1
|
Kalia P, Nair RR, Yadav SS. Analysis of exportins expression unveils their prognostic significance in colon adenocarcinoma: insights from public databases. Discov Oncol 2025; 16:21. [PMID: 39776001 PMCID: PMC11711428 DOI: 10.1007/s12672-025-01748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Colon cancer remains a significant health burden globally, necessitating deeper investigation. Identification and targeting of prognostic markers can significantly improve the current therapeutic approaches for colon cancer. The differential nuclear transport (import and export) of cellular proteins, plays an important role in tumor progression. Exportins, critical mediators of nuclear export, have emerged as potential players in cancer pathogenesis. However, their precise roles and prognostic significance in colon adenocarcinoma remain elusive. This study was designed to comprehensively analyse the expression and prognostic significance of all seven exportins in Colon Adenocarcinoma (COAD) using the online public database. We used public databases UALCAN, C-Bio portal, Human Protein Atlas (HPA), and DAVID, to investigate exportins in COAD patients. Kaplan-Meier plotter, Gene ontology (GO), TIMER, STRING, and KEGG were used to analyse data and draw conclusions. Our observations showed a significant correlation of exportins expression with clinical parameters, used to predict a patient's prognosis in general, such as advancing tumor stage, overall/relapse-free survival, and immune cell infiltrations. Mutation analysis showed the presence of amplifications, missense mutations in XPO2 and XPO4, and deep deletions in XPO7 genes contributing to disease progression and patients survival. This study highlights the potential use of exportins as novel prognostic biomarkers and therapeutic targets for colon adenocarcinoma progression and management.
Collapse
Affiliation(s)
- Punita Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rohini Ravindran Nair
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Suresh Singh Yadav
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
2
|
Brigant B, Metzinger-Le Meuth V, Boyartchuk V, Ouled-Haddou H, Guerrera IC, Rochette J, Metzinger L. A proteomic study of the downregulation of TRIM37 on chondrocytes: Implications for the MULIBREY syndrome. Bone 2024; 187:117205. [PMID: 39019132 DOI: 10.1016/j.bone.2024.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
MULIBREY nanism which results from autosomal recessive mutations in TRIM37 impacts skeletal development, leading to growth delay with complications in multiple organs. In this study, we employed a combined proteomics and qPCR screening approach to investigate the molecular alterations in the CHON-002 cell line by comparing CHON-002 wild-type (WT) cells to CHON-002 TRIM37 knockdown (KD) cells. Our proteomic analysis demonstrated that TRIM37 depletion predominantly affects the expression of extracellular matrix proteins (ECM). Specifically, nanoLC-MS/MS experiments revealed an upregulation of SPARC, and collagen products (COL1A1, COL3A1, COL5A1) in response to TRIM37 KD. Concurrently, large-scale qPCR assays targeting osteogenesis-related genes corroborated these dysregulations of SPARC at the mRNA level. Gene ontology enrichment analysis highlighted the involvement of dysregulated proteins in ECM organization and TGF-β signaling pathways, indicating a role for TRIM37 in maintaining ECM integrity and regulating chondrocyte proliferation. These findings suggest that TRIM37 deficiency in chondrocytes change ECM protein composition and could impairs long bone growth, contributing to the pathophysiology of MULIBREY nanism.
Collapse
Affiliation(s)
- Benjamin Brigant
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, 80000 Amiens, France; Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Valérie Metzinger-Le Meuth
- INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, University of Sorbonne Paris Nord, 93000 Bobigny, France
| | - Victor Boyartchuk
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Surgery Clinic, St. Olav's Hospital HF, Trondheim, Norway; Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hakim Ouled-Haddou
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, 80000 Amiens, France
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France
| | - Jacques Rochette
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, 80000 Amiens, France
| | - Laurent Metzinger
- HEMATIM UR-UPJV 4666, C.U.R.S, University of Picardie Jules Verne, 80000 Amiens, France.
| |
Collapse
|
3
|
Li G, Li R, Wang W, Sun M, Wang X. DDX27 regulates oral squamous cell carcinoma development through targeting CSE1L. Life Sci 2024; 340:122479. [PMID: 38301874 DOI: 10.1016/j.lfs.2024.122479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
THE HEADINGS AIMS DEAD-box helicase 27 (DDX27), a member of the DEAD-Box nucleic acid helicase family, holds an elusive role in oral squamous cell carcinoma (OSCC). This study aims to unravel the regulatory functions of DDX27 in OSCC and explore its downstream targets. MATERIALS AND METHODS A commercial oral squamous cell carcinoma (OSCC) tissue microarray (TMA) was utilized. We analyzed differentially expressed genes in OSCC through the GEO database. Target gene silencing was achieved using the shRNA-mediated lentivirus method. Coexpedia analysis identified co-expressed genes associated with DDX27. Additionally, a Co-Immunoprecipitation (Co-IP) experiment confirmed the protein interaction between DDX27 and CSE1L. Xenograft tumor models were employed to evaluate DDX27's role in OSCC tumor formation. KEY FINDINGS Elevated DDX27 expression in OSCC correlated with a higher pathological grade. DDX27 knockdown resulted in decreased cell proliferation, increased apoptosis, inhibited cell migration, and induced G2/M phase cell cycle arrest, as well as impaired tumor outgrowth. Coexpedia analysis identified STAU1, NELFCD, and CSE1L as top co-expressed genes. Lentiviral vectors targeting STAU1, NELFCD, and CSE1L revealed that silencing CSE1L significantly impaired cell growth, indicating it as a downstream target of DDX27. Cell rescue experiments demonstrated that increased DDX27 levels ameliorated cell proliferation, attenuated apoptosis, and CSE1L depletion blocked cell development induced by DDX27 overexpression. SIGNIFICANCES This study highlighted DDX27 as a potential therapeutic target for OSCC treatment, shedding light on its crucial role in OSCC development. Targeting DDX27 or its downstream effector, CSE1L, holds promise for innovative OSCC therapies.
Collapse
Affiliation(s)
- Guanghui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Ran Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Weiyan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Minglei Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China.
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
4
|
Liu XY, Wang YH, Wang J, Quan JK, Li XD, Guan KP. The role of CSE1L silencing in the regulation of proliferation and apoptosis via the AMPK/mTOR signaling pathway in chronic myeloid leukemia. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2023; 28:1-9. [PMID: 36652402 DOI: 10.1080/16078454.2022.2161201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Chromosome segregation 1-like (CSE1L) is abundant and strongly expressed in solid tumors. However, the expression and role of CSE1L in chronic myeloid leukemia(CML) remain largely unknown. MATERIALS AND METHODS The relative expression levels of CSE1L in bone marrow granulocytes from patients with primary CML and non-hematologic controls were measured by flow cytometry. Cell counting kit-8 analysis, DNA Content Quantitation Assay, and Annexin V-PE/7-AAD staining were applied to assess the effects of CSE1L knockdown on cell proliferation, cell cycle progression, and apoptosis. RESULTS Elevated expression of CSE1L was detected in bone marrow granulocytes of patients with primary CML. In the CML cell line K562 cells, CSE1L knockdown impaired cell proliferation blocked the cell cycle shift from G0/G1 phase to the S phase, and promoted apoptosis. Knockdown of CSE1L reduced Bcl-2 protein expression and increased Bax protein expression. Meanwhile, knockdown of CSE1L enhanced the expression of phospho-AMPK protein and decreased the expression of phospho-mTOR protein. The expression of total AMPK and mTOR proteins was not affected. In addition, CSE1L expression levels were decreased in imatinib-treated K562 cells. CONCLUSIONS CSE1L plays a pivotal role in K562 cell survival and growth. These functions may be partially dependent on the AMPK/mTOR signaling pathway to achieve. In addition, CSE1L may have had a future impact on the treatment of CML patients.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yong-Hong Wang
- Laboratory Department, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jing Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ji-Kun Quan
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu-Dong Li
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kun-Ping Guan
- Laboratory Department, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
5
|
Herceg S, Janoštiak R. Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma. Folia Biol (Praha) 2023; 69:133-148. [PMID: 38410971 DOI: 10.14712/fb2023069040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the key features of eukaryotic cells is the separation of nuclear and cytoplasmic compartments by a double-layer nuclear envelope. This separation is crucial for timely regulation of gene expression, mRNA biogenesis, cell cycle, and differentiation. Since transcription takes place in the nucleus and the major part of translation in the cytoplasm, proper distribution of biomolecules between these two compartments is ensured by nucleocytoplasmic shuttling proteins - karyopherins. Karyopherins transport biomolecules through nuclear pores bidirectionally in collaboration with Ran GTPases and utilize GTP as the source of energy. Different karyopherins transport different cargo molecules that play important roles in the regulation of cell physiology. In cancer cells, this nucleocytoplasmic transport is significantly dysregulated to support increased demands for the import of cell cycle-promoting biomolecules and export of cell cycle inhibitors and mRNAs. Here, we analysed genomic, transcriptomic and proteomic data from published datasets to comprehensively profile karyopherin genes in hepatocellular carcinoma. We have found out that expression of multiple karyopherin genes is increased in hepatocellular carcinoma in comparison to the normal liver, with importin subunit α-1, exportin 2, importin subunit β-1 and importin 9 being the most over-expressed. More-over, we have found that increased expression of these genes is associated with higher neoplasm grade as well as significantly worse overall survival of liver cancer patients. Taken together, our bioinformatic data-mining analysis provides a comprehensive geno-mic and transcriptomic landscape of karyopherins in hepatocellular carcinoma and identifies potential members that could be targeted in order to develop new treatment regimens.
Collapse
Affiliation(s)
- Samuel Herceg
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Janoštiak
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Wang D, Liufu J, Yang Q, Dai S, Wang J, Xie B. Identification and validation of a novel signature as a diagnostic and prognostic biomarker in colorectal cancer. Biol Direct 2022; 17:29. [PMID: 36319976 PMCID: PMC9628086 DOI: 10.1186/s13062-022-00342-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant neoplasms worldwide. Although marker genes associated with CRC have been identified previously, only a few have fulfilled the therapeutic demand. Therefore, based on differentially expressed genes (DEGs), this study aimed to establish a promising and valuable signature model to diagnose CRC and predict patient's prognosis. METHODS The key genes were screened from DEGs to establish a multiscale embedded gene co-expression network, protein-protein interaction network, and survival analysis. A support vector machine (SVM) diagnostic model was constructed by a supervised classification algorithm. Univariate Cox analysis was performed to construct two prognostic signatures for overall survival and disease-free survival by Kaplan-Meier analysis, respectively. Independent clinical prognostic indicators were identified, followed by univariable and multivariable Cox analysis. GSEA was used to evaluate the gene enrichment analysis and CIBERSORT was used to estimate the immune cell infiltration. Finally, key genes were validated by qPCR and IHC. RESULTS In this study, four key genes (DKC1, FLNA, CSE1L and NSUN5) were screened. The SVM diagnostic model, consisting of 4-gene signature, showed a good performance for the diagnostic (AUC = 0.9956). Meanwhile, the four-gene signature was also used to construct a risk score prognostic model for disease-free survival (DFS) and overall survival (OS), and the results indicated that the prognostic model performed best in predicting the DFS and OS of CRC patients. The risk score was validated as an independent prognostic factor to exhibit the accurate survival prediction for OS according to the independent prognostic value. Furthermore, immune cell infiltration analysis demonstrated that the high-risk group had a higher proportion of macrophages M0, and T cells CD4 memory resting was significantly higher in the low-risk group than in the high-risk group. In addition, functional analysis indicated that WNT and other four cancer-related signaling pathways were the most significantly enriched pathways in the high-risk group. Finally, qRT-PCR and IHC results demonstrated that the high expression of DKC1, CSE1L and NSUN5, and the low expression of FLNA were risk factors of CRC patients with a poor prognosis. CONCLUSION In this study, diagnosis and prognosis models were constructed based on the screened genes of DKC1, FLNA, CSE1L and NSUN5. The four-gene signature exhibited an excellent ability in CRC diagnosis and prognostic prediction. Our study supported and highlighted that the four-gene signature is conducive to better prognostic risk stratification and potential therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Di Wang
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China
| | - Junye Liufu
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China
| | - Qiyuan Yang
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China
| | - Shengqun Dai
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China
| | - Jiaqi Wang
- Department of Gastroenterology, Guangzhou First People's Hospital, 511458, Guangzhou, P.R. China
| | - Biao Xie
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China.
| |
Collapse
|
7
|
Ye M, Chen Y, Liu J, Tian J, Wang X, Fok KL, Shi J, Chen H. Interfering with CSE1L/CAS inhibits tumour growth via C3 in triple-negative breast cancer. Cell Prolif 2022; 55:e13226. [PMID: 35403306 PMCID: PMC9136492 DOI: 10.1111/cpr.13226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Triple‐negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. However, the treatment regimens for TNBC are limited. Chromosome segregation 1‐like (CSE1L), also called cellular apoptosis susceptibility protein (CAS), is highly expressed in breast cancer and plays a crucial role in the progression of various tumours. However, the involvement of CAS in TNBC remains elusive. In this study, we showed that the expression of CAS was higher in TNBC samples than in non‐TNBC samples in the Gene Expression Omnibus database. Knockdown of CAS inhibited MDA‐MB‐231 cell growth, migration and invasion. Further RNA‐seq analysis revealed that complement pathway activity was significantly elevated. Of note, complement component 3 (C3), the key molecule in the complement pathway, was significantly upregulated, and the expression of C3 was negatively correlated with that of CAS in breast cancer. Lower C3 expression was related to poor prognosis. Interestingly, the expression level of C3 was positively correlated with the infiltration of multiple immune cells. Taken together, our findings suggest that CAS participates in the development of TNBC through C3‐mediated immune cell suppression and might constitute a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Mei Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Yufei Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jianni Liu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiawei Tian
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xunda Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
8
|
Salvi A, Young AN, Huntsman AC, Pergande MR, Korkmaz MA, Rathnayake RA, Mize BK, Kinghorn AD, Zhang X, Ratia K, Schirle M, Thomas JR, Brittain SM, Shelton C, Aldrich LN, Cologna SM, Fuchs JR, Burdette JE. PHY34 inhibits autophagy through V-ATPase V0A2 subunit inhibition and CAS/CSE1L nuclear cargo trafficking in high grade serous ovarian cancer. Cell Death Dis 2022; 13:45. [PMID: 35013112 PMCID: PMC8748433 DOI: 10.1038/s41419-021-04495-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.
Collapse
Affiliation(s)
- Amrita Salvi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Alexandria N Young
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Melissa A Korkmaz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Brittney K Mize
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kiira Ratia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jason R Thomas
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Scott M Brittain
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Claude Shelton
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Leslie N Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
9
|
Chen S, Fang Y, Sun L, He R, He B, Zhang S. Long Non-Coding RNA: A Potential Strategy for the Diagnosis and Treatment of Colorectal Cancer. Front Oncol 2021; 11:762752. [PMID: 34778084 PMCID: PMC8578871 DOI: 10.3389/fonc.2021.762752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), being one of the most commonly diagnosed cancers worldwide, endangers human health. Because the pathological mechanism of CRC is not fully understood, there are many challenges in the prevention, diagnosis, and treatment of this disease. Long non-coding RNAs (lncRNAs) have recently drawn great attention for their potential roles in the different stages of CRC formation, invasion, and progression, including regulation of molecular signaling pathways, apoptosis, autophagy, angiogenesis, tumor metabolism, immunological responses, cell cycle, and epithelial-mesenchymal transition (EMT). This review aims to discuss the potential mechanisms of several oncogenic lncRNAs, as well as several suppressor lncRNAs, in CRC occurrence and development to aid in the discovery of new methods for CRC diagnosis, treatment, and prognosis assessment.
Collapse
Affiliation(s)
- Shanshan Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyu Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruonan He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells. J Biol Chem 2021; 297:100803. [PMID: 34022224 PMCID: PMC8209642 DOI: 10.1016/j.jbc.2021.100803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
The transcriptional coactivator with PDZ-binding motif (TAZ) (WWTR1) induces epithelial-mesenchymal transition and enhances drug resistance in multiple cancers. TAZ has been shown to interact with transcription factors in the nucleus, but when phosphorylated, translocates to the cytoplasm and is degraded through proteasomes. Here, we identified a compound TAZ inhibitor 4 (TI-4) that shifted TAZ localization to the cytoplasm independently of its phosphorylation. We used affinity beads to ascertain a putative target of TI-4, chromosomal segregation 1 like (CSE1L), which is known to be involved in the recycling of importin α and as a biomarker of cancer malignancy. We found that TI-4 suppressed TAZ-mediated transcription in a CSE1L-dependent manner. CSE1L overexpression increased nuclear levels of TAZ, whereas CSE1L silencing delayed its nuclear import. We also found via the in vitro coimmunoprecipitation experiments that TI-4 strengthened the interaction between CSE1L and importin α5 and blocked the binding of importin α5 to TAZ. WWTR1 silencing attenuated CSE1L-promoted colony formation, motility, and invasiveness of human lung cancer and glioblastoma cells. Conversely, CSE1L silencing blocked TAZ-promoted colony formation, motility, and invasiveness in human lung cancer and glioblastoma cells. In human cancer tissues, the expression level of CSE1L was found to correlate with nuclear levels of TAZ. These findings support that CSE1L promotes the nuclear accumulation of TAZ and enhances malignancy in cancer cells.
Collapse
|
11
|
Zhou S, Zhang M, Zhou C, Meng Y, Yang H, Ye W. FLVCR1 Predicts Poor Prognosis and Promotes Malignant Phenotype in Esophageal Squamous Cell Carcinoma via Upregulating CSE1L. Front Oncol 2021; 11:660955. [PMID: 33842377 PMCID: PMC8027484 DOI: 10.3389/fonc.2021.660955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 01/19/2023] Open
Abstract
Objective Dysregulation of feline leukemia virus subgroup C receptor 1(FLVCR1) expression has been investigated in several tumors. However, the expression and role of FLVCR1 in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Methods FLVCR1 expression in tissues was measured by immunohistochemical staining (IHC). Celigo assay, MTT assay, colony formation, caspase 3/7 activity analysis, wound healing assay, Transwell migration, and invasion assay were applied to assess the effects of FLVCR1 on ESCC tumorigenesis. Coimmunoprecipitation (Co-IP) and liquid chromatography-mass spectrometry (LC-MS) were used to identify protein interactions with FLVCR1. An in vivo imaging system (IVIS) was used to investigate the functions of FLVCR1 on the growth and metastatic capability of ESCC cells in a xenograft model and a tail vein metastasis model. Results Elevated expression of FLVCR1 was detected in ESCC tissues and predicted poor survival. Upregulated FLVCR1 was positively correlated with lymph node metastasis (N stage) and late tumor-node-metastasis (TNM) stage. FLVCR1 knockdown inhibited cell proliferation and colony formation ability, induced cell apoptosis, and repressed cell migration and invasion of ESCC in vitro. Inhibition of FLVCR1 markedly repressed tumorigenicity and metastasis of ESCC cells in vivo. Mechanistically, chromosome segregation 1–like (CSE1L) was identified to interact with FLVCR1 using a Co-IP assay. Moreover, the inhibitory effect of FLVCR1 knockdown on proliferation and migration was counteracted by the exogenous expression of CSE1L. Conclusion FLVCR1 plays a pivotal role in ESCC cell survival, growth, and migration. These functions may be partially dependent upon the protein interaction between FLVCR1 and CSE1L. In addition, FLVCR1 can be applied as a clinical prognostic marker for patients with ESCC.
Collapse
Affiliation(s)
- Suna Zhou
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Chao Zhou
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
| | - Yinnan Meng
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, China
| | - Wenguang Ye
- Department of Gastroenterology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| |
Collapse
|
12
|
Xu B, Yang N, Liu Y, Kong P, Han M, Li B. Circ_cse1l Inhibits Colorectal Cancer Proliferation by Binding to eIF4A3. Med Sci Monit 2020; 26:e923876. [PMID: 32857753 PMCID: PMC7477927 DOI: 10.12659/msm.923876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) are involved in the growth of many tumors. However, the expression and possible role of circ_cse1l (hsa_circ_0060745) in colorectal cancer (CRC) are unclear. The present study was designed to explore the role of circ_cse1l in CRC. Material/Methods The levels of circ_cse1l expression in cancer tissues and serum samples of 50 patients with CRC and in control subjects were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). CCK-8, colony formation, transwell and wound healing assays were performed to assess the functions of circ_cse1l in CRC cell lines after overexpression. The relationship between circ_cse1l and eIF4A3 during cell proliferation was analyzed by western blotting and RNA-binding protein immunoprecipitation (RIP). Results qRT-PCR assays showed that the levels of expression of circ_cse1l were lower in CRC cell lines and in tissue and serum samples from patients with CRC than in control samples. The expression of circ_cse11 in CRC tissues had clinical significance, as its level of expression was inversely associated with the depth of tumor invasion. Overexpression of circ_cse1l in HT29 and HCT116 cells markedly reduced cell proliferation and metastasis. Western blotting showed that circ_cse1l overexpression dowregulated the expression of PCNA protein. RIP results demonstrated that circ_cse1l inhibited the proliferation of CRC cells by binding to eIF4A3. Conclusions The expression of circ_cse1l is downregulated in CRC. Furthermore, circ_cse1l downregulated PCNA expression by binding to eIF4A3, inhibiting the proliferation of CRC cells.
Collapse
Affiliation(s)
- Bin Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ning Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yabin Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Binghui Li
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
13
|
Ma S, Yang D, Liu Y, Wang Y, Lin T, Li Y, Yang S, Zhang W, Zhang R. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging (Albany NY) 2019; 10:2062-2078. [PMID: 30144787 PMCID: PMC6128424 DOI: 10.18632/aging.101530] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/13/2018] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy in the United States. Chemotherapeutic resistance is a massive obstacle for cancer treatment. The roles and molecular basis of long non-coding RNA BRAF-activated noncoding RNA (BANCR) in CRC progression and adriamycin (ADR) resistance have not been extensively identified. In this study, we found that BANCR and CSE1L expressions were upregulated in CRC tumor tissues. Meanwhile, CSE1L expression was correlated with depth of CRC. BANCR silencing suppressed cell proliferation and invasion capacity, increased apoptotic rate and potentiated cell sensitivity to ADR. CSE1L downregulation triggered a reduction of cell proliferation and invasion ability, and an increase of apoptosis rate and cell sensitivity to ADR. CSE1L overexpression attenuated si-BANCR-mediated anti-proliferation, anti-invasion and pro-apoptosis effects in CRC cells. BANCR acted as a molecular sponge of miR-203 to sequester miR-203 away from CSE1L in CRC cells, resulting in the upregulation of CSE1L expression. CSE1L knockdown inhibited expressions of DNA-repair-related proteins (53BP1 and FEN1) in HCT116 cells. BANCR knockdown also inhibited tumor growth and enhanced ADR sensitivity in CRC mice model. In conclusion, BANCR knockdown suppressed CRC progression and strengthened chemosensitization of CRC cells to ADR possibly by regulating miR-203/CSE1L axis, indicating that BANCR might be a promising target for CRC treatment.
Collapse
Affiliation(s)
- Siping Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Dongxiang Yang
- Department of Orthopedics, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yongpeng Wang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Tao Lin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Yanxi Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Shihua Yang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Wanchuan Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| |
Collapse
|
14
|
Jiang K, Neill K, Cowden D, Klapman J, Eschrich S, Pimiento J, Malafa MP, Coppola D. Expression of CAS/CSE1L, the Cellular Apoptosis Susceptibility Protein, Correlates With Neoplastic Progression in Barrett's Esophagus. Appl Immunohistochem Mol Morphol 2019; 26:552-556. [PMID: 27941559 DOI: 10.1097/pai.0000000000000464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Identifying the molecular switch responsible for the neoplastic progression of Barrett's esophagus (BE) and initiation of adenocarcinoma (ADC) is clinically essential and it will have a profound impact on patient diagnosis, prognosis, and treatment. The cellular apoptosis susceptibility gene CAS/CSE1L is overexpressed in various cancers, including a rare report on esophageal ADC; however, its expression in BE neoplasia has not been addressed. MATERIALS AND METHODS We investigated the expression of the CAS/CSE1L protein immunohistochemically in 56 esophageal resection specimens for ADC arising in BE. For each specimen, a full representative section of the invasive ADC was selected to include, when possible, BE, low-grade dysplasia (LGD) and high-grade dysplasia (HGD). Samples were stained for CAS/CSE1L expression using a rabbit polyclonal antibody recognizing the N-terminus of human CAS/CSE1L. Protein expression levels were measured using the Allred semiquantitative scoring system. The data were evaluated using χ statistical analysis. Gene expression Omnibus was queried for CAS/CSE1L and BE neoplasia. RESULTS We found minimal to absent CAS/CSE1L in all BE tissue samples; however, CAS/CSE1L was upregulated in 60% of LGD and overexpressed in HGD and ADC. The results were statistically significant (P<0.05). The localization of CAS/CSE1L protein was nuclear in BE; it became nuclear and cytoplasmic in LGD and HGD, and predominantly cytoplasmic in ADC. A similar progressive increase was observed for CAS/CSE1L gene expression. CONCLUSION These findings show changes in CAS/CSE1L during BE progression. CAS/CSE1L may represent a potential marker for dysplasia/carcinoma.
Collapse
Affiliation(s)
- Kun Jiang
- Departments of Anatomic Pathology.,Oncological Sciences, University of South Florida, Tampa, FL
| | | | | | - Jason Klapman
- Oncological Sciences, University of South Florida, Tampa, FL.,Gastrointestinal Oncology
| | - Steven Eschrich
- Oncological Sciences, University of South Florida, Tampa, FL.,Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute
| | - José Pimiento
- Oncological Sciences, University of South Florida, Tampa, FL.,Gastrointestinal Oncology
| | - Mokenge P Malafa
- Oncological Sciences, University of South Florida, Tampa, FL.,Gastrointestinal Oncology
| | - Domenico Coppola
- Departments of Pathology and Cell Biology.,Chemical Biology Molecular and Medicine.,Tumor Biology
| |
Collapse
|
15
|
Li Y, Yuan S, Liu J, Wang Y, Zhang Y, Chen X, Si W. CSE1L silence inhibits the growth and metastasis in gastric cancer by repressing GPNMB via positively regulating transcription factor MITF. J Cell Physiol 2019; 235:2071-2079. [PMID: 31347172 DOI: 10.1002/jcp.29107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Human chromosomal segregation 1-like (CSE1L) gene functions as a key molecular mediator in cellular proliferation, invasion, and apoptosis. The association of CSE1L with tumor progression has been reported in diverse human cancers. A greater understanding of CSE1L molecular mechanism is beneficial for cancer treatment. In the current study, we show that CSE1L was highly expressed in gastric cancer (GC) cell lines. CSE1L silence promoted apoptosis and inhibited cell proliferation and invasion. Overexpression of glycoprotein nonmetastatic melanoma protein B (GPNMB) reversed the anticancer effect of CSE1L inhibition. CSE1L inhibition decreased GPNMB by microphthalmia-associated transcription factor (MITF). Moreover, GPNMB regulates the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway. Taken together, our study revealed that CSE1L inhibition decreased MITF and suppressed GPNMB expression, thereby activating the PI3K/Akt/mTOR and MEK/ERK signaling pathway, ultimately inhibiting the tumor growth and metastasis in GC.
Collapse
Affiliation(s)
- Yijun Li
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Shanshan Yuan
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Jiaming Liu
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yu Wang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yanting Zhang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Xiaolu Chen
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Wangli Si
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Liu J, Ye M, Han R, Gui Y, Li X, Zhang H, Wang X, Guo H, Li F, Zhao AZ, Guan K, Chen H. Expression of cellular apoptosis susceptibility (CAS) in the human testis and testicular germ cell tumors. Med Oncol 2019; 36:61. [PMID: 31140031 DOI: 10.1007/s12032-019-1281-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/05/2019] [Indexed: 12/30/2022]
Abstract
Testicular germ cell tumors are the most frequent malignancies found in men between 15 and 44 years old. Although cellular apoptosis susceptibility (CAS) was demonstrated to be upregulated in breast cancer and colon cancer, the expression of CAS in the human testis and testicular germ cell tumors remained elusive. In the present study, CAS-positive signals were detected in the normal testicular tissues, cancer adjacent normal testicular tissues, seminoma, yolk sac tumor, and teratoma. Interestingly, the expression level of CAS in testicular germ cell tumors (TGCTs) (but not seminoma) was significantly lower than that of human testicular tissues and cancer adjacent normal testicular tissues, suggesting that decreased CAS contributed to the progression of TGCTs. Notably, the expression of CAS in seminoma was significantly higher than that of in the non-seminomas, consistent with the results from TCGA database. Furthermore, the localization of CAS is mainly restricted in the nucleus in the lesions of normal human testicular tissue and cancer adjacent normal testicular tissue. Although the expression of CAS was not significantly different between normal testicular tissue and seminoma, CAS was more enriched in cytoplasm in seminoma compared to the normal, cancer adjacent tissue and other types of TGCTs. The current results demonstrated reduced expression of CAS in the human testicular germ cell tumors and the CAS translocation from the nuclear to cytoplasm in seminoma, thereby supporting a possible role in normal testis function and in the development of seminoma.
Collapse
Affiliation(s)
- Jianni Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guandong Province, People's Republic of China.,Second Hospital of ShanXi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Mei Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guandong Province, People's Republic of China
| | - Ruigang Han
- Reproductive Medicine Center of The 306th Hospital of PLA, Beijing, People's Republic of China
| | - Yaoting Gui
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518035, Guangdong Province, People's Republic of China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518035, Guangdong Province, People's Republic of China
| | - Han Zhang
- Second Hospital of ShanXi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xin Wang
- Second Hospital of ShanXi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Haoran Guo
- Second Hospital of ShanXi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guandong Province, People's Republic of China
| | - Allan Zijian Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guandong Province, People's Republic of China
| | - Kunping Guan
- Second Hospital of ShanXi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Hao Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guandong Province, People's Republic of China.
| |
Collapse
|
17
|
Zhang X, Li H, Yu J, Zhou X, Ji C, Wu S, Chen Y, Liu J, Zhao F. Label-free based comparative proteomic analysis of whey proteins between different milk yields of Dezhou donkey. Biochem Biophys Res Commun 2019; 508:237-242. [DOI: 10.1016/j.bbrc.2018.11.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/09/2022]
|
18
|
Liu C, Wei J, Xu K, Sun X, Zhang H, Xiong C. CSE1L participates in regulating cell mitosis in human seminoma. Cell Prolif 2018; 52:e12549. [PMID: 30485574 PMCID: PMC6496685 DOI: 10.1111/cpr.12549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives CSE1L has been reported to be highly expressed in various tumours. Testicular germ cell tumours are common among young males, and seminoma is the major type. However, whether CSE1L has functions in the seminoma is unclear. Materials and methods The expression of CSE1L was detected by immunohistochemistry in seminoma tissues and non‐tumour normal testis tissues from patients. CSE1L distribution during cell mitosis was determined by immunofluorescent staining with CSE1L, α‐tubulin and γ‐tubulin antibodies. The effects of Cse1L knockdown on cell proliferation and cell cycle progression were determined by Cell Counting Kit‐8 assay, flow cytometry, PH3 staining and bromodeoxyuridine incorporation assay. Results CSE1L was significantly enriched in the seminoma tissue compared with the non‐tumour normal testis tissue. CSE1L also co‐localized with α‐tubulin in the cells with a potential to divide. In the seminoma cell line TCam‐2, CSE1L was associated with the spindles and the centrosomes during cell division. The knockdown of CSE1L in TCam‐2 cells attenuated the cells’ proliferative capacity. Cell cycle assay revealed that the CSE1L‐deficient cells were mainly arrested in the G0/G1 phase and moderately delayed in the G2/M phase. The proportion of cells with multipolar spindle and abnormal spindle geometry was obviously increased by CSE1L expression silencing in the TCam‐2 cells. Conclusions Overall, these findings showed that CSE1L plays a pivotal role in maintaining cell proliferation and cell division in seminomas.
Collapse
Affiliation(s)
- Chunyan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Xu
- The First People's Hospital of Tianmen City, Tianmen, China
| | - Xiaosong Sun
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| |
Collapse
|
19
|
Roles of the CSE1L-mediated nuclear import pathway in epigenetic silencing. Proc Natl Acad Sci U S A 2018; 115:E4013-E4022. [PMID: 29636421 DOI: 10.1073/pnas.1800505115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic silencing can be mediated by various mechanisms, and many regulators remain to be identified. Here, we report a genome-wide siRNA screening to identify regulators essential for maintaining gene repression of a CMV promoter silenced by DNA methylation. We identified CSE1L (chromosome segregation 1 like) as an essential factor for the silencing of the reporter gene and many endogenous methylated genes. CSE1L depletion did not cause DNA demethylation. On the other hand, the methylated genes derepressed by CSE1L depletion largely overlapped with methylated genes that were also reactivated by treatment with histone deacetylase inhibitors (HDACi). Gene silencing defects observed upon CSE1L depletion were linked to its nuclear import function for certain protein cargos because depletion of other factors involved in the same nuclear import pathway, including KPNAs and KPNB1 proteins, displayed similar derepression profiles at the genome-wide level. Therefore, CSE1L appears to be critical for the nuclear import of certain key repressive proteins. Indeed, NOVA1, HDAC1, HDAC2, and HDAC8, genes known as silencing factors, became delocalized into cytosol upon CSE1L depletion. This study suggests that the cargo specificity of the protein nuclear import system may impact the selectivity of gene silencing.
Collapse
|
20
|
Liu DS, Hoefnagel SJM, Fisher OM, Krishnadath KK, Montgomery KG, Busuttil RA, Colebatch AJ, Read M, Duong CP, Phillips WA, Clemons NJ. Novel metastatic models of esophageal adenocarcinoma derived from FLO-1 cells highlight the importance of E-cadherin in cancer metastasis. Oncotarget 2018; 7:83342-83358. [PMID: 27863424 PMCID: PMC5347774 DOI: 10.18632/oncotarget.13391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
There is currently a paucity of preclinical models available to study the metastatic process in esophageal cancer. Here we report FLO-1, and its isogenic derivative FLO-1LM, as two spontaneously metastatic cell line models of human esophageal adenocarcinoma. We show that FLO-1 has undergone epithelial-mesenchymal transition and metastasizes following subcutaneous injection in mice. FLO-1LM, derived from a FLO-1 liver metastasis, has markedly enhanced proliferative, clonogenic, anti-apoptotic, invasive, immune-tolerant and metastatic potential. Genome-wide RNAseq profiling revealed a significant enrichment of metastasis-related pathways in FLO-1LM cells. Moreover, CDH1, which encodes the adhesion molecule E-cadherin, was the most significantly downregulated gene in FLO-1LM compared to FLO-1. Consistent with this, repression of E-cadherin expression in FLO-1 cells resulted in increased metastatic activity. Importantly, reduced E-cadherin expression is commonly reported in esophageal adenocarcinoma and independently predicts poor patient survival. Collectively, these findings highlight the biological importance of E-cadherin activity in the pathogenesis of metastatic esophageal adenocarcinoma and validate the utility of FLO-1 parental and FLO-1LM cells as preclinical models of metastasis in this disease.
Collapse
Affiliation(s)
- David S Liu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sanne J M Hoefnagel
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Oliver M Fisher
- Gastroesophageal Cancer Program, St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, 2010, Australia
| | - Kausilia K Krishnadath
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands.,Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Karen G Montgomery
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Rita A Busuttil
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.,The University of Melbourne Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, 3010, Australia
| | - Andrew J Colebatch
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Matthew Read
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Cuong P Duong
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.,University of Melbourne Department of Surgery, St Vincent's Hospital, Fitzroy, Victoria, 3065, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
21
|
Tian C, Sun R, Liu K, Fu L, Liu X, Zhou W, Yang Y, Yang J. Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products. Cell Chem Biol 2017; 24:1416-1427.e5. [PMID: 28988947 DOI: 10.1016/j.chembiol.2017.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/06/2017] [Accepted: 08/30/2017] [Indexed: 02/09/2023]
Abstract
Electrophilic groups, such as Michael acceptors, expoxides, are common motifs in natural products (NPs). Electrophilic NPs can act through covalent modification of cysteinyl thiols on functional proteins, and exhibit potent cytotoxicity and anti-inflammatory/cancer activities. Here we describe a new chemoproteomic strategy, termed multiplexed thiol reactivity profiling (MTRP), and its use in target discovery of electrophilic NPs. We demonstrate the utility of MTRP by identifying cellular targets of gambogic acid, an electrophilic NP that is currently under evaluation in clinical trials as anticancer agent. Moreover, MTRP enables simultaneous comparison of seven structurally diversified α,β-unsaturated γ-lactones, which provides insights into the relative proteomic reactivity and target preference of diverse structural scaffolds coupled to a common electrophilic motif and reveals various potential druggable targets with liganded cysteines. We anticipate that this new method for thiol reactivity profiling in a multiplexed manner will find broad application in redox biology and drug discovery.
Collapse
Affiliation(s)
- Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences - Beijing, Beijing 102206, China
| | - Rui Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences - Beijing, Beijing 102206, China; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Keke Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences - Beijing, Beijing 102206, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences - Beijing, Beijing 102206, China
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanqi Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences - Beijing, Beijing 102206, China.
| |
Collapse
|
22
|
Maamoun H, Zachariah M, McVey JH, Green FR, Agouni A. Heme oxygenase (HO)-1 induction prevents Endoplasmic Reticulum stress-mediated endothelial cell death and impaired angiogenic capacity. Biochem Pharmacol 2016; 127:46-59. [PMID: 28012960 DOI: 10.1016/j.bcp.2016.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Most of diabetic cardiovascular complications are attributed to endothelial dysfunction and impaired angiogenesis. Endoplasmic Reticulum (ER) and oxidative stresses were shown to play a pivotal role in the development of endothelial dysfunction in diabetes. Hemeoxygenase-1 (HO-1) was shown to protect against oxidative stress in diabetes; however, its role in alleviating ER stress-induced endothelial dysfunction remains not fully elucidated. We aim here to test the protective role of HO-1 against high glucose-mediated ER stress and endothelial dysfunction and understand the underlying mechanisms with special emphasis on oxidative stress, inflammation and cell death. Human Umbilical Vein Endothelial Cells (HUVECs) were grown in either physiological or intermittent high concentrations of glucose for 5days in the presence or absence of Cobalt (III) Protoporphyrin IX chloride (CoPP, HO-1 inducer) or 4-Phenyl Butyric Acid (PBA, ER stress inhibitor). Using an integrated cellular and molecular approach, we then assessed ER stress and inflammatory responses, in addition to apoptosis and angiogenic capacity in these cells. Our results show that HO-1 induction prevented high glucose-mediated increase of mRNA and protein expression of key ER stress markers. Cells incubated with high glucose exhibited high levels of oxidative stress, activation of major inflammatory and apoptotic responses [nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK)] and increased rate of apoptosis; however, cells pre-treated with CoPP or PBA were fully protected. In addition, high glucose enhanced caspases 3 and 7 cleavage and activity and augmented cleaved poly ADP ribose polymerase (PARP) expression whereas HO-1 induction prevented these effects. Finally, HO-1 induction and ER stress inhibition prevented high glucose-induced reduction in NO release and impaired the angiogenic capacity of HUVECs, and enhanced vascular endothelial growth factor (VEGF)-A expression. Altogether, we show here the critical role of ER stress-mediated cell death in diabetes-induced endothelial dysfunction and impaired angiogenesis and underscore the role of HO-1 induction as a key therapeutic modulator for ER stress response in ischemic disorders and diabetes. Our results also highlight the complex interplay between ER stress response and oxidative stress.
Collapse
Affiliation(s)
- Hatem Maamoun
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences & Medicine, Guildford GU2 7XH, United Kingdom
| | - Matshediso Zachariah
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences & Medicine, Guildford GU2 7XH, United Kingdom
| | - John H McVey
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences & Medicine, Guildford GU2 7XH, United Kingdom
| | - Fiona R Green
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences & Medicine, Guildford GU2 7XH, United Kingdom
| | - Abdelali Agouni
- Qatar University, College of Pharmacy, Pharmaceutical Sciences Section, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
23
|
Jiang MC. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumour Biol 2016; 37:13077-13090. [PMID: 27596143 DOI: 10.1007/s13277-016-5301-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
CSE1L (chromosome segregation 1-like protein), also named as CAS (cellular apoptosis susceptibility protein), is highly expressed in most cancer types. CSE1L/CAS is a multiple functional protein that plays roles in apoptosis, cell survival, chromosome assembly, nucleocytoplasmic transport, microvesicle formation, and cancer metastasis; some of the functions are explicitly correlated. CSE1L is also a cancer serum biomarker. The phosphorylation of CAS is regulated by the extracellular signal-regulated kinase (ERK). The RAS/RAF/MAPK/ERK signaling pathways are the essential targets of most targeted cancer drugs, thus serum phosphorylated CSE1L may be a potential biomarker for monitoring drug resistance in targeted therapy. CSE1L can regulate Ras-induced ERK phosphorylation. CSE1L also regulates the expression and phosphorylation of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) and is thus involved in the melanogenesis and progression of melanoma. CAS is an exosome/microvesicle membrane protein. Tumor cells consistently secrete microvesicles and tumor-derived microvesicles may be accumulated around tumors. Therefore, microvesicle membrane CSE1L may be a potential target for the development of high-efficacy antibody-drug conjugates (ADCs) for cancer therapy. This review will focus on CSE1L expression in cancers, its relationship to Ras/ERK and cAMP/PKA signaling pathways in melanoma development, its potential for the development of ADCs and tumor imaging reagents, and secretory phosphorylated CSE1L for monitoring the emergence of drug resistance in targeted cancer therapy.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Targetrust Biotech. Ltd., No. 510 Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| |
Collapse
|
24
|
Knockdown of CSE1L Gene in Colorectal Cancer Reduces Tumorigenesis in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2761-8. [PMID: 27521996 DOI: 10.1016/j.ajpath.2016.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 11/21/2022]
Abstract
Human cellular apoptosis susceptibility (chromosomal segregation 1-like, CSE1L) gene plays a role in nuclear-to-cytoplasm transport and chromosome segregation during mitosis, cellular proliferation, and apoptosis. CSE1L is involved in colon carcinogenesis. CSE1L gene expression was assessed with three data sets using Affymetrix U133 + gene chips on normal human colonic mucosa (NR), adenomas (ADs), and colorectal carcinoma (CRC). CSE1L protein expression in CRC, AD, and NR from the same patients was measured by immunohistochemistry using a tissue microarray. We evaluated CSE1L expression in CRC cells (HCT116, SW480, and HT29) and its biological functions. CSE1L mRNA was significantly increased in all AD and CRC compared with NR (P < 0.001 and P = 0.02, respectivly). We observed a change in CSE1L staining intensity and cellular localization by immunohistochemistry. CSE1L was significantly increased during the transition from AD to CRC when compared with NR in a CRC tissue microarray (P = 0.01 and P < 0.001). HCT116, SW480, and HT29 cells also expressed CSE1L protein. CSE1L knockdown by shRNA inhibited protein, resulting in decreased cell proliferation, reduced colony formation in soft agar, and induction of apoptosis. CSE1L protein is expressed early and across all stages of CRC development. shRNA knockdown of CSE1L was associated with inhibition of tumorigenesis in CRC cells. CSE1L may represent a potential target for treatment of CRC.
Collapse
|
25
|
Inhibition of Nuclear Transport of NF-ĸB p65 by the Salmonella Type III Secretion System Effector SpvD. PLoS Pathog 2016; 12:e1005653. [PMID: 27232334 PMCID: PMC4883751 DOI: 10.1371/journal.ppat.1005653] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/02/2016] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica replicates in macrophages through the action of effector proteins translocated across the vacuolar membrane by a type III secretion system (T3SS). Here we show that the SPI-2 T3SS effector SpvD suppresses proinflammatory immune responses. SpvD prevented activation of an NF-ĸB-dependent promoter and caused nuclear accumulation of importin-α, which is required for nuclear import of p65. SpvD interacted specifically with the exportin Xpo2, which mediates nuclear-cytoplasmic recycling of importins. We propose that interaction between SpvD and Xpo2 disrupts the normal recycling of importin-α from the nucleus, leading to a defect in nuclear translocation of p65 and inhibition of activation of NF-ĸB regulated promoters. SpvD down-regulated pro-inflammatory responses and contributed to systemic growth of bacteria in mice. This work shows that a bacterial pathogen can manipulate host cell immune responses by interfering with the nuclear transport machinery. Salmonella Typhimurium replicates in macrophages through the action of effector proteins translocated into host cells by a type III secretion system (T3SS). We show that the T3SS effector SpvD targets the NF-ĸB pathway by interfering with nuclear translocation of p65. SpvD interacts with the exportin Xpo2. Perturbation of Xpo2 disrupts recycling of importin-α from the nucleus, leading to abrogation of p65 nuclear translocation. These data show that a bacterial pathogen manipulates host cell immune responses by interfering with nuclear transport machinery.
Collapse
|
26
|
Ostasiewicz B, Ostasiewicz P, Duś-Szachniewicz K, Ostasiewicz K, Ziółkowski P. Quantitative analysis of gene expression in fixed colorectal carcinoma samples as a method for biomarker validation. Mol Med Rep 2016; 13:5084-92. [PMID: 27121919 PMCID: PMC4878534 DOI: 10.3892/mmr.2016.5200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Biomarkers have been described as the future of oncology. Modern proteomics provide an invaluable tool for the near-whole proteome screening for proteins expressed differently in neoplastic vs. healthy tissues. However, in order to select the most promising biomarkers, an independent method of validation is required. The aim of the current study was to propose a methodology for the validation of biomarkers. Due to material availability the majority of large scale biomarker studies are performed using formalin-fixed paraffin-embedded (FFPE) tissues, therefore these were selected for use in the current study. A total of 10 genes were selected from what have been previously described as the most promising candidate biomarkers, and the expression levels were analyzed with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using calibrator normalized relative quantification with the efficiency correction. For 6/10 analyzed genes, the results were consistent with the proteomic data; for the remaining four genes, the results were inconclusive. The upregulation of karyopherin α 2 (KPNA2) and chromosome segregation 1-like (CSE1L) in colorectal carcinoma, in addition to downregulation of chloride channel accessory 1 (CLCA1), fatty acid binding protein 1 (FABP1), sodium channel, voltage gated, type VII α subunit (SCN7A) and solute carrier family 26 (anion exchanger), member 3 (SLC26A3) was confirmed. With the combined use of proteomic and genetic tools, it was reported, for the first time to the best of our knowledge, that SCN7A was downregulated in colorectal carcinoma at mRNA and protein levels. It had been previously suggested that the remaining five genes served an important role in colorectal carcinogenesis, however the current study provided strong evidence to support their use as biomarkers. Thus, it was concluded that combination of RT-qPCR with proteomics offers a powerful methodology for biomarker identification, which can be used to analyze FFPE samples.
Collapse
Affiliation(s)
- Beata Ostasiewicz
- Department of Pathology, Wrocław Medical University, Wrocław 50‑368, Poland
| | - Paweł Ostasiewicz
- Department of Pathology, Wrocław Medical University, Wrocław 50‑368, Poland
| | | | | | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, Wrocław 50‑368, Poland
| |
Collapse
|
27
|
Stelma T, Chi A, van der Watt PJ, Verrico A, Lavia P, Leaner VD. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential. IUBMB Life 2016; 68:268-80. [PMID: 26970212 DOI: 10.1002/iub.1484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023]
Abstract
The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline J van der Watt
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Annalisa Verrico
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Virna D Leaner
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Brown GT, Cash B, Alnabulsi A, Samuel LM, Murray GI. The expression and prognostic significance of bcl-2-associated transcription factor 1 in rectal cancer following neoadjuvant therapy. Histopathology 2015; 68:556-66. [PMID: 26183150 DOI: 10.1111/his.12780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022]
Abstract
AIMS bcl-2-associated transcription factor 1 (BCLAF1) is a nuclear protein that binds to bcl-related proteins and can induce apoptosis and autophagy. The aim of this study was to investigate the expression of BCLAF1 in a series of rectal cancers following neoadjuvant therapy. METHODS AND RESULTS Immunohistochemistry was performed on a post-neoadjuvant therapy rectal cancer tissue microarray. It contained rectal cancers (n = 248), lymph node metastases (n = 76), and non-neoplastic rectal mucosal samples (n = 73). A monoclonal antibody against BCLAF1 that we have developed was used. Non-neoplastic rectal epithelium showed nuclear localization of BCLAF1 in both crypt and surface epithelial cells, whereas rectal cancers showed both nuclear and cytoplasmic BCLAF1 expression. Most rectal cancers showed moderate or strong nuclear immunoreactivity, but showed weak cytoplasmic immunoreactivity. Cytoplasmic BCLAF1 expression was increased in primary rectal cancers as compared with non-neoplastic rectal mucosa (P = 0.008). Negative and weak nuclear BCLAF1 expression was associated with a poor prognosis [hazard ratio (HR) 0.502, 95% confidence interval (CI) 0.269-0.939, χ(2) = 4.876, P = 0.027]. Nuclear BCLAF1 expression was independently prognostic in a multivariate model (HR 0.431, 95% CI 0.221-0.840, P = 0.013). CONCLUSIONS This study has shown that both cytoplasmic BCLAF1 expression and nuclear BCLAF1 expression are increased in post-neoadjuvant therapy rectal cancer, and that negative and weak nuclear BCLAF1 expression are independently associated with a poor prognosis.
Collapse
Affiliation(s)
- Gordon T Brown
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Beatriz Cash
- Vertebrate Antibodies, Tillydrone Avenue, Aberdeen, UK
| | | | - Leslie M Samuel
- Department of Clinical Oncology, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK
| | - Graeme I Murray
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
29
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
30
|
Lorenzato A, Biolatti M, Delogu G, Capobianco G, Farace C, Dessole S, Cossu A, Tanda F, Madeddu R, Olivero M, Di Renzo MF. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells. Exp Cell Res 2013; 319:2627-36. [PMID: 23948303 DOI: 10.1016/j.yexcr.2013.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/27/2013] [Accepted: 07/31/2013] [Indexed: 12/28/2022]
Abstract
The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals.
Collapse
Affiliation(s)
- Annalisa Lorenzato
- Department of Oncology, University of Torino School of Medicine, Torino, Italy; Institute for Cancer Research at Candiolo, Candiolo, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li KK, Yang L, Pang JC, Chan AK, Zhou L, Mao Y, Wang Y, Lau K, Poon WS, Shi Z, Ng H. MIR-137 suppresses growth and invasion, is downregulated in oligodendroglial tumors and targets CSE1L. Brain Pathol 2013; 23:426-39. [PMID: 23252729 PMCID: PMC8028883 DOI: 10.1111/bpa.12015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/10/2012] [Indexed: 12/18/2022] Open
Abstract
MicroRNA-137 (miR-137) expression has been reported to be decreased in astrocytic tumors in two expression profiling studies but its role in the pathogenesis of oligodendroglial tumors is still limited. In this study, we demonstrate that miR-137 expression is significantly downregulated in a cohort of 35 oligodendroglial tumors and nine glioma cell lines compared with normal brains. Lower miR-137 expression is associated with shorter progressive-free survival and overall survival. Restoration of miR-137 expression in an oligodendroglial cells TC620, and also glioblastoma cells of U87 and U373 significantly suppressed cell growth, anchorage-independent growth, as well as invasion. Demethylation and deacetylation treatments resulted in upregulation of miR-137 expression in TC620 cells. In silico analysis showed that CSE1 chromosome segregation 1-like (yeast) (CSE1L) is a potential target gene of miR-137. Luciferase reporter assay demonstrated that miR-137 negatively regulates CSE1L by interaction between miR-137 and complementary sequences in the 3' UTR of CSE1L. Immunohistochemistry revealed that CSE1L is upregulated in oligodendroglial tumors. Knockdown of CSE1L resulted in similar outcomes as overexpressing miR-137 in oligodendroglioma cells and glioblastoma cells. Overall, our data suggest that miR-137 regulates growth of glioma cells and targets CSE1L, providing further understanding in the tumorigenesis of gliomas.
Collapse
Affiliation(s)
- Kay Ka‐Wai Li
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Ling Yang
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Jesse Chung‐Sean Pang
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Aden Ka‐Yin Chan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Liangfu Zhou
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Ying Mao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yin Wang
- Department of NeuropathologyHuashan HospitalFudan UniversityShanghaiChina
| | - Kin‐Mang Lau
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Wai Sang Poon
- Neurosurgery DivisionDepartment of SurgeryThe Chinese University of Hong KongHong Kong
| | - Zhifeng Shi
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Ho‐Keung Ng
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| |
Collapse
|
32
|
Jiang MC, Yeh CM, Tai CJ, Chen HC, Lin SH, Su TC, Shen SC, Lee WR, Liao CF, Li LT, Lee CH, Chen YC, Yeh KT, Chang CC. CSE1L modulates Ras-induced cancer cell invasion: correlation of K-Ras mutation and CSE1L expression in colorectal cancer progression. Am J Surg 2013; 206:418-27. [PMID: 23806821 DOI: 10.1016/j.amjsurg.2012.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/09/2012] [Accepted: 11/14/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ras plays an important role in colorectal cancer progression. CSE1L (chromosome segregation 1-like) gene maps to 20q13, a chromosomal region that correlates with colorectal cancer development. We investigated the association of CSE1L with Ras in colorectal cancer progression. METHODS The effect of CSE1L on metastasis-stimulating activity of Ras was studied in an animal model with tumor cells expressing CSE1L-specific shRNA and v-H-Ras. CSE1L expression was evaluated by the immunohistochemical analysis of 127 surgically resected colorectal tumors. K-Ras mutations were analyzed by direct sequencing. RESULTS CSE1L knockdown reduced Ras-induced metastasis of B16F10 melanoma cells in C57BL/6 mice. v-H-Ras expression altered the cellular trafficking of CSE1L and increased CSE1L secretion. Most colorectal tumors were positive for CSE1L staining (98.4%, 125 of 127). Colorectal tumors with K-Ras mutation or high cytoplasmic CSE1L expression were correlated with T status (depth of tumor penetration; P = .004), stage (P = .004), and lymph node metastasis (P = .019). CONCLUSIONS CSE1L may be a target for treating Ras-associated tumors. Analysis of K-Ras mutation and CSE1L expression may provide valuable clinical and pathological information to aid in the determination of treatment options for colorectal cancer.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Hsing-Yi District, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tai CJ, Su TC, Jiang MC, Chen HC, Shen SC, Lee WR, Liao CF, Chen YC, Lin SH, Li LT, Shen KH, Yeh CM, Yeh KT, Lee CH, Shih HY, Chang CC. Correlations between cytoplasmic CSE1L in neoplastic colorectal glands and depth of tumor penetration and cancer stage. J Transl Med 2013; 11:29. [PMID: 23369209 PMCID: PMC3564816 DOI: 10.1186/1479-5876-11-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 01/16/2013] [Indexed: 01/25/2023] Open
Abstract
Background Colorectal carcinomas spread easily to nearby tissues around the colon or rectum, and display strong potential for invasion and metastasis. CSE1L, the chromosome segregation 1-like protein, is implicated in cancer progression and is located in both the cytoplasm and nuclei of tumor cells. We investigated the prognostic significance of cytoplasmic vs. nuclear CSE1L expression in colorectal cancer. Methods The invasion- and metastasis-stimulating activities of CSE1L were studied by in vitro invasion and animal experiments. CSE1L expression in colorectal cancer was assayed by immunohistochemistry, with tissue microarray consisting of 128 surgically resected specimens; and scored using a semiquantitative method. The correlations between CSE1L expression and clinicopathological parameters were analyzed. Results CSE1L overexpression was associated with increased invasiveness and metastasis of cancer cells. Non-neoplastic colorectal glands showed minimal CSE1L staining, whereas most colorectal carcinomas (99.2%, 127/128) were significantly positive for CSE1L staining. Cytoplasmic CSE1L was associated with cancer stage (P=0.003) and depth of tumor penetration (P=0.007). Cytoplasmic CSE1L expression also correlated with lymph node metastasis of the disease in Cox regression analysis Conclusions CSE1L regulates the invasiveness and metastasis of cancer cells, and immunohistochemical analysis of cytoplasmic CSE1L in colorectal tumors may provide a useful aid to prognosis.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Hospital, No,250, Wu-Hsing St,, Taipei 11031, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liao CF, Lin SH, Chen HC, Tai CJ, Chang CC, Li LT, Yeh CM, Yeh KT, Chen YC, Hsu TH, Shen SC, Lee WR, Chiou JF, Luo SF, Jiang MC. CSE1L, a novel microvesicle membrane protein, mediates Ras-triggered microvesicle generation and metastasis of tumor cells. Mol Med 2012; 18:1269-80. [PMID: 22952058 DOI: 10.2119/molmed.2012.00205] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/28/2012] [Indexed: 11/06/2022] Open
Abstract
Tumor-derived microvesicles are rich in metastasis-related proteases and play a role in the interactions between tumor cells and tumor microenvironment in tumor metastasis. Because shed microvesicles may remain in the extracellular environment around tumor cells, the microvesicle membrane protein may be the potential target for cancer therapy. Here we report that chromosome segregation 1-like (CSE1L) protein is a microvesicle membrane protein and is a potential target for cancer therapy. v-H-Ras expression induced extracellular signal-regulated kinase (ERK)-dependent CSE1L phosphorylation and microvesicle biogenesis in various cancer cells. CSE1L overexpression also triggered microvesicle generation, and CSE1L knockdown diminished v-H-Ras-induced microvesicle generation, matrix metalloproteinase (MMP)-2 and MMP-9 secretion and metastasis of B16F10 melanoma cells. CSE1L was preferentially accumulated in microvesicles and was located in the microvesicle membrane. Furthermore, anti-CSE1L antibody-conjugated quantum dots could target tumors in animal models. Our findings highlight a novel role of Ras-ERK signaling in tumor progression and suggest that CSE1L may be involved in the "early" and "late" metastasis of tumor cells in tumorigenesis. Furthermore, the novel microvesicle membrane protein, CSE1L, may have clinical utility in cancer diagnosis and targeted cancer therapy.
Collapse
Affiliation(s)
- Ching-Fong Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|