1
|
He R, Zhang Q, Xu L, Guo M, Gu X, Xie Y, Xu J, Shen Z. Characterization of a novel galectin in Sarcoptes scabiei and its role in regulating macrophage functions. Front Microbiol 2023; 14:1251475. [PMID: 37692380 PMCID: PMC10484005 DOI: 10.3389/fmicb.2023.1251475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Sarcoptes scabiei (S. scabiei) endangers human and other mammalian health. There has been limited research into S. scabiei pathogenic mechanisms and the immunological interaction between S. scabiei and hosts. Galectins have critical roles in biological processes such as cell adhesion, signal transduction, and immune response mediation. Galectins of S. scabiei (SsGalectins) were cloned, expressed, and identified, and their transcriptional levels in S. scabiei were measured at various developmental stages. Fluorescent tissue localization was performed on SsGalectins of S. scabiei and scabies skin. A mouse AD model was constructed to evaluate the effect of rSsGalectins on skin pathogenic changes. Quantitative polymerase chain reaction and enzyme-linked immunoassay were used to identify macrophage polarization-related components and investigate the immunoregulatory effect of rSsGalectins on mouse macrophages. The results demonstrated that the S. scabiei infection causes macrophage infiltration in the scabies skin. The rSsGalectins displayed strong reactogenicity, and distinct genes of the SsGalectins were differently expressed in different developmental stages of S. scabiei. Fluorescence tissue localization revealed that the SsGalectins were mainly in the mouthparts, intestines, and body surface. Additionally, S. scabiei could secrete SsGalectins into the infected skin, proving that SsGalectins were excretion and secretion proteins of S. scabiei. In the mouse atopic dermatitis model, cutaneous macrophage infiltration and inflammation increase after rSsGalectins injection. Simultaneously, when rSsGalectins acted on bone marrow-derived macrophages, M1 macrophage-related polarization factors IL-1β, IL-6, and inducible nitric oxide synthase all increased, demonstrating that rSsGalectins can induce M1 polarization and produce pro-inflammatory cytokines. In conclusion, the SsGalectins are involved in the pathogenic process of S. scabiei by regulating the polarization of host macrophages to the M1 type when S. scabiei invade the host and promoting the incidence and development of the host's inflammatory response. This study offers fresh light on the pathogenic process of scabies mites, investigates the immunological interaction mechanism between S. scabiei and the host, and offers new insights into S. scabiei prevention and therapy.
Collapse
Affiliation(s)
- Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Luyang Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Maochuan Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhaoli Shen
- College of Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
2
|
Yang N, Zhang N, Wang Z, Cao W, He X, Zhang W, Xing Y. Galectin-1-dependent ceRNA network in HRMECs revealed its association with retinal neovascularization. BMC Genomics 2023; 24:327. [PMID: 37322431 DOI: 10.1186/s12864-023-09352-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Retinal neovascularization (RNV) is a leading cause of blindness worldwide. Long non-coding RNA (lncRNA) and competing endogenous RNA (ceRNA) regulatory networks play vital roles in angiogenesis. The RNA-binding protein galectin-1 (Gal-1) participates in pathological RNV in oxygen-induced retinopathy mouse models. However, the molecular associations between Gal-1 and lncRNAs remain unclear. Herein, we aimed to explore the potential mechanism of action of Gal-1 as an RNA-binding protein. RESULTS A comprehensive network of Gal-1, ceRNAs, and neovascularization-related genes was constructed based on transcriptome chip data and bioinformatics analysis of human retinal microvascular endothelial cells (HRMECs). We also conducted functional enrichment and pathway enrichment analyses. Fourteen lncRNAs, twenty-nine miRNAs, and eleven differentially expressed angiogenic genes were included in the Gal-1/ceRNA network. Additionally, the expression of six lncRNAs and eleven differentially expressed angiogenic genes were validated by qPCR in HRMECs with or without siLGALS1. Several hub genes, such as NRIR, ZFPM2-AS1, LINC0121, apelin, claudin-5, and C-X-C motif chemokine ligand 10, were found to potentially interact with Gal-1 via the ceRNA axis. Furthermore, Gal-1 may be involved in regulating biological processes related to chemotaxis, chemokine-mediated signaling, the immune response, and the inflammatory response. CONCLUSIONS The Gal-1/ceRNA axis identified in this study may play a vital role in RNV. This study provides a foundation for the continued exploration of therapeutic targets and biomarkers associated with RNV.
Collapse
Affiliation(s)
- Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Wenxi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Zhang M, Shi Z, Peng X, Cai D, Peng R, Lin Y, Dai L, Li J, Chen Y, Xiao J, Dong S, Wang W, Chen Y, He H. NLRP3 inflammasome-mediated Pyroptosis induce Notch signal activation in endometriosis angiogenesis. Mol Cell Endocrinol 2023:111952. [PMID: 37268099 DOI: 10.1016/j.mce.2023.111952] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023]
Abstract
Endometriosis is characterized by the presence of endometrial tissue outside the uterus that not only causes severe pelvic pain and infertility but also increased risk for ovarian carcinogenesis in women of reproductive age. Here, we found that angiogenesis was increased and accompanied with up-regulation of Notch1 in human endometriotic tissue sample, which is associated with pyroptosis induced by activation of endothelial NLRP3 inflammasome. Further, in endometriosis model induced in wild type and NLRP3-deficient (NLRP3-KO) mice, we found that deficiency of NLRP3 suppressing the development of endometriosis. In vitro, inhibiting the activation of NLRP3 inflammasome prevents LPS/ATP-induced tube formation in endothelial cells. Meanwhile, knockdown NLRP3 expression by gRNA disrupt the interaction between NICD and HIF-1α under the inflammatory microenvironment. This study demonstrates that activation of NLRP3 inflammasome-mediated pyroptosis affects angiogenesis in endometriosis via Notch1-dependent manner.
Collapse
Affiliation(s)
- Minyi Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhimian Shi
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xianglan Peng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Dongpeng Cai
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Rui Peng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yike Lin
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Linfeng Dai
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jieyi Li
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yulin Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jing Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Su Dong
- Department of Pharmacy, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Wei Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Hong He
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
4
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
5
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
6
|
Yamashita S, Hashimoto K, Sawada I, Ogawa M, Nakatsuka E, Kawano M, Kinose Y, Kodama M, Sawada K, Kimura T. Endometrial galectin-3 causes endometriosis by supporting eutopic endometrial cell survival and engraftment in the peritoneal cavity. Am J Reprod Immunol 2022; 87:e13533. [PMID: 35366371 DOI: 10.1111/aji.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
PROBLEM The pathogenesis of endometriosis remains unclear. Endometrial cells in retrograde menstruation are considered the source of endometriosis; therefore, we hypothesized that the eutopic endometrium may provide clues regarding the pathogenesis. We aimed to clarify the role of eutopic endometrial cells in endometriosis development. METHOD OF STUDY Eutopic endometrial tissues were obtained from patients with or without endometriosis, and expression of cell surface molecules in eutopic endometrial stromal cells (ESCs) was evaluated via iTRAQ-based proteomic analysis. Based on the results, we focused on galectin-3. Galectin-3 expression in clinical samples was confirmed by immunohistochemistry and Western blot analysis. The concentration of secreted galectin-3 was measured using enzyme-linked immunosorbent assays. Adhesion and migration of ESCs were evaluated by in vitro adhesion and wound healing assays. The cytotoxicity of natural killer cells was measured via calcein release assays. Cell proliferation was measured using the CyQUANT Cell Proliferation Assay Kit. RESULTS iTRAQ analysis revealed that galectin-3 expression was specifically elevated in the ESCs from endometriosis patients. Immunohistochemistry confirmed galectin-3 overexpression in the eutopic endometrium of endometriosis, irrespective of the menstrual phase. Galectin-3 was overexpressed and secreted by the eutopic ESCs from patients with endometriosis compared to that from patients without endometriosis. Galectin-3 expression in ESCs increased adhesion and migration, whereas galectin-3 inhibitors impaired these processes. Galectin-3 reduced the cytotoxicity of natural killer cells toward ESCs, while not affecting cell proliferation. CONCLUSION Galectin-3 promotes peritoneal engraftment of ESCs due to impaired immune surveillance in the peritoneal cavity and increases ESCs adhesion and migration to the peritoneum.
Collapse
Affiliation(s)
- Saya Yamashita
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ikuko Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Minori Ogawa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Erika Nakatsuka
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mahiru Kawano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
7
|
Novel diagnostic options for endometriosis - Based on the glycome and microbiome. J Adv Res 2021; 33:167-181. [PMID: 34603787 PMCID: PMC8463906 DOI: 10.1016/j.jare.2021.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/10/2020] [Accepted: 01/24/2021] [Indexed: 01/09/2023] Open
Abstract
Background Endometriosis is a chronic gynaecological disease whose aetiology is still unknown. Despite its prevalence among women of reproductive age, the pathology of the disease has not yet been elucidated and only symptomatic treatment is available. Endometriosis has high latency and diagnostic methods are both limited and invasive. Aim of review The aim of this review is to summarise minimally invasive or non-invasive diagnostic methods for endometriosis and their diagnostic efficiencies. Furthermore, we discuss the identification and diagnostic potential of novel disease biomarkers of microbial or glycan origin. Key scientific concepts of review Great efforts have been made to develop minimally invasive or non-invasive diagnostic methods in endometriosis. The problem with most potential biomarker candidates is that they have high accuracy only in cases of severe disease. Therefore, it is necessary to examine other potential biomarkers more closely. Associations between gastrointestinal and genital tract microbial health and endometriosis have been identified. For instance, irritable bowel syndrome is more common in women with endometriosis, and hormonal imbalance has a negative impact on the microbiome of both the genital tract and the gastrointestinal system. Further interrogation of these associations may have potential diagnostic significance and may identify novel therapeutic avenues. Glycomics may also be a potent source of biomarkers of endometriosis, with a number of glyco-biomarkers already approved by the FDA. Endometriosis-associated microbial and glycomic profiles may represent viable targets for development of innovative diagnostics in this debilitating disease.
Collapse
|
8
|
Sundblad V, Gomez RA, Stupirski JC, Hockl PF, Pino MS, Laborde H, Rabinovich GA. Circulating Galectin-1 and Galectin-3 in Sera From Patients With Systemic Sclerosis: Associations With Clinical Features and Treatment. Front Pharmacol 2021; 12:650605. [PMID: 33959016 PMCID: PMC8093796 DOI: 10.3389/fphar.2021.650605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic Sclerosis (SSc) is a rheumatic disease characterized by fibrosis, microvascular damage and immune dysregulation. Two major subsets, limited cutaneous systemic sclerosis (lcSSc) and diffuse cutaneous systemic sclerosis (dcSSc) can be defined, according to the extent of skin involvement. Increasing evidence indicates a role for galectins in immune and vascular programs, extracellular matrix remodeling and fibrosis, suggesting their possible involvement in SSc. Here, we determined serum levels of galectin (Gal)-1 and Gal-3 in 83 SSc patients (dcSSc n = 17; lcSSc n = 64; ssSSc n = 2), and evaluated their association with clinical manifestations of the disease. Patients with dcSSc showed lower Gal-3 levels, compared to lcSSc (p = 0.003), whereas no considerable difference in Gal-1 levels was detected between groups. Remarkably, higher concentrations of Gal-1 were associated with the presence of telangiectasias (p = 0.015), and higher concentrations Gal-3 were associated with telangiectasias (p = 0.021), diarrhea (p = 0.039) and constipation (p = 0.038). Moreover, lower Gal-3 levels were associated with the presence of tendinous retractions (p = 0.005). Patients receiving calcium blockers (p = 0.048), methotrexate (p = 0.046) or any immunosuppressive treatment (p = 0.044) presented lower concentrations of Gal-3 compared to those not receiving such treatments. The presence of telangiectasia and the type of SSc maintained their statistical association with Gal-3 (β 0.25; p = 0.022 and β 0.26; p = 0.017, respectively) in multiple linear regression models. In conclusion, serum levels of Gal-3 are associated with clinical manifestations of SSc. Among them, the presence of telangiectasias could be explained by the central role of this lectin in the vascularization programs.
Collapse
Affiliation(s)
- Victoria Sundblad
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Ramiro A Gomez
- División Reumatología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Juan C Stupirski
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Pablo F Hockl
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Maria S Pino
- División Reumatología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Hugo Laborde
- División Reumatología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
9
|
Cutine AM, Bach CA, Veigas F, Merlo JP, Laporte L, Manselle Cocco MN, Massaro M, Sarbia N, Perrotta RM, Mahmoud YD, Rabinovich GA. Tissue-specific control of galectin-1-driven circuits during inflammatory responses. Glycobiology 2021; 31:891-907. [PMID: 33498084 DOI: 10.1093/glycob/cwab007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The relevance of glycan-binding protein in immune tolerance and inflammation has been well established, mainly by studies of C-type lectins, siglecs and galectins both in experimental models and patient samples. Galectins, a family of evolutionarily conserved lectins, are characterized by sequence homology in the carbohydrate-recognition domain (CRD), atypical secretion via an ER-Golgi-independent pathway and the ability to recognize β-galactoside-containing saccharides. Galectin-1 (Gal-1), a prototype member of this family displays mainly anti-inflammatory and immunosuppressive activities, although, similar to many cytokines and growth factors, it may also trigger paradoxical pro-inflammatory effects under certain circumstances. These dual effects could be associated to tissue-, time- or context-dependent regulation of galectin expression and function, including particular pathophysiologic settings and/or environmental conditions influencing the structure of this lectin, as well as the availability of glycosylated ligands in immune cells during the course of inflammatory responses. Here, we discuss the tissue-specific role of Gal-1 as a master regulator of inflammatory responses across different pathophysiologic settings, highlighting its potential role as a therapeutic target. Further studies designed at analyzing the intrinsic and extrinsic pathways that control Gal-1 expression and function in different tissue microenvironments may contribute to design tailored therapeutic strategies aimed at positively or negatively modulate this glycan-binding protein in pathologic inflammatory conditions.
Collapse
Affiliation(s)
- Anabela M Cutine
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Camila A Bach
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Florencia Veigas
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Joaquín P Merlo
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Lorena Laporte
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Montana N Manselle Cocco
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Mora Massaro
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Nicolas Sarbia
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Ramiro M Perrotta
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Yamil D Mahmoud
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| |
Collapse
|
10
|
Galectins in allergic inflammatory diseases. Mol Aspects Med 2020; 79:100925. [PMID: 33203547 DOI: 10.1016/j.mam.2020.100925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Allergic inflammatory diseases are a global public health concern affecting millions of people. Although there are several potential hypotheses, details regarding their molecular mechanisms are still ambiguous. Recently, a group of β-galactoside-binding proteins, galectins, have been revealed as important factors in altering allergic chronic inflammatory diseases. In this review, we describe the molecular and cellular basis of how galectins modulate inflammatory reactions. We also provide an overview of clinical features related to galectins. Finally, we discuss the potential issues that might lead to misrepresentation of the exact biological functions of galectins.
Collapse
|
11
|
Liu Y, Ma J, Cui D, Fei X, Lv Y, Lin J. LncRNA MEG3-210 regulates endometrial stromal cells migration, invasion and apoptosis through p38 MAPK and PKA/SERCA2 signalling via interaction with Galectin-1 in endometriosis. Mol Cell Endocrinol 2020; 513:110870. [PMID: 32446846 DOI: 10.1016/j.mce.2020.110870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease with malignant characteristics that severely affects women's quality of life. Long noncoding RNA maternally expressed gene 3 (LncRNA MEG3) is a tumour suppressor that is downregulated in various cancer cells and tissues, and regulates multiple biological processes. Emerging studies have revealed that the interactions between MEG3 and proteins are involved in disease progression. Galectin-1 affects cell motility, signal transduction and vascularization, and is overexpressed in endometriosis. Our study is the first to explore the role of MEG3-210 transcript in endometriosis and to reveal the regulatory mechanism mediated by the interaction between MEG3-210 and Galectin-1. MATERIALS AND METHODS Endometrial tissues and sera from patients with endometriosis and controls were collected. qRT-PCR was performed to detect the expression of MEG3-210 in the endometrium and endometrial stromal cells (ESCs). The CCK-8 assay, the Transwell assay, flow cytometry and animal models were conducted to evaluate the functions of MEG3-210 in vitro and in vivo. Bioinformatic analysis, Western blot assays, RNA-pull down assays and RNA immunoprecipitation were used to explore the potential mechanism of MEG3-210 in endometriosis. RESULTS Our results showed that MEG3-210 expression was lower in the eutopic endometrium of women with endometriosis. MEG3-210 downregulation promoted ESCs migration, invasion, anti-apoptosis in vitro and growth of endometriotic lesions in vivo. Furthermore, MEG3-210 downregulation could activate p38 mitogen-activated protein kinase (p38 MAPK) and inhibit cAMP-dependent protein kinase A/sarcoplasmic reticulum Ca2+ ATPase 2 (PKA/SERCA2) signalling, which was mediated by Galectin-1. The protein levels of Galectin-1 in patients with endometriosis were elevated, and Galectin-1 siRNA could reduce the size of lesions. CONCLUSION MEG3-210 regulates ESCs through p38 MAPK and PKA/SERCA signalling via interaction with Galectin-1. The novel regulatory mechanism may provide new insights into drug therapy and the diagnosis of endometriosis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, PR China
| | - Junyan Ma
- Department of Key Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, PR China
| | - Ding Cui
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, PR China
| | - Xiangwei Fei
- Department of Key Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, PR China
| | - Yifei Lv
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, PR China
| | - Jun Lin
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, PR China.
| |
Collapse
|
12
|
Hisrich BV, Young RB, Sansone AM, Bowens Z, Green LJ, Lessey BA, Blenda AV. Role of Human Galectins in Inflammation and Cancers Associated with Endometriosis. Biomolecules 2020; 10:biom10020230. [PMID: 32033052 PMCID: PMC7072718 DOI: 10.3390/biom10020230] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022] Open
Abstract
Galectins are a family of β-galactoside-binding proteins that contribute to multiple cellular functions, including immune surveillance and apoptosis. Human galectins are also important regulators of inflammation, making them a research target for various inflammatory diseases and tumorigenesis associated with pro-inflammatory conditions. This review focuses on the involvement of human galectins in modulation of inflammation and in the pathophysiology of endometriosis and endometriosis-associated neoplasms. Endometriosis is a chronic inflammatory disease with unknown etiology. Galectins-1, -3 and -9 were found to be overexpressed in ectopic and eutopic endometrium of females with endometriosis compared to those without endometriosis. These findings suggest galectins’ role in the progression on endometriotic lesions and their potential use as diagnostic biomarkers and/or targets for therapeutic approaches. Galectins-1, -3, and -9 have also been implicated in the development of endometriosis-associated neoplasms. Furthermore, galectin-3 has been shown to interact with KRAS protein and contribute to cellular growth, proliferation, inflammation, and the uptake of nutrients in endometriotic lesions and may be involved in the maintenance and propagation of endometriosis. These galectins have been shown to be upregulated in certain forms of cervical, ovarian, endometrial, and colon cancer associated with endometriosis and have become a potential target for anti-cancer therapies.
Collapse
Affiliation(s)
- Brooke V. Hisrich
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA; (B.V.H.); (R.B.Y.); (A.M.S.)
| | - R. Brant Young
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA; (B.V.H.); (R.B.Y.); (A.M.S.)
| | - Alison M. Sansone
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA; (B.V.H.); (R.B.Y.); (A.M.S.)
| | - Zachary Bowens
- Department of Obstetrics and Gynecology, Prisma Health, Division of Reproductive Endocrinology and Infertility, Greenville, SC 29605, USA; (Z.B.); (L.J.G.); (B.A.L.)
| | - Lisa J. Green
- Department of Obstetrics and Gynecology, Prisma Health, Division of Reproductive Endocrinology and Infertility, Greenville, SC 29605, USA; (Z.B.); (L.J.G.); (B.A.L.)
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, Prisma Health, Division of Reproductive Endocrinology and Infertility, Greenville, SC 29605, USA; (Z.B.); (L.J.G.); (B.A.L.)
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anna V. Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA; (B.V.H.); (R.B.Y.); (A.M.S.)
- Correspondence: ; Tel.: +1-864-455-7998
| |
Collapse
|
13
|
Zhang T, De Carolis C, Man GCW, Wang CC. The link between immunity, autoimmunity and endometriosis: a literature update. Autoimmun Rev 2018; 17:945-955. [PMID: 30107265 DOI: 10.1016/j.autrev.2018.03.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
Abstract
Endometriosis (EMS), an estrogen-dependent inflammatory disorder affects approximately 5-10% of the general female population of reproductive age and 20-90% of women with pelvic pain and infertility. Many immunological factors are known to contribute significantly to the pathogenesis and pathophysiology of EMS, and both chronic local inflammation and autoantibodies in EMS shares many similarities with autoimmune diseases (AD). However, the autoimmune etiology in EMS remains controversial, and its evidence on autoimmune basis may be limited. Here we aim to review the current understanding between autoimmunity and EMS to provide important knowledge to develop future potential immunomodulatory therapy for the treatment of EMS.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong; Shenzhen Youshare Biotechnology Co. Ltd, Shenzhen, Guangdong, China
| | - Caterina De Carolis
- Polymedical Center for Prevention of Recurrent Spontaneous Abortion, Rome, Italy.
| | - Gene Chi Wai Man
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
14
|
Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget 2018; 8:32505-32522. [PMID: 28455954 PMCID: PMC5464805 DOI: 10.18632/oncotarget.17129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Collapse
|
15
|
Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update 2018; 24:207-224. [PMID: 29377994 DOI: 10.1093/humupd/dmy001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation. OBJECTIVE AND RATIONALE In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease. SEARCH METHODS Literature searches were performed in PubMed for English articles with the key words 'endometriosis', 'endometriotic lesions', 'angiogenesis', 'vascularization', 'vasculogenesis', 'endothelial progenitor cells' and 'inosculation'. The searches included both animal and human studies. No restriction was set for the publication date. OUTCOMES The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which activate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by means of anti-angiogenic compounds and vascular-disrupting agents. WIDER IMPLICATIONS The establishment of vascularization-based approaches in the management of endometriosis still represents a major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved in the near future.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
16
|
Brubel R, Bokor A, Pohl A, Schilli GK, Szereday L, Bacher-Szamuel R, Rigo J, Polgar B. Serum galectin-9 as a noninvasive biomarker for the detection of endometriosis and pelvic pain or infertility-related gynecologic disorders. Fertil Steril 2017; 108:1016-1025.e2. [PMID: 29202955 DOI: 10.1016/j.fertnstert.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the usefulness of soluble galectin-9 (Gal-9) in the noninvasive laboratory diagnosis of endometriosis and various gynecologic disorders. DESIGN Prospective case-control study. SETTING University medical centers. PATIENT(S) A total of 135 women of reproductive age were involved in the study, 77 endometriosis patients, 28 gynecologic controls, and 30 healthy women. INTERVENTION(S) Diagnostic laparoscopy and collection of tissue biopsies, peritoneal cells, and native peripheral blood from different case groups of gynecology patients and healthy women. MAIN OUTCOME MEASURE(S) The expression of mRNA and serum concentration of Gal-9. RESULT(S) Semiquantitative reverse transcription-polymerase chain reaction analysis and serum soluble Gal-9 ELISA were performed on three different cohorts of patients: those with endometriosis, those with benign gynecologic disorders, and healthy controls. Differences in the Gal-9 concentrations between the investigated groups and the stability of Gal-9 in the serum and diagnostic characteristics of Gal-9 ELISA were determined by statistical evaluation and receiver operating characteristic (ROC) curve analysis. Significantly elevated Gal-9 levels were found in both minimal-mild (I-II) and moderate-severe (III-IV) stages of endometriosis in comparison with healthy controls. At a cutoff of 132 pg/mL, ROC analysis revealed an excellent diagnostic value of Gal-9 ELISA in endometriosis (area under the curve = 0.973) with a sensitivity of 94% and specificity of 93.75%, indicating better diagnostic potential than that of other endometriosis biomarkers. Furthermore, various pelvic pain or infertility-associated benign gynecologic conditions were also associated with increased serum Gal-9 levels. CONCLUSION(S) Our results suggest that Gal-9 could be a promising noninvasive biomarker of endometriosis and a predictor of various infertility or pelvic pain-related gynecologic disorders.
Collapse
Affiliation(s)
- Reka Brubel
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Attila Bokor
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Akos Pohl
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Gabriella Krisztina Schilli
- Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Centre, Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Centre, Pecs, Hungary
| | - Reka Bacher-Szamuel
- Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Centre, Pecs, Hungary
| | - Janos Rigo
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Centre, Pecs, Hungary.
| |
Collapse
|
17
|
Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery. Cell Death Dis 2017; 8:e3176. [PMID: 29215607 PMCID: PMC5827204 DOI: 10.1038/cddis.2017.506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 11/25/2022]
Abstract
Secretory granules released by cytotoxic T lymphocytes (CTLs) are powerful weapons against intracellular microbes and tumor cells. Despite significant progress, there is still limited information on the molecular mechanisms implicated in target-driven degranulation, effector cell survival and composition and structure of the lytic granules. Here, using a proteomic approach we identified a panel of putative cytotoxic granule proteins, including some already known granule constituents and novel proteins that contribute to regulate the CTL lytic machinery. Particularly, we identified galectin-1 (Gal1), an endogenous immune regulatory lectin, as an integral component of the secretory granule machinery and unveil the unexpected function of this lectin in regulating CTL killing activity. Mechanistic studies revealed the ability of Gal1 to control the non-secretory lytic pathway by influencing Fas–Fas ligand interactions. This study offers new insights on the composition of the cytotoxic granule machinery, highlighting the dynamic cross talk between secretory and non-secretory pathways in controlling CTL lytic function.
Collapse
|
18
|
Sundblad V, Morosi LG, Geffner JR, Rabinovich GA. Galectin-1: A Jack-of-All-Trades in the Resolution of Acute and Chronic Inflammation. THE JOURNAL OF IMMUNOLOGY 2017; 199:3721-3730. [PMID: 29158348 DOI: 10.4049/jimmunol.1701172] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Regulatory signals provide negative input to immunological networks promoting resolution of acute and chronic inflammation. Galectin-1 (Gal-1), a member of a family of evolutionarily conserved glycan-binding proteins, displays broad anti-inflammatory and proresolving activities by targeting multiple immune cell types. Within the innate immune compartment, Gal-1 acts as a resolution-associated molecular pattern by counteracting the synthesis of proinflammatory cytokines, inhibiting neutrophil trafficking, targeting eosinophil migration and survival, and suppressing mast cell degranulation. Likewise, this lectin controls T cell and B cell compartments by modulating receptor clustering and signaling, thus serving as a negative-regulatory checkpoint that reprograms cellular activation, differentiation, and survival. In this review, we discuss the central role of Gal-1 in regulatory programs operating during acute inflammation, autoimmune diseases, allergic inflammation, pregnancy, cancer, and infection. Therapeutic strategies aimed at targeting Gal-1-glycan interactions will contribute to overcome cancer immunosuppression and reinforce antimicrobial immunity, whereas stimulation of Gal-1-driven immunoregulatory circuits will help to mitigate exuberant inflammation.
Collapse
Affiliation(s)
- Victoria Sundblad
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo de Investigaciones Científicas y Técnicas, C1428 Buenos Aires, Argentina
| | - Luciano G Morosi
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo de Investigaciones Científicas y Técnicas, C1428 Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Buenos Aires, Argentina
| | - Jorge R Geffner
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, C1405 Buenos Aires, Argentina; and.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, C1405 Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo de Investigaciones Científicas y Técnicas, C1428 Buenos Aires, Argentina; .,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Buenos Aires, Argentina
| |
Collapse
|
19
|
Davicino RC, Méndez-Huergo SP, Eliçabe RJ, Stupirski JC, Autenrieth I, Di Genaro MS, Rabinovich GA. Galectin-1–Driven Tolerogenic Programs AggravateYersinia enterocoliticaInfection by Repressing Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 199:1382-1392. [DOI: 10.4049/jimmunol.1700579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
20
|
Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs. Trends Biochem Sci 2017; 42:255-273. [DOI: 10.1016/j.tibs.2016.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
|
21
|
Song Y, Fu J, Zhou M, Xiao L, Feng X, Chen H, Huang W. Activated Hippo/Yes-Associated Protein Pathway Promotes Cell Proliferation and Anti-apoptosis in Endometrial Stromal Cells of Endometriosis. J Clin Endocrinol Metab 2016; 101:1552-61. [PMID: 26977530 PMCID: PMC4880175 DOI: 10.1210/jc.2016-1120] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT The imbalance in cell proliferation and apoptosis is considered an important role in the pathogenesis of endometriosis, but the exact mechanisms remains unclear. A newly established signaling pathway–Hippo/Yes-associated protein (YAP) pathway plays a critical role in the proliferation and apoptosis processes. However, studies focusing on Hippo/YAP pathway and endometriosis are lacking. OBJECTIVE The objective was to explore the function of the Hippo/YAP pathway in endometriosis. SETTING AND DESIGN The expression of YAP was first investigated in endometrium of women with or without endometriosis. The role of YAP in cell proliferation and apoptosis is identified by transfection of endometrial stromal cells (ESCs) in vitro, subsequent Verteporfin treatments in eutopic ESCs in vitro, and endometriosis animal model of nude mice in vivo. RESULTS Our results revealed that increased expression of YAP and decreased expression of p-YAP in ectopic and eutopic endometrium compared with normal endometrium. YAP knockdown in eutopic ESCs decreased cell proliferation and enhanced cell apoptosis companied with decreased expression of TEAD1, CTGF, and B-cell lymphoma/leukemia (BCL)-2; whereas overexpression of YAP resulted in increased proliferation and decreased apoptosis of normal ESCs with increased expression of TEAD1, CTGF, and BCL-2. By chromatin immunoprecipitation qPCR CTGF and BCL-2 were identified as directly downstream target genes of YAP-TEAD1 active complex. Eutopic ESCs treated with Verteporfin revealed decreased proliferation and enhanced apoptosis whereas in endometriosis animal models of nude mice treated with Verteporfin, the size of endometriotic lesions was significantly reduced. CONCLUSIONS Our study suggests that the Hippo/YAP-signaling pathway plays a critical role in the pathogenesis of endometriosis and should present a novel therapeutic method against endometriosis.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Min Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Xue Feng
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Hengxi Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| |
Collapse
|
22
|
|
23
|
Pérez CV, Gómez LG, Gualdoni GS, Lustig L, Rabinovich GA, Guazzone VA. Dual roles of endogenous and exogenous galectin-1 in the control of testicular immunopathology. Sci Rep 2015. [PMID: 26223819 PMCID: PMC4519738 DOI: 10.1038/srep12259] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Galectin-1 (Gal-1), a proto-type member of galectin family, is highly expressed in immune privileged sites, including the testis. However, in spite of considerable progress the relevance of endogenous and exogenous Gal-1 in testis pathophysiology have not yet been explored. Here we evaluated the in vivo roles of Gal-1 in experimental autoimmune orchitis (EAO), a well-established model of autoimmune testicular inflammation associated with subfertility and infertility. A significant reduction in the incidence and severity of EAO was observed in mice genetically deficient in Gal-1 (Lgals1−/−) versus wild-type (WT) mice. Testicular histopathology revealed the presence of multifocal testicular damage in WT mice characterized by an interstitial mononuclear cell infiltrate and different degrees of germ cell sloughing of seminiferous tubules. TUNEL assay and assessment of active caspase-3 expression, revealed the prevalence of apoptotic spermatocytes mainly localized in the adluminal compartment of seminiferous tubules in EAO mice. A significant increased number of TUNEL-positive germ cells was detected in EAO testis from WT compared with Lgals1−/− mice. In contrast, exogenous administration of recombinant Gal-1 to WT mice undergoing EAO attenuated the severity of the disease. Our results unveil a dual role of endogenous versus exogenous Gal-1 in the control of autoimmune testis inflammation.
Collapse
Affiliation(s)
- Cecilia V Pérez
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leticia G Gómez
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gisela S Gualdoni
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- 1] Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Ciudad Autónoma de Buenos Aires, Argentina [2] Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanesa A Guazzone
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chacham O, Hahn S, Erez O, Papp Z, Kim CJ. Galectins: Double-edged Swords in the Cross-roads of Pregnancy Complications and Female Reproductive Tract Inflammation and Neoplasia. J Pathol Transl Med 2015; 49:181-208. [PMID: 26018511 PMCID: PMC4440931 DOI: 10.4132/jptm.2015.02.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eva Karpati
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
- Department of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | | | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Pathology, Wayne State University, Detroit, MI, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|