1
|
Wang Y, Douville C, Chien YW, Wang BG, Chen CL, Pinto A, Smith SA, Drapkin R, Chui MH, Numan T, Vang R, Papadopoulos N, Wang TL, Shih IM. Aneuploidy Landscape in Precursors of Ovarian Cancer. Clin Cancer Res 2024; 30:600-615. [PMID: 38048050 DOI: 10.1158/1078-0432.ccr-23-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Serous tubal intraepithelial carcinoma (STIC) is now recognized as the main precursor of ovarian high-grade serous carcinoma (HGSC). Other potential tubal lesions include p53 signatures and tubal intraepithelial lesions. We aimed to investigate the extent and pattern of aneuploidy in these epithelial lesions and HGSC to define the features that characterize stages of tumor initiation and progression. EXPERIMENTAL DESIGN We applied RealSeqS to compare genome-wide aneuploidy patterns among the precursors, HGSC (cases, n = 85), and histologically unremarkable fallopian tube epithelium (HU-FTE; control, n = 65). On the basis of a discovery set (n = 67), we developed an aneuploidy-based algorithm, REAL-FAST (Repetitive Element AneupLoidy Sequencing Fallopian Tube Aneuploidy in STIC), to correlate the molecular data with pathology diagnoses. We validated the result in an independent validation set (n = 83) to determine its performance. We correlated the molecularly defined precursor subgroups with proliferative activity and histology. RESULTS We found that nearly all p53 signatures lost the entire Chr17, offering a "two-hit" mechanism involving both TP53 and BRCA1 in BRCA1 germline mutation carriers. Proliferatively active STICs harbor gains of 19q12 (CCNE1), 19q13.2, 8q24 (MYC), or 8q arm, whereas proliferatively dormant STICs show 22q loss. REAL-FAST classified HU-FTE and STICs into 5 clusters and identified a STIC subgroup harboring unique aneuploidy that is associated with increased proliferation and discohesive growth. On the basis of a validation set, REAL-FAST showed 95.8% sensitivity and 97.1% specificity in detecting STIC/HGSC. CONCLUSIONS Morphologically similar STICs are molecularly distinct. The REAL-FAST assay identifies a potentially "aggressive" STIC subgroup harboring unique DNA aneuploidy that is associated with increased cellular proliferation and discohesive growth. REAL-FAST offers a highly reproducible adjunct technique to assist the diagnosis of STIC lesions.
Collapse
Affiliation(s)
- Yeh Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher Douville
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yen-Wei Chien
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brant G Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia
- School of Medicine Inova Campus, University of Virginia, Falls Church, Virginia
- Department of Pathology, Georgetown University Medical Center, Washington, DC
| | - Chi-Long Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Andre Pinto
- University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Saron Ann Smith
- Cascade Pathology Services, Legacy Health System, Portland, Oregon
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology and Basser Center for BRCA, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Herman Chui
- Department of Pathology and Laboratory Medicine, Sloan-Kettering Cancer Center, New York, New York
| | - Tricia Numan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, Sibley Memorial Hospital, Washington, DC
| | - Russell Vang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
2
|
Khan K, Irfan M, Sattar AA, Faiz MB, Rahman AU, Athar H, Calina D, Sharifi-Rad J, Cho WC. LncRNA SNHG6 role in clinicopathological parameters in cancers. Eur J Med Res 2023; 28:363. [PMID: 37735423 PMCID: PMC10515066 DOI: 10.1186/s40001-023-01358-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
RNA sequencing has revealed that a substantial portion of the human genome undergoes transcription, yet a minimal fraction of these transcripts translates into proteins. LncRNAs, RNA molecules less than 200 nt in length, once deemed as transcriptional noise, have now emerged as crucial regulators of numerous cellular processes. This review focuses on the lncRNA SNHG6, aiming to elucidate its biogenesis, the pivotal roles it plays, and its mechanisms in facilitating the hallmarks of cancer. A comprehensive literature review and analysis were undertaken to delve into the biogenesis of SNHG6, its roles in cellular processes, and the mechanisms through which it contributes to the hallmarks of cancer. SNHG6 is a notable lncRNA, observed to be overexpressed in various cancer types; its perturbation has been linked to tumor progression, emphasizing its significance in oncogenesis. This lncRNA contributes to a range of cellular aberrations, influencing transcriptional, post-transcriptional, and epigenetic processes of mRNA, ultimately driving cancerous transformations. LncRNA SNHG6 serves as a potential biomarker and therapeutic target due to its association with tumorigenesis. Understanding its mechanism and role in cancer can pave the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Areej Abdul Sattar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Anees ur Rahman
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Hafsa Athar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
3
|
Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, Jarmalaitė S. The Emerging Role of Chromatin Remodeling Complexes in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232213670. [PMID: 36430148 PMCID: PMC9697406 DOI: 10.3390/ijms232213670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer (OC) is the fifth leading cause of women's death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, which contributes to early treatment failure. Thus, exploring OC molecular mechanisms could significantly enhance our understanding of the disease and provide new treatment options. Chromatin remodeling complexes (CRCs) are ATP-dependent molecular machines responsible for chromatin reorganization and involved in many DNA-related processes, including transcriptional regulation, replication, and reparation. Dysregulation of chromatin remodeling machinery may be related to cancer development and chemoresistance in OC. Some forms of OC and other gynecologic diseases have been associated with mutations in specific CRC genes. Most notably, ARID1A in endometriosis-related OC, SMARCA4, and SMARCB1 in hypercalcemic type small cell ovarian carcinoma (SCCOHT), ACTL6A, CHRAC1, RSF1 amplification in high-grade serous OC. Here we review the available literature on CRCs' involvement in OC to improve our understanding of its development and investigate CRCs as possible biomarkers and treatment targets for OC.
Collapse
Affiliation(s)
- Ieva Vaicekauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
| | - Juozas Rimantas Lazutka
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
- Laboratory of Clinical Oncology, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
4
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
5
|
Li Y, Gong H, Wang P, Zhu Y, Peng H, Cui Y, Li H, Liu J, Wang Z. The emerging role of ISWI chromatin remodeling complexes in cancer. J Exp Clin Cancer Res 2021; 40:346. [PMID: 34736517 PMCID: PMC8567610 DOI: 10.1186/s13046-021-02151-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Disordered chromatin remodeling regulation has emerged as an essential driving factor for cancers. Imitation switch (ISWI) family are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which are essential for cellular survival and function through multiple genetic and epigenetic mechanisms. Omics sequencing and a growing number of basic and clinical studies found that ISWI family members displayed widespread gene expression and genetic status abnormalities in human cancer. Their aberrant expression is closely linked to patient outcome and drug response. Functional or componential alteration in ISWI-containing complexes is critical for tumor initiation and development. Furthermore, ISWI-non-coding RNA regulatory networks and some non-coding RNAs derived from exons of ISWI member genes play important roles in tumor progression. Therefore, unveiling the transcriptional regulation mechanism underlying ISWI family sparked a booming interest in finding ISWI-based therapies in cancer. This review aims at describing the current state-of-the-art in the role of ISWI subunits and complexes in tumorigenesis, tumor progression, immunity and drug response, and presenting deep insight into the physiological and pathological implications of the ISWI transcription machinery in cancers.
Collapse
Affiliation(s)
- Yanan Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Han Gong
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Pan Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yajuan Cui
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Heng Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
6
|
Li CF, Chan TC, Wang CI, Fang FM, Lin PC, Yu SC, Huang HY. RSF1 requires CEBP/β and hSNF2H to promote IL-1β-mediated angiogenesis: the clinical and therapeutic relevance of RSF1 overexpression and amplification in myxofibrosarcomas. Angiogenesis 2021; 24:533-548. [PMID: 33496909 DOI: 10.1007/s10456-020-09764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
Myxofibrosarcoma is genetically complex and lacks effective nonsurgical treatment strategies; thus, elucidation of novel molecular drivers is urgently needed. Reanalyzing public myxofibrosarcoma datasets, we identified mRNA upregulation and recurrent gain of RSF1 and characterized this chromatin remodeling gene. Myxofibrosarcoma cell lines were employed to elucidate the oncogenic mechanisms of RSF1 by genetic manipulation and two IL-1β-neutralizing antibodies (RD24, P2D7KK), highlighting the regulatory basis and targetability of downstream IL-1β-mediated angiogenesis. Tumor samples were assessed for RSF1, IL-1β, and microvascular density (MVD) by immunohistochemistry and for RSF1 gene status by FISH. In vivo, RSF1-silenced and P2D7KK-treated xenografts were analyzed for tumor-promoting effects and the IL-1β-linked therapeutic relevance of RSF1, respectively. In vitro, RSF1 overexpression promoted invasive and angiogenic phenotypes with a stronger proangiogenic effect. RT-PCR profiling identified IL1B as a top-ranking candidate upregulated by RSF1. RSF1 required hSNF2H and CEBP/β to cotransactivate the IL1B promoter, which increased the IL1B mRNA level, IL-1β secretion and angiogenic capacity. Angiogenesis induced by RSF1-upregulated IL-1β was counteracted by IL1B knockdown and both IL-1β-neutralizing antibodies. Clinically, RSF1 overexpression was highly associated with RSF1 amplification, IL-1β overexpression, increased MVD and higher grades (all P ≤ 0.01) and independently predicted shorter disease-specific survival (P = 0.019, hazard ratio: 4.556). In vivo, both RSF1 knockdown and anti-IL-1β P2D7KK (200 μg twice weekly) enabled significant growth inhibition and devascularization in xenografts. In conclusion, RSF1 overexpression, partly attributable to RSF1 amplification, contributes a novel proangiogenic function by partnering with CEBP/β to cotransactivate IL1B, highlighting its prognostic, pathogenetic, and therapeutic relevance in myxofibrosarcomas.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ti-Chen Chan
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network; Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Chun Lin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Chen Yu
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-Pei Rd., Niao-Sung District, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-Pei Rd., Niao-Sung District, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Cai G, Yang Q, Sun W. RSF1 in cancer: interactions and functions. Cancer Cell Int 2021; 21:315. [PMID: 34147108 PMCID: PMC8214769 DOI: 10.1186/s12935-021-02012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
RSF1, remodelling and spacing factor 1, is an important interphase centromere protein and is overexpressed in many types of cancers and correlated with poor overall survival. RSF1 has functions mainly in maintaining chromosome stability, facilitating DNA repair, maintaining the protein homeostasis of RSF1 and suppressing the transcription of some oncogenes when RSF1 protein is expressed at an optimal level; however, RSF1 overexpression facilitates drug resistance and cell cycle checkpoint inhibition to prompt cancer proliferation and survival. The RSF1 expression level and gene background are crucial for RSF1 functions, which may explain why RSF1 has different functions in different cancer types. This review summarizes the functional domains of RSF1, the overexpression status of RSF1 and SNF2H in cancer based on the TCGA and GTEX databases, the cancer-related functions of RSF1 in interacting with H2Aub, HDAC1, CENP-A, PLK1, ATM, CENP-S, SNF2H, HBX, BubR1, cyclin E1, CBP and NF-κB and the potential clinical value of RSF1, which will lay a theoretical foundation for the structural biology study of RSF1 and application of RSF1 inhibitors, truncated RSF1 proteins and SNF2H inhibitors in the treatment of RSF1-overexpressing tumours.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Wei Sun
- Department of Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers (Basel) 2020; 12:cancers12092435. [PMID: 32867128 PMCID: PMC7564582 DOI: 10.3390/cancers12092435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box B (HMGB) proteins are overexpressed in different types of cancers such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3 cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks and their expression is altered in EOC. Moreover, some of these proteins have been associated to survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53 gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a stronger down-regulation of these genes in comparison to individual treatments. Individual treatment with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure. HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin. Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.
Collapse
|
9
|
Tian J, Kong E, Wang X, Xie Z, Chang CYY, Sheu JJC, Hao Q, Sun L. RSF-1 siRNA Enhances Tumor Radiosensitivity in Cervical Cancer via Enhanced DNA Damage, Cell Cycle Redistribution, and Promotion of Apoptosis. Onco Targets Ther 2020; 13:3061-3071. [PMID: 32308437 PMCID: PMC7154003 DOI: 10.2147/ott.s246632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/23/2020] [Indexed: 01/31/2023] Open
Abstract
Background Remodeling and spacing factor-1 (RSF-1) is an identified tumor biomarker that is overexpressed in a variety of human cancers, but its effect on radiotherapy remains unclear. In this study, we aimed to explore the effect of RSF-1 siRNA on sensitizing cervical cancer cells to radiation and its underlying mechanism. Methods The mRNA and protein expression of RSF-1 in tissue and cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Cell counting kit-8 (CCK-8) and colony formation assay were used to examine cell proliferation. Flow cytometry was used to analyzed the cell cycle and cell apoptosis. DNA damage was examined by the comet assay. ATM, ATR, CHK1, CHK2, H2AX, γH2AX and phosphorylated ATM, ATR, CHK1 and CHK2 were detected by Western blotting. γH2AX foci were demonstrated by immunofluorescence staining. Results RSF-1 was upregulated in cervical cancer tissue and decreased after effective treatment. RSF-1 siRNA in combination with radiation suppressed cell viability, redistributed cell cycles and also induced cell apoptosis in HeLa and SiHa cell lines. Further, knockdown of RSF-1 induced DNA damage by attenuating DNA repair capability, thereby sensitizing cervical cancer cells to radiation. Conclusions These data demonstrate that RSF-1 siRNA enhanced the sensitivity of radiotherapy, and targeting RSF-1 may be a promising approach for the development of novel radiosensitizing agents for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jing Tian
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Enqi Kong
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, People's Republic of China
| | - Xiangyu Wang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhaoguang Xie
- Department of Maternity, Jinan Maternal and Child Health Hospital Affiliated to Shandong First Medical University, Jinan, 250001, People's Republic of China
| | - Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Quan Hao
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Li Sun
- Department of Gynecological Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, People's Republic of China.,Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, People's Republic of China
| |
Collapse
|
10
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
11
|
He J, Fu L, Li Q. Rsf‑1 regulates malignant melanoma cell viability and chemoresistance via NF‑κB/Bcl‑2 signaling. Mol Med Rep 2019; 20:3487-3498. [PMID: 31485613 PMCID: PMC6755232 DOI: 10.3892/mmr.2019.10610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Remodeling and spacing factor 1 (Rsf-1) has been reported as overexpressed in numerous cancers; however, its expression, biological functions and mechanisms in malignant melanoma remain unknown. In the present study, the expression of Rsf-1 was investigated in 50 cases of malignant melanoma samples using immunohistochemistry. The results revealed that Rsf-1 expression was elevated in 38% of specimens. MTT, colony formation, Transwell and flow cytometry assays were performed to investigate the functions of Rsf-1. Knockdown of Rsf-1 in the MV3 and A375 melanoma cell lines decreased the viability, invasion and cell cycle transition of cells. Conversely, overexpression of Rsf-1 in M14 cells with low endogenous Rsf-1 expression induced opposing effects. Further analysis revealed that Rsf-1 knockdown decreased matrix metalloproteinase-2, cyclin E and phosphorylated-IκB expression. Additionally, Rsf-1 depletion reduced cisplatin resistance and significantly increased the cisplatin-associated apoptotic rate, whereas Rsf-1 overexpression exhibited opposing effects. Rsf-1 also maintained the mitochondrial membrane potential following cisplatin treatment. Analysis of apoptosis-associated proteins revealed that Rsf-1 positively regulated B-cell lymphoma 2 (Bcl-2), cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2, and downregulated Bcl-2-associated X protein expression. Nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB) inhibition reversed the effects of Rsf-1 on Bcl-2. In conclusion, Rsf-1 was overexpressed in malignant melanoma and may contribute to the malignant behaviors of melanoma cells, possibly via the regulation of NF-κB signaling. Therefore, Rsf-1 may be a potential therapeutic target in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Jiani He
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Fu
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qingchang Li
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Murali R, Selenica P, Brown DN, Cheetham RK, Chandramohan R, Claros NL, Bouvier N, Cheng DT, Soslow RA, Weigelt B, McCluggage WG. Somatic genetic alterations in synchronous and metachronous low-grade serous tumours and high-grade carcinomas of the adnexa. Histopathology 2019; 74:638-650. [PMID: 30565721 PMCID: PMC6626549 DOI: 10.1111/his.13796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
AIMS Low-grade serous carcinomas (LGSCs) and their precursors serous borderline tumours (SBTs) characteristically harbour mutations in BRAF, KRAS or NRAS but rarely in TP53, whereas high-grade serous carcinomas (HGSCs) are characterised by frequent TP53 mutations but rare BRAF, KRAS or NRAS mutations. In a small subset of cases, LGSCs and/or SBTs develop into high-grade tumours, including HGSCs and poorly differentiated carcinomas (PDCs). Here, we sought to define the repertoire of somatic genetic alterations in low-grade serous tumours and synchronous or metachronous high-grade adnexal carcinomas. METHODS AND RESULTS DNA extracted from five SBTs/LGSCs and synchronous or metachronous HGSCs/PDCs and matched normal tissue was subjected to massively parallel sequencing targeting all exons and selected non-coding regions of 341 cancer-related genes. The low-grade and high-grade tumours from a given case were related, and shared mutations and copy number alterations. Progression from low-grade to high-grade lesions was observed, and involved the acquisition of additional mutations and/or copy number alterations, or shifts from subclonal to clonal mutations. Only two (an HGSC and a PDC) of the five high-grade tumours investigated harboured TP53 mutations, whereas NRAS and KRAS hotspot mutations were seen in two HGSCs and one HGSC, respectively. CONCLUSIONS Our results suggest that progression from SBT to HGSC may take place in a subset of cases, and that at least some of the rare HGSCs lacking TP53 mutations may be derived from a low-grade serous precursor.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Cystadenoma, Serous/genetics
- Cystadenoma, Serous/pathology
- Disease Progression
- Female
- Genital Neoplasms, Female/genetics
- Genital Neoplasms, Female/pathology
- Humans
- Middle Aged
- Neoplasm Grading
- Neoplasms, Multiple Primary/pathology
- Neoplasms, Second Primary/pathology
Collapse
Affiliation(s)
- Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N. Brown
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Raghu Chandramohan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nidia L. Claros
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Bouvier
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Robert A. Soslow
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
13
|
Chromatin-remodeling factor, RSF1, controls p53-mediated transcription in apoptosis upon DNA strand breaks. Cell Death Dis 2018; 9:1079. [PMID: 30348983 PMCID: PMC6197202 DOI: 10.1038/s41419-018-1128-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Remodeling and spacing factor 1 (RSF1), which is one of chromatin-remodeling factors, has been linked to the DNA damage response (DDR) and DNA repair. However, the biological consequence of RSF1 deficiency in DDR in vivo and its molecular mechanisms remain unknown. Because defective DDR is related to neuropathological phenotypes, we developed neural-specific Rsf1 knockout mice. Rsf1 deficiency did not result in any neuropathological abnormalities, but prevented neural apoptosis triggered by excessive DNA strand breaks during neurogenesis. Likewise, cell death was significantly reduced in RSF1 deficient human cell lines after DNA damage, and the global transcriptome of these cells revealed that the expressions of p53 downstream genes were significantly reduced upon DNA strand breaks. Inactivation of these genes resulted from decreased binding of p53/p300 complex and subsequent reduction of H3 acetylation at their promoters. Our data show that RSF1 is necessary for p53-dependent gene expression in response to DNA strand breaks via controlling the accessibility of p53/p300 complex to its target genes and contributes to the maintenance of cellular integrity.
Collapse
|
14
|
Wang X, Sheu JJC, Lai MT, Yin-Yi Chang C, Sheng X, Wei L, Gao Y, Wang X, Liu N, Xie W, Chen CM, Ding WY, Sun L. RSF-1 overexpression determines cancer progression and drug resistance in cervical cancer. Biomedicine (Taipei) 2018; 8:4. [PMID: 29480799 PMCID: PMC5825929 DOI: 10.1051/bmdcn/2018080104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Remodeling spacing factor 1 (RSF-1/HBXAP) has been linked to a variety of cancer types, however, its roles and the therapeutic potential are not clear in cervical cancer. METHODS RSF-1 expression in cancer tissues was analyzed by immunohistochemical staining followed by statistical analysis with SPSS. Anti-RSF-1 studies were performed by treating cells with specific siRNA or a dominant mutant form (RSF-D4). RESULTS RSF-1 expression correlates with cancer progression that strongly-positive staining can be found in 67.7% carcinomas and 66.7% CIN lesions, but none in normal tissues. Such overexpression also associated with increased tumor size, poor differentiation, higher nodal metastasis and advanced clinical stages. Kaplan- Meier analysis confirmed that cancer patients with high RSF-1 levels exhibited a significantly shorter survival time than those with low RSF-1 levels. Downregulation of RSF-1 by siRNA silencing or RSF-D4 reduced cell growth and increased drug sensitivity toward paclitaxel treatment in HeLa cells. CONCLUSIONS RSF-1 participates in the tumor progression of cervical cancer and could be considered as an early prognostic marker for cancer development and clinical outcome. Therapies based on anti-RSF-1 activity may be beneficial for patients with RSF-1 overexpression in their tumors.
Collapse
Affiliation(s)
- Xiangyu Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250022 China
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University Kaohsiung 804 Taiwan
- Human Genetic Center, China Medical University Hospital Taichung 404 Taiwan
- School of Chinese Medicine, China Medical University Taichung 404 Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare Taichung 403 Taiwan
| | | | - Xiugui Sheng
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Ling Wei
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Yongsheng Gao
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Xingwu Wang
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Naifu Liu
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| | - Wenli Xie
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250022 China
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital Taichung 404 Taiwan
| | - Wendy Y. Ding
- Human Genetic Center, China Medical University Hospital Taichung 404 Taiwan
| | - Li Sun
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences Jinan 250117 China
| |
Collapse
|
15
|
Chang CYY, Lai MT, Chen Y, Yang CW, Chang HW, Lu CC, Chen CM, Chan C, Chung C, Tseng CC, Hwang T, Sheu JJC, Tsai FJ. Up-regulation of ribosome biogenesis by MIR196A2 genetic variation promotes endometriosis development and progression. Oncotarget 2018; 7:76713-76725. [PMID: 27741504 PMCID: PMC5363543 DOI: 10.18632/oncotarget.11536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
Aberrant miRNA expression has been reported in endometriosis and miRNA gene polymorphisms have been linked to cancer. Because certain ovarian cancers arise from endometriosis, we genotyped seven cancer-related miRNA single nucleotide polymorphisms (MiRSNPs) to investigate their possible roles in endometriosis. Genetic variants in MIR196A2 (rs11614913) and MIR100 (rs1834306) were found to be associated with endometriosis development and related clinical phenotypes, such as infertility and pain. Downstream analysis of the MIR196A2 risk allele revealed upregulation of rRNA editing and protein synthesis genes, suggesting hyper-activation of ribosome biogenesis as a driving force for endometriosis progression. Clinical studies confirmed higher levels of small nucleolar RNAs and ribosomal proteins in atypical endometriosis lesions, and this was more pronounced in the associated ovarian clear cell carcinomas. Treating ovarian clear cells with CX5461, an RNA polymerase I inhibitor, suppressed cell growth and mobility followed by cell cycle arrest at G2/M stage and apoptosis. Our study thus uncovered a novel tumorigenesis pathway triggered by the cancer-related MIR196A2 risk allele during endometriosis development and progression. We suggest that anti-RNA polymerase I therapy may be efficacious for treating endometriosis and associated malignancies.
Collapse
Affiliation(s)
- Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.,Institute of Environmental Health, China Medical University, Taichung, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Yi Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Wen Yang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hui-Wen Chang
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Chan Lu
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Carmen Chan
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Ching Chung
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Cheng Tseng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Zhang X, Xue D, Hao F, Xie L, He J, Gai J, Liu Y, Xu H, Li Q, Wang E. Remodeling and spacing factor 1 overexpression is associated with poor prognosis in renal cell carcinoma. Oncol Lett 2018; 15:3852-3857. [PMID: 29467902 DOI: 10.3892/ol.2018.7797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to assess the expression and prognostic significance of remodeling and spacing factor 1 (RSF1; HBXAP) in renal cell carcinoma (RCC). RSF1 expression was analyzed using immunohistochemistry on tissue samples from a consecutive series of 137 patients with RCC who underwent tumor resection between November 2000 and March 2004. The associations between RSF1 expression, clinicopathological factors and patient survival were investigated. Immunohistochemistry revealed that RSF1 was highly expressed in 43.1% (59/137) of the RCC samples. RSF1 expression levels were associated with the T stage of the Tumor-Node-Metastasis grading system. Kaplan-Meier survival analysis indicated that high RSF1 expression in RCC was significantly associated with a poor prognosis. Multivariate analysis revealed that RSF1 expression is an independent prognostic parameter for the duration of overall survival of patients with RCC. The results demonstrated that a high expression level of RSF1 in RCC is associated with advanced tumor stages and a poor prognosis. To the best of our knowledge, the present study provides novel evidence of the biological significance of RSF1 expression in RCC.
Collapse
Affiliation(s)
- Xiuwei Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Pathology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Fengxia Hao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lingling Xie
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiani He
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Junda Gai
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuhui Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongtao Xu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
17
|
Molecular analysis of high-grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial carcinoma. Nat Commun 2017; 8:990. [PMID: 29042553 PMCID: PMC5645359 DOI: 10.1038/s41467-017-01217-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Many high-grade serous carcinomas (HGSCs) of the pelvis are thought to originate in the distal portion of the fallopian tube. Serous tubal intra-epithelial carcinoma (STIC) lesions are the putative precursor to HGSC and identifiable in ~ 50% of advanced stage cases. To better understand the molecular etiology of HGSCs, we report a multi-center integrated genomic analysis of advanced stage tumors with and without STIC lesions and normal tissues. The most significant focal DNA SCNAs were shared between cases with and without STIC lesions. The RNA sequence and the miRNA data did not identify any clear separation between cases with and without STIC lesions. HGSCs had molecular profiles more similar to normal fallopian tube epithelium than ovarian surface epithelium or peritoneum. The data suggest that the molecular features of HGSCs with and without associated STIC lesions are mostly shared, indicating a common biologic origin, likely to be the distal fallopian tube among all cases.High-grade serous carcinomas (HGSCs) are associated with precursor lesions (STICs) in the fallopian epithelium in only half of the cases. Here the authors report the molecular analysis of HGSCs with and without associated STICs and show similar profiles supporting a common origin for all HGSCs.
Collapse
|
18
|
Zhao X, Ji Z, Xie Y, Liu G, Li H. MicroRNA-154 as a prognostic factor in bladder cancer inhibits cellular malignancy by targeting RSF1 and RUNX2. Oncol Rep 2017; 38:2727-2734. [PMID: 29048677 PMCID: PMC5780025 DOI: 10.3892/or.2017.5992] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Recent studies have demonstrated that microRNA-154 (miR-154) is involved in tumorigenesis, progression, invasion and metastasis in several types of human cancer. However, whether it plays a role in bladder cancer (BC) is unclear. The aim of the present study was to determine miR-154 levels in human BC tissues and investigate the correlation between miR-154 levels and clinicopathological characteristics as well as patient outcome. Using RT-qPCR, we found that the expression levels of miR-154 were significantly lower in BC tissues compared to adjacent normal tissues. We also demonstrated that downregulation of miR-154 was associated with advanced clinicopathological features and worse prognoses for patients with BC. Using a variety of integrated approaches, we demonstrated that both runt-related transcription factor 2 (RUNX2) and remodeling and spacing factor 1 (RSF1) were miR-154 targets. Notably, there was an inverse correlation between RSF1, RUNX2 and miR-154 expression in BC tissues. The biological functions of miR-154 were examined in vitro using Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays with T24 human bladder carcinoma cells transfected with miR-154 mimics or negative controls. These assays demonstrated that miR-154 significantly suppressed proliferation, migration and invasion of T24 cells (P<0.05). Furthermore, overexpression of RSF1 and RUNX2 rescued miR-154-induced inhibition of these aggressive behaviors. Our results indicated that miR-154, and its downstream targets RSF1 and RUNX2, are promising options for future BC therapies.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yi Xie
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Guanghua Liu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
19
|
CCNE1 amplification and centrosome number abnormality in serous tubal intraepithelial carcinoma: further evidence supporting its role as a precursor of ovarian high-grade serous carcinoma. Mod Pathol 2016; 29:1254-61. [PMID: 27443516 PMCID: PMC6557162 DOI: 10.1038/modpathol.2016.101] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022]
Abstract
Aberration in chromosomal structure characterizes almost all cancers and has profound biological significance in tumor development. It can be facilitated by various mechanisms including overexpression of cyclin E1 and centrosome amplification. As ovarian high-grade serous carcinoma has pronounced chromosomal instability, in this study we sought to determine whether increased copy number of CCNE1 which encodes cyclin E1 and centrosome amplification (>2 copies) occurs in its putative precursor, serous tubal intraepithelial carcinoma. We found CCNE1 copy number gain/amplification in 8 (22%) of 37 serous tubal intraepithelial carcinomas and 12 (28%) of 43 high-grade serous carcinomas. There was a correlation in CCNE1 copy number between serous tubal intraepithelial carcinoma and high-grade serous carcinoma in the same patients (P<0.001). There was no significant difference in the percentage of CCNE1 gain/amplification between serous tubal intraepithelial carcinoma and high-grade serous carcinoma (P=0.61). Centrosome amplification was recorded in only 5 (14%) of 37 serous tubal intraepithelial carcinomas, and in 10 (40%) of 25 high-grade serous carcinomas. The percentage of cells with centrosome amplification was higher in high-grade serous carcinoma than in serous tubal intraepithelial carcinoma (P<0.001). Induced expression of cyclin E1 increased the percentage of fallopian tube epithelial cells showing centrosome amplification. Our findings suggest that gain/amplification of CCNE1 copy number occurs early in tumor progression and precedes centrosome amplification. The more prevalent centrosome amplification in high-grade serous carcinoma than in serous tubal intraepithelial carcinoma supports the view that serous tubal intraepithelial carcinoma precedes the development of many high-grade serous carcinomas.
Collapse
|
20
|
Cyclin E as a potential therapeutic target in high grade serous ovarian cancer. Gynecol Oncol 2016; 143:152-158. [DOI: 10.1016/j.ygyno.2016.07.111] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/18/2022]
|
21
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
22
|
Zhao XC, An P, Wu XY, Zhang LM, Long B, Tian Y, Chi XY, Tong DY. Overexpression of hSNF2H in glioma promotes cell proliferation, invasion, and chemoresistance through its interaction with Rsf-1. Tumour Biol 2015; 37:7203-12. [PMID: 26666816 DOI: 10.1007/s13277-015-4579-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
hSNF2H partners with Rsf-1 to compose the Rsf complex to regulate gene expression. Recent studies indicated that hSNF2H was overexpressed in several human cancers. However, its expression pattern and biological mechanism in glioma remain unexplored. In this study, we found that hSNF2H was overexpressed in 32 % of glioma specimens. hSNF2H overexpression correlated with advanced tumor grade (p = 0.0338) and Rsf-1 positivity in glioma tissues (p = 0.016). Small interfering RNA (siRNA) knockdown was performed in A172 and U87 cell lines. MTT, colony formation assay, and cell cycle analysis showed that knockdown of hSNF2H inhibited cell proliferation, colony formation ability, and cell cycle transition. Matrigel invasion assay showed that hSNF2H depletion inhibited invasive ability of glioma cells. In addition, we demonstrated that hSNF2H depletion decreased temozolomide resistance of A172 and U87 cell lines and increased temozolomide induced apoptosis. Furthermore, hSNF2H depletion decreased cyclin D1, cyclin E, p-Rb, MMP2, cIAP1, Bcl-2 expression, and phosphorylation of IκBα and p65, suggesting hSNF2H regulates apoptosis through NF-κB pathway. Immunoprecipitation showed that hSNF2H could interact with Rsf-1 in both cell lines. To validate the involvement of Rsf-1, we checked the change of its downstream targets in Rsf-1 depleted cells. In Rsf-1 depleted cells, changes of cyclin E, Bcl-2, and p-IκBα were not significant using hSNF2H siRNA treatment. In conclusion, our study demonstrated that hSNF2H was overexpressed in human gliomas and contributed to glioma proliferation, invasion, and chemoresistance through regulation of cyclin E and NF-κB pathway, which is dependent on its interaction with Rsf-1.
Collapse
Affiliation(s)
- Xiao-Chun Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.
| | - Xiu-Ying Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Bo Long
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiao-Ying Chi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong-Yi Tong
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Zubillaga-Guerrero MI, Alarcón-Romero LDC, Illades-Aguiar B, Flores-Alfaro E, Bermúdez-Morales VH, Deas J, Peralta-Zaragoza O. MicroRNA miR-16-1 regulates CCNE1 (cyclin E1) gene expression in human cervical cancer cells. Int J Clin Exp Med 2015; 8:15999-16006. [PMID: 26629104 PMCID: PMC4658993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs are involved in diverse biological processes through regulation of gene expression. The microRNA profile has been shown to be altered in cervical cancer (CC). MiR-16-1 belongs to the miR-16 cluster and has been implicated in various aspects of carcinogenesis including cell proliferation and regulation of apoptosis; however, its function and molecular mechanism in CC is not clear. Cyclin E1 (CCNE1) is a positive regulator of the cell cycle that controls the transition of cells from G1 to S phase. In CC, CCNE1 expression is frequently upregulated, and is an indicator for poor outcome in squamous cell carcinomas (SCCs). Thus, in the present brief communication, we determine whether the CCNE1 gene is regulated by miR-16-1 in CC cells. To identify the downstream cellular target genes for upstream miR-16-1, we silenced endogenous miR-16-1 expression in cell lines derived from CC (C-33 A HPV-, CaSki HPV16+, SiHa HPV16+, and HeLa HPV18+ cells), using siRNAs expressed in plasmids. Using a combined bioinformatic analysis and RT-qPCR, we determined that the CCNE1 gene is targeted by miR-16-1 in CC cells. SiHa, CaSki, and HeLa cells demonstrated an inverse correlation between miR-16-1 expression and CCNE1 mRNA level. Thus, miR-16-1 post-transcriptionally down-regulates CCNE1 gene expression. These results, suggest that miR-16-1 plays a vital role in modulating cell cycle processes in CC.
Collapse
Affiliation(s)
- Ma Isabel Zubillaga-Guerrero
- Academic Unit of Biological Chemical Sciences, Guerrero Autonomous UniversityAvenida Lázaro Cárdenas S/N, Col. Haciendita, Chilpancingo 39070, Guerrero, México
| | - Luz del Carmen Alarcón-Romero
- Academic Unit of Biological Chemical Sciences, Guerrero Autonomous UniversityAvenida Lázaro Cárdenas S/N, Col. Haciendita, Chilpancingo 39070, Guerrero, México
| | - Berenice Illades-Aguiar
- Academic Unit of Biological Chemical Sciences, Guerrero Autonomous UniversityAvenida Lázaro Cárdenas S/N, Col. Haciendita, Chilpancingo 39070, Guerrero, México
| | - Eugenia Flores-Alfaro
- Academic Unit of Biological Chemical Sciences, Guerrero Autonomous UniversityAvenida Lázaro Cárdenas S/N, Col. Haciendita, Chilpancingo 39070, Guerrero, México
| | - Víctor Hugo Bermúdez-Morales
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public HealthAv. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, México
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public HealthAv. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, México
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public HealthAv. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, México
| |
Collapse
|
24
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
25
|
Wu J, Hu L, Wu F, He T. Prognostic value of rsf-1/hbxap in human solid tumors: a meta-analysis of cohort studies. Int J Clin Exp Med 2015; 8:1944-1955. [PMID: 25932123 PMCID: PMC4402770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
PURPOSE Recent studies have investigated remodeling and spacing factor 1 (Rsf-1) as a molecular marker in various solid tumors. However, whether or not Rsf-1 exerts a negative or positive effect on the survival of patients with solid cancers remains controversial. Therefore, this study aims to determine whether or not Rsf-1 may be a predicative marker of poor prognosis and aggressive tumor progression. METHODS We conducted a meta-analysis of 11 cohort studies (n = 1620 patients) to evaluate the relationship between Rsf-1 and clinical outcome. We included studies with data on overall survival (OS), disease-specific survival (DSS), recurrent-free survival (RFS), metastasis-free survival (MFS), and hazard ratios (HRs) with 95% confidence intervals (CIs). RESULTS High Rsf-1 expression was significantly associated with poor survival in solid tumors. Overall, the combined HR for OS was 1.49 (95% CI = 1.21-1.84, P < 0.001), DSS 3.07 (95% CI = 1.67-5.62, P < 0.001), RFS 2.51 (95% CI = 1.12-5.63, P = 0.025), and MFS 2.14 (95% CI = 1.49-3.06, P < 0.001). In addition, Rsf-1 overexpression was significantly associated with tumor stage (OR = 4.13, 95% CI = 2.84-6.00, P < 0.001), primary tumor (OR = 2.09, 95% CI = 1.58-2.75, P < 0.001), nodal status (OR = 1.95, 95% CI = 1.40-2.72, P < 0.001), and histological grade (OR = 3.09, 95% CI = 2.10-4.54, P < 0.001). CONCLUSIONS Rsf-1 may be a predicative marker of poor prognosis and aggressive tumor progression.
Collapse
Affiliation(s)
- Jiayuan Wu
- Department of Nutritional, The Affiliated Hospital of Guangdong Medical CollegeZhanjiang, Guangdong Province, China
| | - Liren Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical CollegeZhanjiang, Guangdong Province, China
| | - Fenping Wu
- Department of Radiotherapy, The Seventh People’s Hospital of Chengdu, The Oncology Hospital of ChengduChengdu, Sichuan Province, China
| | - Taiping He
- School of Public Health, Guangdong Medical CollegeDongguan, Guangdong Province, China
| |
Collapse
|
26
|
Integration of genomic data enables selective discovery of breast cancer drivers. Cell 2014; 159:1461-75. [PMID: 25433701 DOI: 10.1016/j.cell.2014.10.048] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 08/01/2014] [Accepted: 10/03/2014] [Indexed: 01/03/2023]
Abstract
Identifying driver genes in cancer remains a crucial bottleneck in therapeutic development and basic understanding of the disease. We developed Helios, an algorithm that integrates genomic data from primary tumors with data from functional RNAi screens to pinpoint driver genes within large recurrently amplified regions of DNA. Applying Helios to breast cancer data identified a set of candidate drivers highly enriched with known drivers (p < 10(-14)). Nine of ten top-scoring Helios genes are known drivers of breast cancer, and in vitro validation of 12 candidates predicted by Helios found ten conferred enhanced anchorage-independent growth, demonstrating Helios's exquisite sensitivity and specificity. We extensively characterized RSF-1, a driver identified by Helios whose amplification correlates with poor prognosis, and found increased tumorigenesis and metastasis in mouse models. We have demonstrated a powerful approach for identifying driver genes and how it can yield important insights into cancer.
Collapse
|
27
|
Ren J, Chen QC, Jin F, Wu HZ, He M, Zhao L, Yu ZJ, Yao WF, Mi XY, Wang EH, Wei MJ. Overexpression of Rsf-1 correlates with pathological type, p53 status and survival in primary breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5595-5608. [PMID: 25337201 PMCID: PMC4203172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/23/2014] [Indexed: 06/04/2023]
Abstract
AIM The incidence of breast cancer in developing countries still increasing, to identify novel molecular markers associated with carcinogenesis and prognosis of breast cancer still being implemented. The largest subunit of Remodeling and spacing factor (RSF), Rsf-1, mediates ATPase-dependent chromatin remodeling. Its oncogenic properties have been demonstrated in certain carcinomas. The aim of this study was to examine the prognostic value of Rsf-1 in patients with primary breast carcinoma. METHODS A total of 537 patients with primary breast cancer, and 54 with benign breast hyperplasia, were performed resection surgery in the same period were enrolled. Rsf-1 immunoexpression was retrospectively assessed by immunohistochemistry (IHC). As well as, it relationship with clinicopathological factors and patient survival (LRFS, DFS and OS) was investigated. RESULTS Compared with benign breast hyperplasia tissues, higher percentage of Rsf-1 positive expression was detected in malignant breast carcinomas. Based on IHC staining extent × intensity scores and ROC analysis, 278 of 526 cancers (52.9%) had high-expression (cut-off values 2.5) of Rsf-1, which correlated significantly to pathologic subtypes of breast cancer (DCIS vs. IDC, P < 0.001; ILC vs. IDC, P = 0.036), bigger tumor size (P = 0.030), higher TNM stage (P = 0.044), and p53-positive expression. In addition, there was a trend that high-expression of Rsf-1 associated with younger age (P = 0.053). We further prove that combined positive-expression of Rsf-1 and p53 (Rsf-1 (+)/p53 (+)) was correlated with the bigger tumor size (P = 0.018), and higher TNM stage (P = 0.024). Kaplan-Meier survival analysis showed that Rsf-1 high-expression and combined positive-expression of Rsf-1 and p53 (Rsf-1 (+)/p53 (+)) exhibited a significant correlation with poor overall survival of patients with primary breast cancer, and no association has been identified in relation to LRFS or DFS. Especially, Univariate and multivariate survival analysis demonstrated Rsf-1 expression is an independent prognostic parameter for the overall survival of patients with breast cancer. CONCLUSIONS High-expression of Rsf-1 is associated with pathologic subtypes of breast cancer, aggressive phenotype, p53 positive and poor clinical outcome, which confers tumor aggressiveness through chromatin remodeling, and targeting Rsf-1 gene and the pathway it related may provide new therapeutic avenues for treating breast cancer.
Collapse
Affiliation(s)
- Jie Ren
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Qiu-Chen Chen
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Feng Jin
- Department of Surgical Oncology, The First Affiliated Hospital, China Medical UniversityShenyang, China
| | - Hui-Zhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Zhao-Jin Yu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Xiao-Yi Mi
- Department of Pathology, College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| | - En-Hua Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical UniversityShenyang, China
| |
Collapse
|
28
|
Rsf-1 overexpression serves as a prognostic marker in human hepatocellular carcinoma. Tumour Biol 2014; 35:7595-601. [PMID: 24798976 DOI: 10.1007/s13277-014-2008-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/22/2014] [Indexed: 01/31/2023] Open
Abstract
Rsf-1 (HBXAP) was recently reported to be overexpressed in various cancers and associated with the malignant behavior of cancer cells. However, the expression of Rsf-1 and its clinical significance in human hepatocellular carcinoma (HCC) have not been reported. In the present study, we analyzed the expression pattern of Rsf-1 in human HCC tissues and found that Rsf-1 was overexpressed in 41.1 % of HCC specimens. There was a significant association between Rsf-1 overexpression and tumor stage (p = 0.0322), AFP (p = 0.0184), and tumor relapse (p = 0.0112). Furthermore, Rsf-1 overexpression correlated with poor overall survival in HCC patients (p < 0.001). Rsf-1 overexpression could serve as an independent predictor for poor recurrence-free survival (p = 0.0079). Small interfering RNA (siRNA) knockdown in SK-Hep-1 cells with high endogenous Rsf-1 expression inhibited cell proliferation and colony formation, with downregulation of cyclin E protein. In conclusion, Rsf-1 is overexpressed in HCCs and serves as a novel tumor marker. Rsf-1 contributes to hepatocellular carcinoma cell growth through regulation of cell cycle proteins.
Collapse
|
29
|
Rsf-1 overexpression in human prostate cancer, implication as a prognostic marker. Tumour Biol 2014; 35:5771-6. [PMID: 24584698 DOI: 10.1007/s13277-014-1766-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/17/2014] [Indexed: 12/26/2022] Open
Abstract
Rsf-1 (HBXAP) was recently reported to be overexpressed in various cancers and associated with the malignant behavior of cancer cells. However, the expression of Rsf-1 and its clinical significance in human prostate cancer have not been reported. In the present study, we analyzed the expression pattern of Rsf-1 in human prostate cancer tissues and found that Rsf-1 was overexpressed in 45 % of prostate cancer specimens. There was a significant association between Rsf-1 overexpression and tumor stage (p=0.0039) and preoperative PSA level (p=0.015). Furthermore, Rsf-1 overexpression correlated with poor biomedical recurrence-free survival in prostate cancer patients (p<0.001). Rsf-1 overexpression could serve as an independent predictor for poor recurrence-free survival (p=0.012). In addition, small interfering RNA (siRNA) knockdown in DU145 cells with high endogenous Rsf-1 expression decrease cell proliferation, colony formation, and invasion. In conclusion, Rsf-1 is overexpressed in human prostate cancers and serves as a novel prognostic marker. Rsf-1 contributes to prostate cancer cell growth and invasion, which makes it a candidate therapeutic target.
Collapse
|
30
|
Doherty K, Meere M, Piiroinen PT. A mathematical model of CENP-A incorporation in mammalian centromeres. Math Biosci 2014; 249:27-43. [PMID: 24472234 DOI: 10.1016/j.mbs.2014.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/21/2013] [Accepted: 01/16/2014] [Indexed: 12/01/2022]
Abstract
Centromere Protein A (CENP-A) is a histone H3 variant found at mammalian centromeres. Unlike canonical histones which are incorporated at centromeres in S phase, CENP-A is deposited at centromeric chromatin in G1. Although recent studies have elucidated many of the molecular details associated with the CENP-A incorporation pathway, some aspects of the process are still not fully understood. CENP-A incorporation in G1 requires multiple assembly factors for its recruitment and maintenance. In this study, the first mathematical model of the CENP-A incorporation pathway is developed. The model is based on what is currently known about the pathway and is calibrated by comparing numerical simulations with experimental observations taken from the literature. The model succinctly collates a large body of knowledge accumulated in recent decades concerning the pathway and produces results that are consistent with experimental findings. It identifies possible gaps in what is currently known about the pathway and suggests possible directions for future research. It is envisaged that the model will be expanded upon and improved as more information concerning the pathway comes to light.
Collapse
Affiliation(s)
- Kevin Doherty
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland.
| | - Martin Meere
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland.
| | - Petri T Piiroinen
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland.
| |
Collapse
|
31
|
Karst AM, Jones PM, Vena N, Ligon AH, Liu JF, Hirsch MS, Etemadmoghadam D, Bowtell DDL, Drapkin R. Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer Res 2013; 74:1141-52. [PMID: 24366882 DOI: 10.1158/0008-5472.can-13-2247] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The fallopian tube is now generally considered the dominant site of origin for high-grade serous ovarian carcinoma. However, the molecular pathogenesis of fallopian tube-derived serous carcinomas is poorly understood and there are few experimental studies examining the transformation of human fallopian tube cells. Prompted by recent genomic analyses that identified cyclin E1 (CCNE1) gene amplification as a candidate oncogenic driver in high-grade serous ovarian carcinoma, we evaluated the functional role of cyclin E1 in serous carcinogenesis. Cyclin E1 was expressed in early- and late-stage human tumor samples. In primary human fallopian tube secretory epithelial cells, cyclin E1 expression imparted malignant characteristics to untransformed cells if p53 was compromised, promoting an accumulation of DNA damage and altered transcription of DNA damage response genes related to DNA replication stress. Together, our findings corroborate the hypothesis that cyclin E1 dysregulation acts to drive malignant transformation in fallopian tube secretory cells that are the site of origin of high-grade serous ovarian carcinomas.
Collapse
Affiliation(s)
- Alison M Karst
- Authors' Affiliations: Department of Medical Oncology; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute; Harvard Medical School; Department of Pathology, Division of Cytogenetics; Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, Massachusetts; Peter MacCallum Cancer Centre, East Melbourne; Department of Oncology, Peter MacCallum Cancer Centre; Departments of Pathology and Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|