1
|
Marcinak CT, Murtaza M, Wilke LG. Genomic Profiling and Liquid Biopsies for Breast Cancer. Surg Clin North Am 2023; 103:49-61. [DOI: 10.1016/j.suc.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Zahnreich S, Yusifli K, Poplawski A, Eckhard LS, Mirsch J, Hankeln T, Galetzka D, Marron M, Scholz-Kreisel P, Spix C, Schmidberger H. Replication stress drives chromosomal instability in fibroblasts of childhood cancer survivors with second primary neoplasms. DNA Repair (Amst) 2023; 122:103435. [PMID: 36549044 DOI: 10.1016/j.dnarep.2022.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/20/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
New development and optimization of oncologic strategies are steadily increasing the number of long-term cancer survivors being at risk of developing second primary neoplasms (SPNs) as a late consequence of genotoxic cancer therapies with the highest risk among former childhood cancer patients. Since risk factors and predictive biomarkers for therapy-associated SPN remain unknown, we examined the sensitivity to mild replication stress as a driver of genomic instability and carcinogenesis in fibroblasts from 23 long-term survivors of a pediatric first primary neoplasm (FPN), 22 patients with the same FPN and a subsequent SPN, and 22 controls with no neoplasm (NN) using the cytokinesis-block micronucleus (CBMN) assay. Mild replication stress was induced with the DNA-polymerase inhibitor aphidicolin (APH). Fibroblasts from patients with the DNA repair deficiency syndromes Bloom, Seckel, and Fanconi anemia served as positive controls and for validation of the CBMN assay supplemented by analysis of chromosomal aberrations, DNA repair foci (γH2AX/53BP1), and cell cycle regulation. APH treatment resulted in G2/M arrest and underestimation of cytogenetic damage beyond G2, which could be overcome by inhibition of Chk1. Basal micronuclei were significantly increased in DNA repair deficiency syndromes but comparable between NN, FPN, and SPN donors. After APH-induced replication stress, the average yield of micronuclei was significantly elevated in SPN donors compared to FPN (p = 0.013) as well as NN (p = 0.03) donors but substantially lower than for DNA repair deficiency syndromes. Our findings suggest that mild impairment of the response to replication stress induced by genotoxic impacts of DNA-damaging cancer therapies promotes genomic instability in a subset of long-term cancer survivors and may drive the development of an SPN. Our study provides a basis for detailed mechanistic studies as well as predictive bioassays for clinical surveillance, to identify cancer patients at high risk for SPNs at first diagnosis.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Germany.
| | - Kamran Yusifli
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Lukas Stefan Eckhard
- Department of Orthopedic Surgery, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Germany; Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Claudia Spix
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
3
|
Momen M, Kohler NL, Binversie EE, Dentino M, Sample SJ. Heritability and genetic variance estimation of Osteosarcoma (OSA) in Irish Wolfhound, using deep pedigree information. Canine Med Genet 2021; 8:9. [PMID: 34627404 PMCID: PMC8502365 DOI: 10.1186/s40575-021-00109-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
Background Osteosarcoma (OSA) is a devastating disease that is common in the Irish Wolfhound breed. The aim of this study was to use a pedigree-based approach to determine the heritability of OSA in the Irish Wolfhound using data from a large publically available database. Results The pedigree used for this study included 5110 pure-bred Irish Wolfhounds, including 332 dogs diagnosed with OSA and 360 control dogs; dogs were considered controls if they lived over 10 years of age and were not reported to have developed OSA. The estimated heritability of OSA in the Irish Wolfhound was 0.65. Conclusion The results of this study indicate that OSA in the Irish Wolfhound is highly heritable, and support the need for future research investigating associated genetic mutations. Osteosarcoma is a devastating condition that is prevalent in the Irish Wolfhound breed. In this study, our aim was to estimate heritability of osteosarcoma in the Irish Wolfhound breed. We undertook a pedigree-based analysis to estimate heritability of osteosarcoma in the Irish Wolfhound. The pedigree used included 5110 pure-bred Irish Wolfhounds, including 332 dogs diagnosed with osteosarcoma and 360 control dogs. We considered dogs to be controls if they were over 10 years of age and were not reported to have developed osteosarcoma. This study found the heritability estimate of osteosarcoma in the Irish Wolfhound to be 0.65. This score means that osteosarcoma in this breed is: 1) highly heritable and 2) a complex trait, which means that both environmental and genetic factors influence disease risk. Overall, our results provide support for further investigation into the genetic variants involved in the development of osteosarcoma in Irish Wolfhounds.
Collapse
Affiliation(s)
- Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Nyah L Kohler
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | | | - Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Recio A. Tumour growth activation by the central nervous system-An integrative theory of cancer. Stress Health 2019; 35:569-581. [PMID: 31397066 DOI: 10.1002/smi.2890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 01/11/2023]
Abstract
The currently recognized mechanisms of the biology of cancer are not yet enough to explain the high incidence of the disease in industrialized countries. Survival and proliferation of cancer cells demand a well-orchestrated combination of functional capabilities, or hallmarks, which requires complex signalling networks that often exceed the tumour boundaries. Based on latest research on environmental health and aiming to provide cancer with a coherent set of organizing principles, we propose an integrative model of carcinogenesis founded on tumour growth activation by the central nervous system as an adaptive, allostatic response to both environmental and emotional challenges. In this way, chronicity of physical as well as psychological stressors may be directly involved in cancer genesis and progression, after an early inflammatory stage. The model also contemplates accidental activation of the tumour growth programme following direct DNA damage, but as a rare event that does not account for most cancers in humans. Bodily and cellular mechanisms designed to facilitate tumorigenesis may include exacerbation of the sympathetic activity, overexpression of membrane ion channels, promotion of selected mutations and methylations, degradation of the mitochondria and reprogramming of adult stem cells.
Collapse
Affiliation(s)
- Alberto Recio
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Holly JMP, Biernacka K, Perks CM. Systemic Metabolism, Its Regulators, and Cancer: Past Mistakes and Future Potential. Front Endocrinol (Lausanne) 2019; 10:65. [PMID: 30809194 PMCID: PMC6380210 DOI: 10.3389/fendo.2019.00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
There has been a resurgence of interest in cancer metabolism; primarily in the resetting of metabolism within malignant cells. Metabolism within cells has always been a tightly regulated process; initially in protozoans due to metabolic enzymes, and the intracellular signaling pathways that regulate these, being directly sensitive to the availability of nutrients. With the evolution of metazoans many of these controls had been overlaid by extra-cellular regulators that ensured coordinated regulation of metabolism within the community of cells that comprised the organism. Central to these systemic regulators is the insulin/insulin-like growth factor (IGF) system that throughout evolution has integrated the control of tissue growth with metabolic status. Oncological interest in the main systemic metabolic regulators greatly subsided when pharmaceutical strategies designed to treat cancers failed in the clinic. During the same period, however the explosion of new information from genetics has revealed the complexity and heterogeneity of advanced cancers and helped explain the problems of managing cancer when it reaches such a stage. Evidence has also accumulated implying that the setting of the internal environment determines whether cancers progress to advanced disease and metabolic status is clearly an important component of this local ecology. We are in the midst of an epidemic of metabolic disorders and there is considerable research into strategies for controlling metabolism. Integrating these new streams of information suggests new possibilities for cancer prevention; both primary and secondary.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, University of Bristol, Southmead Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
6
|
Riesco-Eizaguirre G, Santisteban P. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome. Eur J Endocrinol 2016; 175:R203-17. [PMID: 27666535 DOI: 10.1530/eje-16-0202] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy giving rise to one of the most indolent solid cancers, but also one of the most lethal. In recent years, systematic studies of the cancer genome, most importantly those derived from The Cancer Genome Altas (TCGA), have catalogued aberrations in the DNA, chromatin, and RNA of the genomes of thousands of tumors relative to matched normal cellular genomes and have analyzed their epigenetic and protein consequences. Cancer genomics is therefore providing new information on cancer development and behavior, as well as new insights into genetic alterations and molecular pathways. From this genomic perspective, we will review the main advances concerning some essential aspects of the molecular pathogenesis of thyroid cancer such as mutational mechanisms, new cancer genes implicated in tumor initiation and progression, the role of non-coding RNA, and the advent of new susceptibility genes in thyroid cancer predisposition. This look across these genomic and cellular alterations results in the reshaping of the multistep development of thyroid tumors and offers new tools and opportunities for further research and clinical development of novel treatment strategies.
Collapse
Affiliation(s)
- Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols" Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain Servicio de EndocrinologíaHospital Universitario de Móstoles, Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols" Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
| |
Collapse
|
7
|
Sie AS, Prins JB, van Zelst-Stams WAG, Veltman JA, Feenstra I, Hoogerbrugge N. Patient experiences with gene panels based on exome sequencing in clinical diagnostics: high acceptance and low distress. Clin Genet 2014; 87:319-26. [PMID: 24863757 DOI: 10.1111/cge.12433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/08/2014] [Accepted: 05/20/2014] [Indexed: 01/14/2023]
Abstract
The Radboud University Medical Center was among the first to implement two-step exome sequencing in clinical genetic diagnostics. This study is the first to evaluate patient experiences with gene panels based on exome sequencing, using quantified psychological variables: acceptance, psychological distress, expectations of heredity and unsolicited findings. Between August 2011 and July 2012, 177 patients diagnosed with early-onset colorectal/kidney cancer, deafness, blindness or movement disorder consented to diagnostic exome sequencing offered by clinical geneticists. Baseline questionnaires were sent to 141 adults, returned by 111 with median age of 49 [22-79] years and positive family history in 81%. Follow-up included 91 responders at median 4 [2-22] weeks after results from known gene panels per diagnosis group; exome-wide analysis is ongoing. Confirmed or possibly pathogenic mutations were found in 31% with one unsolicited finding (oncogenetic panel). Most patients (92%) were satisfied. There were no significant changes in heredity-specific distress (18% at baseline, 17% at follow-up) and expectations of heredity. Fewer patients expected unsolicited findings at follow-up (29% vs 18%, p = 0.01). Satisfaction and distress were equal in those with vs without mutations. In conclusion, most adults accepted and were satisfied with gene panels based on diagnostic exome sequencing, few reporting distress.
Collapse
Affiliation(s)
- A S Sie
- Department of Human Genetics
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Systematic studies of the cancer genome have exploded in recent years. These studies have revealed scores of new cancer genes, including many in processes not previously known to be causal targets in cancer. The genes affect cell signaling, chromatin, and epigenomic regulation; RNA splicing; protein homeostasis; metabolism; and lineage maturation. Still, cancer genomics is in its infancy. Much work remains to complete the mutational catalog in primary tumors and across the natural history of cancer, to connect recurrent genomic alterations to altered pathways and acquired cellular vulnerabilities, and to use this information to guide the development and application of therapies.
Collapse
Affiliation(s)
- Levi A Garraway
- Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
9
|
White MC, Peipins LA, Watson M, Trivers KF, Holman DM, Rodriguez JL. Cancer prevention for the next generation. J Adolesc Health 2013; 52:S1-7. [PMID: 23601606 PMCID: PMC4402978 DOI: 10.1016/j.jadohealth.2013.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/15/2022]
Abstract
Given the continued growth in the number of persons with cancer in the United States, the primary prevention of cancer remains an urgent public health priority. As the field of cancer prevention continues to mature and scientific knowledge evolves, it is imperative to challenge the status quo and embrace new approaches to cancer prevention. In this commentary, we summarize recent trends and some of the scientific advances that have been made over the past few decades regarding the complex process of cancer development and the interaction of individual and social risk factors. We examine some of the assumptions and terminology that have characterized cancer prevention approaches for more than a quarter century and the impact of these assumptions and our use of terminology. We propose that it is possible for today's youth to experience lower cancer incidence rates as adults compared with previous generations. To accomplish this goal, a more transdisciplinary and multifaceted approach is needed, adapted as appropriate for different populations and stages of life. The greatest improvements in cancer prevention may occur as a result of innovative, multilevel interventions that build on the expanding scientific evidence base.
Collapse
Affiliation(s)
- Mary C White
- Division of Cancer Prevention and Control, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia 3034, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Meunier C, Van Der Kraak L, Turbide C, Groulx N, Labouba I, Cingolani P, Blanchette M, Yeretssian G, Mes-Masson AM, Saleh M, Beauchemin N, Gros P. Positional mapping and candidate gene analysis of the mouse Ccs3 locus that regulates differential susceptibility to carcinogen-induced colorectal cancer. PLoS One 2013; 8:e58733. [PMID: 23516545 PMCID: PMC3597735 DOI: 10.1371/journal.pone.0058733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/05/2013] [Indexed: 02/06/2023] Open
Abstract
The Ccs3 locus on mouse chromosome 3 regulates differential susceptibility of A/J (A, susceptible) and C57BL/6J (B6, resistant) mouse strains to chemically-induced colorectal cancer (CRC). Here, we report the high-resolution positional mapping of the gene underlying the Ccs3 effect. Using phenotype/genotype correlation in a series of 33 AcB/BcA recombinant congenic mouse strains, as well as in groups of backcross populations bearing unique recombinant chromosomes for the interval, and in subcongenic strains, we have delineated the maximum size of the Ccs3 physical interval to a ∼2.15 Mb segment. This interval contains 12 annotated transcripts. Sequencing of positional candidates in A and B6 identified many either low-priority coding changes or non-protein coding variants. We found a unique copy number variant (CNV) in intron 15 of the Nfkb1 gene. The CNV consists of two copies of a 54 bp sequence immediately adjacent to the exon 15 splice site, while only one copy is found in CRC-susceptible A. The Nfkb1 protein (p105/p50) expression is much reduced in A tumors compared to normal A colonic epithelium as analyzed by immunohistochemistry. Studies in primary macrophages from A and B6 mice demonstrate a marked differential activation of the NfκB pathway by lipopolysaccharide (kinetics of stimulation and maximum levels of phosphorylated IκBα), with a more robust activation being associated with resistance to CRC. NfκB has been previously implicated in regulating homeostasis and inflammatory response in the intestinal mucosa. The interval contains another positional candidate Slc39a8 that is differentially expressed in A vs B6 colons, and that has recently been associated in CRC tumor aggressiveness in humans.
Collapse
Affiliation(s)
- Charles Meunier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Claire Turbide
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Normand Groulx
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Ingrid Labouba
- Centre de recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - Pablo Cingolani
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Garabet Yeretssian
- McGill Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - Maya Saleh
- McGill Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Nicole Beauchemin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- McGill Complex Traits Group, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
11
|
Rinella ES, Shao Y, Yackowski L, Pramanik S, Oratz R, Schnabel F, Guha S, LeDuc C, Campbell CL, Klugman SD, Terry MB, Senie RT, Andrulis IL, Daly M, John EM, Roses D, Chung WK, Ostrer H. Genetic variants associated with breast cancer risk for Ashkenazi Jewish women with strong family histories but no identifiable BRCA1/2 mutation. Hum Genet 2013; 132:523-36. [PMID: 23354978 DOI: 10.1007/s00439-013-1269-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/13/2013] [Indexed: 01/26/2023]
Abstract
The ability to establish genetic risk models is critical for early identification and optimal treatment of breast cancer. For such a model to gain clinical utility, more variants must be identified beyond those discovered in previous genome-wide association studies (GWAS). This is especially true for women at high risk because of family history, but without BRCA1/2 mutations. This study incorporates three datasets in a GWAS analysis of women with Ashkenazi Jewish (AJ) homogeneous ancestry. Two independent discovery cohorts comprised 239 and 238 AJ women with invasive breast cancer or preinvasive ductal carcinoma in situ and strong family histories of breast cancer, but lacking the three BRCA1/2 founder mutations, along with 294 and 230 AJ controls, respectively. An independent, third cohort of 203 AJ cases with familial breast cancer history and 263 healthy controls of AJ women was used for validation. A total of 19 SNPs were identified as associated with familial breast cancer risk in AJ women. Among these SNPs, 13 were identified from a panel of 109 discovery SNPs, including an FGFR2 haplotype. In addition, six previously identified breast cancer GWAS SNPs were confirmed in this population. Seven of the 19 markers were significant in a multivariate predictive model of familial breast cancer in AJ women, three novel SNPs [rs17663555(5q13.2), rs566164(6q21), and rs11075884(16q22.2)], the FGFR2 haplotype, and three previously published SNPs [rs13387042(2q35), rs2046210(ESR1), and rs3112612(TOX3)], yielding moderate predictive power with an area under the curve (AUC) of the ROC (receiver-operator characteristic curve) of 0.74. Population-specific genetic variants in addition to variants shared with populations of European ancestry may improve breast cancer risk prediction among AJ women from high-risk families without founder BRCA1/2 mutations.
Collapse
Affiliation(s)
- Erica S Rinella
- Department of Surgery, New York University Langone Medical Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hereditary Tumours. BIOMED RESEARCH INTERNATIONAL 2013; 2013:490357. [PMID: 23762848 PMCID: PMC3666356 DOI: 10.1155/2013/490357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
|
13
|
Carter AJR, Nguyen AQ. Antagonistic pleiotropy as a widespread mechanism for the maintenance of polymorphic disease alleles. BMC MEDICAL GENETICS 2011; 12:160. [PMID: 22151998 PMCID: PMC3254080 DOI: 10.1186/1471-2350-12-160] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 12/12/2011] [Indexed: 11/12/2022]
Abstract
BACKGROUND Many serious diseases have a genetic basis which, from an evolutionary point of view, should have been selected against, resulting in very low frequencies. The remarkable sustained prevalence of a number of disease-associated alleles is therefore surprising. We believe that antagonistic pleiotropy, when multiple effects of a gene have opposing effects on fitness (e.g., sickle cell disease), may be more widespread than typically considered. We hypothesize that, rather than being an exception to the rule of genetic disorders, antagonistic pleiotropy may be common. METHODS We surveyed the medical literature in order to determine whether sufficient evidence exists to reassess the nature of antagonistic pleiotropy; from being considered an unusual scenario to one that is anticipated. We also used a simple population genetic model to examine the feasibility of antagonistic pleiotropy to act as a mechanism to maintain polymorphism for serious genetic disorders even if the benefits are subtle. RESULTS We identified a number of examples of antagonistic pleiotropy where the deleterious effect, the beneficial effect, and the exact molecular cause have been demonstrated. We also identified putative cases in which there is circumstantial evidence or a strong reason to expect antagonistic pleiotropy in a genetic disorder. The population genetic model demonstrates that alleles with severe deleterious health effects can be maintained at medically relevant frequencies with only minor beneficial pleiotropic effects. CONCLUSION We believe that our identification of several cases of antagonistic pleiotropy, despite the lack of research on this question and the varied natures of the types of these disorders, speaks to both the underappreciated nature of this phenomenon and its potentially fundamental importance. If antagonistic pleiotropy is as common as our research suggests, this may explain why so many serious diseases, even apparently environmentally caused ones, have a genetic component. Furthermore, acceptance of a genome full of antagonistically pleiotropic genetic interactions poses important implications for clinical treatment and disease prevention research, especially genetically based therapies.
Collapse
Affiliation(s)
- Ashley JR Carter
- Biology Department, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| | - Andrew Q Nguyen
- Biology Department, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review describes recent advances in technologies for massive parallel sequencing of human genomes and discusses their application to the analysis of cancer genomes. RECENT FINDINGS Several different instruments are now available for next-generation sequencing (NGS). Although they use different sample preparation and sequencing technologies, they all rely on large computing capacity for assembling sequences and identifying somatic mutations against the background of genetic variations. Recent examples of NGS application to cancer genomes include the sequencing of 22 cases of glioblastoma multiforme that identified IDH1, the gene encoding isocitrate dehydrogenase 1, as target for cancer-driving mutations. Analysis of entire genomes of single samples of lung cancer and melanoma has brought unprecedented details on how tobacco carcinogens and UV exposure, respectively, may sculpt specific mutation landscapes. In breast cancer, comparative genome sequencing of primary and secondary lesions of a single patient has revealed clues on the phylogeny of tumor cells. SUMMARY NGS is opening a new era for understanding how environmental factors alter the human genome to generate cancerous cells, paving the way to a better understanding of the origins of human cancer.
Collapse
|
15
|
Addendum. J Pathol 2011. [DOI: 10.1002/path.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Hindorff LA, Gillanders EM, Manolio TA. Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis 2011; 32:945-54. [PMID: 21459759 DOI: 10.1093/carcin/bgr056] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies have broadened our understanding of the genetic architecture of cancer to include common variants, in addition to the rare variants previously identified by linkage analysis. We review current knowledge on the genetic architecture of four cancers--breast, lung, prostate and colorectal--for which the balance of common and rare alleles identified ranges from fewer common alleles (lung cancer) to more common alleles (prostate cancer). Although most variants are cancer specific, pleiotropy has been observed for several variants, for example, variants at the 8q24 locus and breast, ovarian and prostate cancers or variants in KITLG in relation to hair color and testicular cancer. Although few studies have been adequately powered to investigate heterogeneity among ancestry groups, effect sizes associated with common variants have been reported to be fairly homogenous among ethnic groups. Some associations appear to be ancestry specific, such as HNF1B, which is associated with prostate cancer in European Americans and Latinos but not in African-Americans. Studies of cancer and other complex diseases suggest that a simple dichotomy between rare and common allelic architectures may be too simplistic and that future research is needed to characterize a fuller spectrum of allele frequency (common (>5%), uncommon (1-5%) and rare (<<1%) alleles) and effect size. In addition, a broadening of the concept of genetic architecture to encompass both population architecture, which reflects differences in exposures, genetic factors and population level risk among diverse groups of people, and genomic architecture, which includes structural, epigenomic and somatic variation, is envisioned.
Collapse
Affiliation(s)
- Lucia A Hindorff
- Office of Population Genomics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9307, USA.
| | | | | |
Collapse
|
17
|
Abstract
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the 'genes that make us human' also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
18
|
Wei S, Niu J, Zhao H, Liu Z, Wang LE, Han Y, Chen WV, Amos CI, Rafnar T, Sulem P, Stefansson K, Landi MT, Caporaso NE, Albanes D, Thun MJ, McKay JD, Brennan P, Wang Y, Houlston RS, Spitz MR, Wei Q. Association of a novel functional promoter variant (rs2075533 C>T) in the apoptosis gene TNFSF8 with risk of lung cancer--a finding from Texas lung cancer genome-wide association study. Carcinogenesis 2011; 32:507-15. [PMID: 21292647 DOI: 10.1093/carcin/bgr014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Published genome-wide association studies (GWASs) have identified few variants in the known biological pathways involved in lung cancer etiology. To mine the possibly hidden causal single nucleotide polymorphisms (SNPs), we explored all SNPs in the extrinsic apoptosis pathway from our published GWAS dataset for 1154 lung cancer cases and 1137 cancer-free controls. In an initial association analysis of 611 tagSNPs in 41 apoptosis-related genes, we identified only 10 tagSNPs associated with lung cancer risk with a P value<10(-2), including four tagSNPs in DAPK1 and three tagSNPs in TNFSF8. Unlike DAPK1 SNPs, TNFSF8 rs2181033 tagged other four predicted functional but untyped SNPs (rs776576, rs776577, rs31813148 and rs2075533) in the promoter region. Therefore, we further tested binding affinity of these four SNPs by performing the electrophoretic mobility shift assay. We found that only rs2075533T allele modified levels of nuclear proteins bound to DNA, leading to significantly decreased expression of luciferase reporter constructs by 5- to -10-fold in H1299, HeLa and HCT116 cell lines compared with the C allele. We also performed a replication study of the untyped rs2075533 in an independent Texas population but did not confirm the protective effect. We further performed a mini meta-analysis for SNPs of TNFSF8 obtained from other four published lung cancer GWASs with 12 214 cases and 47 721 controls, and we found that only rs3181366 (r2=0.69 with the untyped rs2075533) was associated to lung cancer risk (P=0.008). Our findings suggest a possible role of novel TNFSF8 variants in susceptibility to lung cancer.
Collapse
Affiliation(s)
- Sheng Wei
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bonassi S, El-Zein R, Bolognesi C, Fenech M. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis 2010; 26:93-100. [DOI: 10.1093/mutage/geq075] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
20
|
Fernández-Rozadilla C, de Castro L, Clofent J, Brea-Fernández A, Bessa X, Abulí A, Andreu M, Jover R, Xicola R, Llor X, Castells A, Castellví-Bel S, Carracedo A, Ruiz-Ponte C, for the Gastrointestinal Oncology Group of the Spanish Gastroenterological Association. Single nucleotide polymorphisms in the Wnt and BMP pathways and colorectal cancer risk in a Spanish cohort. PLoS One 2010; 5. [PMID: 20844743 PMCID: PMC2936577 DOI: 10.1371/journal.pone.0012673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/06/2010] [Indexed: 12/27/2022] Open
Abstract
Background Colorectal cancer (CRC) is considered a complex disease, and thus the majority of the genetic susceptibility is thought to lie in the form of low-penetrance variants following a polygenic model of inheritance. Candidate-gene studies have so far been one of the basic approaches taken to identify these susceptibility variants. The consistent involvement of some signaling routes in carcinogenesis provided support for pathway-based studies as a natural strategy to select genes that could potentially harbour new susceptibility loci. Methodology/Principal Findings We selected two main carcinogenesis-related pathways: Wnt and BMP, in order to screen the implicated genes for new risk variants. We then conducted a case-control association study in 933 CRC cases and 969 controls based on coding and regulatory SNPs. We also included rs4444235 and rs9929218, which did not fulfill our selection criteria but belonged to two genes in the BMP pathway and had consistently been linked to CRC in previous studies. Neither allelic, nor genotypic or haplotypic analyses showed any signs of association between the 37 screened variants and CRC risk. Adjustments for sex and age, and stratified analysis between sporadic and control groups did not yield any positive results either. Conclusions/Significance Despite the relevance of both pathways in the pathogenesis of the disease, and the fact that this is indeed the first study that considers these pathways as a candidate-gene selection approach, our study does not present any evidence of the presence of low-penetrance variants for the selected markers in any of the considered genes in our cohort.
Collapse
Affiliation(s)
- Ceres Fernández-Rozadilla
- Galician Public Foundation of Genomic Medicine (FPGMX), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Genomics Medicine Group, Hospital Clínico, Santiago de Compostela, University of Santiago de Compostela, Galicia, Spain
| | - Luisa de Castro
- Gastroenterology Department, Hospital Meixoeiro, Vigo, Galicia, Spain
| | - Juan Clofent
- Gastroenterology Department, Hospital La Fe, Valencia, Spain
| | - Alejandro Brea-Fernández
- Galician Public Foundation of Genomic Medicine (FPGMX), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Genomics Medicine Group, Hospital Clínico, Santiago de Compostela, University of Santiago de Compostela, Galicia, Spain
| | - Xavier Bessa
- Gastroenterology Department, Hospital del Mar, Institut Municipal d'Investigació Médica (IMIM), Pompeu Fabra University, Barcelona, Catalonia, Spain
| | - Anna Abulí
- Gastroenterology Department, Hospital del Mar, Institut Municipal d'Investigació Médica (IMIM), Pompeu Fabra University, Barcelona, Catalonia, Spain
| | - Montserrat Andreu
- Gastroenterology Department, Hospital del Mar, Institut Municipal d'Investigació Médica (IMIM), Pompeu Fabra University, Barcelona, Catalonia, Spain
| | - Rodrigo Jover
- Unidad de Gastroenterología, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rosa Xicola
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Xavier Llor
- Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Antoni Castells
- Department of Gastroenterology, Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain
| | - Sergi Castellví-Bel
- Department of Gastroenterology, Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain
| | - Angel Carracedo
- Galician Public Foundation of Genomic Medicine (FPGMX), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Genomics Medicine Group, Hospital Clínico, Santiago de Compostela, University of Santiago de Compostela, Galicia, Spain
| | - Clara Ruiz-Ponte
- Galician Public Foundation of Genomic Medicine (FPGMX), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Genomics Medicine Group, Hospital Clínico, Santiago de Compostela, University of Santiago de Compostela, Galicia, Spain
- * E-mail:
| | | |
Collapse
|
21
|
Gazdar AF, Boffetta P. A risky business--identifying susceptibility loci for lung cancer. J Natl Cancer Inst 2010; 102:920-3. [PMID: 20548020 DOI: 10.1093/jnci/djq220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
22
|
Identification and Functional Analysis of Regulatory Polymorphisms. Clin Rev Bone Miner Metab 2010. [DOI: 10.1007/s12018-009-9067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Bell DW. Our changing view of the genomic landscape of cancer. J Pathol 2010; 220:231-43. [PMID: 19918804 PMCID: PMC3195356 DOI: 10.1002/path.2645] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/05/2009] [Indexed: 12/24/2022]
Abstract
Sporadic tumours, which account for the majority of all human cancers, arise from the acquisition of somatic, genetic and epigenetic alterations leading to changes in gene sequence, structure, copy number and expression. Within the last decade, the availability of a complete sequence-based map of the human genome, coupled with significant technological advances, has revolutionized the search for somatic alterations in tumour genomes. Recent landmark studies, which resequenced all coding exons within breast, colorectal, brain and pancreatic cancers, have shed new light on the genomic landscape of cancer. Within a given tumour type there are many infrequently mutated genes and a few frequently mutated genes, resulting in incredible genetic heterogeneity. However, when the altered genes are placed into biological processes and biochemical pathways, this complexity is significantly reduced and shared pathways that are affected in significant numbers of tumours can be discerned. The advent of next-generation sequencing technologies has opened up the potential to resequence entire tumour genomes to interrogate protein-encoding genes, non-coding RNA genes, non-genic regions and the mitochondrial genome. During the next decade it is anticipated that the most common forms of human cancer will be systematically surveyed to identify the underlying somatic changes in gene copy number, sequence and expression. The resulting catalogues of somatic alterations will point to candidate cancer genes requiring further validation to determine whether they have a causal role in tumourigenesis. The hope is that this knowledge will fuel improvements in cancer diagnosis, prognosis and therapy, based on the specific molecular alterations that drive individual tumours. In this review, I will provide a historical perspective on the identification of somatic alterations in the pre- and post-genomic eras, with a particular emphasis on recent pioneering studies that have provided unprecedented insights into the genomic landscape of human cancer.
Collapse
Affiliation(s)
- Daphne W Bell
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|