cell, e.g., a myeloid/macrophage-type cell. Such cells would naturally embody the capacity to express the multiple behaviors of metastatic cells. The view of metastasis as a myeloid/macrophage disease will impact future cancer research and anti-metastatic therapies.
Collapse
Affiliation(s)
- Leanne C. Huysentruyt
- Department of Medicine, Hematology and Oncology, University of California, San Francisco, San Francisco, CA USA
| | | |
Collapse
|
18
|
Coghlin C, Murray GI. Current and emerging concepts in tumour metastasis. J Pathol 2010; 222:1-15. [PMID: 20681009 DOI: 10.1002/path.2727] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 04/21/2010] [Indexed: 12/11/2022]
Abstract
Disseminated cancer accounts for most deaths due to malignancy. Despite this, research has focused predominantly on tumour development and progression at the primary site. Recently, attention has shifted towards the field of tumour metastasis. Several new and exciting concepts that have emerged in the past few years may shed light on this complex area. The established canonical theory of tumour metastasis, as a process emerging from a stepwise accumulation of genetic events fuelled by clonal evolution, has been challenged. New evidence suggests that malignant cells can disseminate at a much earlier stage than previously recognized in tumourigenesis. These findings have direct relevance to clinical practice and shed new light on tumour biology. Gene-profiling studies support this theory, suggesting that metastatic ability may be an innate property shared by the bulk of cells present early in a developing tumour mass. There is a growing recognition of the importance of host factors outside the primary site in the development of metastatic disease. The role of the 'pre-metastatic niche' is being defined and with this comes a new understanding of the function of bone marrow-derived progenitor cells in directing the dissemination of malignant cells to distant sites. Current research has highlighted the crucial roles played by non-neoplastic host cells within the tumour microenvironment in regulating metastasis. These new concepts have wide-ranging implications for our overall understanding of tumour metastasis and for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Caroline Coghlin
- Department of Pathology, University of Aberdeen Medical Buildings, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
19
|
Man YG. Tumor cell budding from focally disrupted tumor capsules: a common pathway for all breast cancer subtype derived invasion? J Cancer 2010; 1:32-7. [PMID: 20842222 PMCID: PMC2931347 DOI: 10.7150/jca.1.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human breast cancer represents a group of highly heterogeneous lesions consisting of about 20 morphologically and immnohistochemically distinct subtypes with substantially different prognoses. Our recent studies have suggested that all breast cancer subtypes, however, may share a common pathway, tumor cell budding from focally disrupted tumor capsules, for their invasion. The potential mechanisms and clinical implications of our observations are discussed.
Collapse
Affiliation(s)
- Yan-Gao Man
- Gynecologic and Breast Research Laboratory, Armed Forces Institute of Pathology and American Registry of Pathology, Washington DC, USA, and Jilin University, China
| |
Collapse
|
20
|
Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab (Lond) 2010; 7:7. [PMID: 20181022 PMCID: PMC2845135 DOI: 10.1186/1743-7075-7-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/27/2010] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence indicates that impaired cellular energy metabolism is the defining characteristic of nearly all cancers regardless of cellular or tissue origin. In contrast to normal cells, which derive most of their usable energy from oxidative phosphorylation, most cancer cells become heavily dependent on substrate level phosphorylation to meet energy demands. Evidence is reviewed supporting a general hypothesis that genomic instability and essentially all hallmarks of cancer, including aerobic glycolysis (Warburg effect), can be linked to impaired mitochondrial function and energy metabolism. A view of cancer as primarily a metabolic disease will impact approaches to cancer management and prevention.
Collapse
|