1
|
Sinopoli A, Sciurti A, Isonne C, Santoro MM, Baccolini V. The Efficacy of Multivitamin, Vitamin A, Vitamin B, Vitamin C, and Vitamin D Supplements in the Prevention and Management of COVID-19 and Long-COVID: An Updated Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2024; 16:1345. [PMID: 38732592 PMCID: PMC11085542 DOI: 10.3390/nu16091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This review aims to evaluate the efficacy of any vitamin administration(s) in preventing and managing COVID-19 and/or long-COVID. Databases were searched up to May 2023 to identify randomized clinical trials comparing data on the effects of vitamin supplementation(s) versus placebo or standard of care on the two conditions of interest. Inverse-variance random-effects meta-analyses were conducted to estimate pooled risk ratios (RRs) and 95% confidence intervals (CIs) for all-cause mortality between supplemented and non-supplemented individuals. Overall, 37 articles were included: two regarded COVID-19 and long-COVID prevention and 35 records the COVID-19 management. The effects of vitamin D in preventing COVID-19 and long-COVID were contrasting. Similarly, no conclusion could be drawn on the efficacy of multivitamins, vitamin A, and vitamin B in COVID-19 management. A few positive findings were reported in some vitamin C trials but results were inconsistent in most outcomes, excluding all-cause mortality (RR = 0.84; 95% CI: 0.72-0.97). Vitamin D results were mixed in most aspects, including mortality, in which benefits were observed in regular administrations only (RR = 0.67; 95% CI: 0.49-0.91). Despite some benefits, results were mostly contradictory. Variety in recruitment and treatment protocols might explain this heterogeneity. Better-designed studies are needed to clarify these vitamins' potential effects against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Antonio Sciurti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Isonne
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Al-Sulaiti H, Almaliti J, Naman CB, Al Thani AA, Yassine HM. Metabolomics Approaches for the Diagnosis, Treatment, and Better Disease Management of Viral Infections. Metabolites 2023; 13:948. [PMID: 37623891 PMCID: PMC10456346 DOI: 10.3390/metabo13080948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023] Open
Abstract
Metabolomics is an analytical approach that involves profiling and comparing the metabolites present in biological samples. This scoping review article offers an overview of current metabolomics approaches and their utilization in evaluating metabolic changes in biological fluids that occur in response to viral infections. Here, we provide an overview of metabolomics methods including high-throughput analytical chemistry and multivariate data analysis to identify the specific metabolites associated with viral infections. This review also focuses on data interpretation and applications designed to improve our understanding of the pathogenesis of these viral diseases.
Collapse
Affiliation(s)
- Haya Al-Sulaiti
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-S.); (A.A.A.T.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jehad Almaliti
- Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA P.O. Box 92093, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - C. Benjamin Naman
- Department of Science and Conservation, San Diego Botanic Garden, Encinitas, CA P.O. Box 92024, USA;
| | - Asmaa A. Al Thani
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-S.); (A.A.A.T.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Health Sciences, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Health Sciences, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Shi W, Jin M, Chen H, Wu Z, Yuan L, Liang S, Wang X, Memon FU, Eldemery F, Si H, Ou C. Inflammasome activation by viral infection: mechanisms of activation and regulation. Front Microbiol 2023; 14:1247377. [PMID: 37608944 PMCID: PMC10440708 DOI: 10.3389/fmicb.2023.1247377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
Viral diseases are the most common problems threatening human health, livestock, and poultry industries worldwide. Viral infection is a complex and competitive dynamic biological process between a virus and a host/target cell. During viral infection, inflammasomes play important roles in the host and confer defense mechanisms against the virus. Inflammasomes are polymeric protein complexes and are considered important components of the innate immune system. These immune factors recognize the signals of cell damage or pathogenic microbial infection after activation by the canonical pathway or non-canonical pathway and transmit signals to the immune system to initiate the inflammatory responses. However, some viruses inhibit the activation of the inflammasomes in order to replicate and proliferate in the host. In recent years, the role of inflammasome activation and/or inhibition during viral infection has been increasingly recognized. Therefore, in this review, we describe the biological properties of the inflammasome associated with viral infection, discuss the potential mechanisms that activate and/or inhibit NLRP1, NLRP3, and AIM2 inflammasomes by different viruses, and summarize the reciprocal regulatory effects of viral infection on the NLRP3 inflammasome in order to explore the relationship between viral infection and inflammasomes. This review will pave the way for future studies on the activation mechanisms of inflammasomes and provide novel insights for the development of antiviral therapies.
Collapse
Affiliation(s)
- Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengyun Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hao Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | - Liuyang Yuan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Si Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaohan Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fareed Uddin Memon
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| |
Collapse
|
4
|
Bendas ER, Rezk MR, Badr KA. Does the Ethnic Difference Affect the Pharmacokinetics of Favipiravir? A Pharmacokinetic Study in Healthy Egyptian Volunteers and Development of Level C In-vitro In-vivo Correlation. Drug Res (Stuttg) 2023. [PMID: 37094796 DOI: 10.1055/a-2061-7074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Favipiravir is an antiviral drug used to treat influenza and is also being investigated for the treatment of SARS-CoV-2. Its pharmacokinetic profile varies depending on ethnic group. The present research examines the pharmacokinetic features of favipiravir in healthy male Egyptian volunteers. Another goal of this research is to determine the optimum dissolution testing conditions for immediate release tablets. In vitro dissolution testing was investigated for favipiravir tablets in three different pH media. The pharmacokinetic features of favipiravir were examined in 27 healthy male Egyptian volunteers. The parameter "AUC0-t" vs. percent dissolved was used to develop level C in vitro in vivo correlation (IVIVC) to set the optimum dissolution medium to achieve accurate dissolution profile for favipiravir (IR) tablets. The in vitro release results revealed significant difference among the three different dissolution media. The Pk parameters of twenty-seven human subjects showed mean value of Cpmax of 5966.45 ng/mL at median tmax of 0.75 h with AUC0-∞ equals 13325.54 ng.h/mL, showing half-life of 1.25 h. Level C IVIVC was developed successfully. It was concluded that Egyptian volunteers had comparable Pk values to American and Caucasian volunteers, however they were considerably different from Japanese subjects. AUC0-t vs. % dissolved was used to develop level C IVIVC to set the optimum dissolution medium. Phosphate buffer medium (pH 6.8) was found to be the optimum dissolution medium for in vitro dissolution testing for Favipiravir IR tablets.
Collapse
Affiliation(s)
- Ehab R Bendas
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kamal A Badr
- Pharmaceutics Department, Faculty of Pharmacy, Deraya University, New Minya, Egypt
- Advanced Research Center, Nasr City, Cairo, Egypt
| |
Collapse
|
5
|
Behzadi A, imani S, Deravi N, Mohammad Taheri Z, mohammadian F, moraveji Z, Shavysi S, Mostafaloo M, Soleimani Hadidi F, Nanbakhsh S, Olangian-Tehrani S, Marabi MH, behshood P, Poudineh M, Kheirandish A, Keylani K, Behfarnia P. Antiviral Potential of Melissa officinalis L.: A Literature Review. Nutr Metab Insights 2023; 16:11786388221146683. [PMID: 36655201 PMCID: PMC9841880 DOI: 10.1177/11786388221146683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023] Open
Abstract
The use of synthetic drugs has increased in recent years; however, herbal medicine is yet more trusted among a huge population worldwide; This could be due to minimal side effects, affordable prices, and traditional beliefs. Lemongrass (Melissa officinalis) has been widely used for reducing stress and anxiety, increasing appetite and sleep, reducing pain, healing wounds, and treating poisonous insect bites and bee stings for a long time. Today, research has shown that this plant can also fight viruses including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Herpes Simplex Virus (HSV), and Human Immunodeficiency Virus (HIV) through various mechanisms such as inhibiting HSV-1 from binding to host cell, inhibiting HSV-1 replication during the post-adsorption or inhibiting main protease and spike protein of SARS-CoV-2, furthermore, be effective in treating related diseases. This Review investigated the antiviral properties of Melissa officinalis and its effect on viral diseases. More in vitro and in vivo studies are needed to determine Melissa officinaliss underlying mechanism, and more randomized controlled trials should be done to identify its effect in humans. Also, due to the usefulness and lack of side effects, it can be used more as a complementary medicine.
Collapse
Affiliation(s)
- Amirhossein Behzadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sadegh imani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - fatemeh mohammadian
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - zahra moraveji
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Shavysi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Motahareh Mostafaloo
- School of Nursing and Midwifery, Iran University of Medical Science, Tehran, Iran
| | - Fateme Soleimani Hadidi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Nanbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sepehr Olangian-Tehrani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Mohammad Hesam Marabi
- Student Research Committee, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa behshood
- Department of Microbiology, Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Isfahan, Iran
| | | | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Behfarnia
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Dhara AK, Nayak AK. Introduction to antiviral therapy. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:3-22. [DOI: 10.1016/b978-0-323-91814-5.00025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Wang Y, Tong Y, Zhang Z, Zheng R, Huang D, Yang J, Zong H, Tan F, Xie Y, Huang H, Zhang X. ViMIC: a database of human disease-related virus mutations, integration sites and cis-effects. Nucleic Acids Res 2022; 50:D918-D927. [PMID: 34500462 PMCID: PMC8728280 DOI: 10.1093/nar/gkab779] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular mechanisms of virus-related diseases involve multiple factors, including viral mutation accumulation and integration of a viral genome into the host DNA. With increasing attention being paid to virus-mediated pathogenesis and the development of many useful technologies to identify virus mutations (VMs) and viral integration sites (VISs), much research on these topics is available in PubMed. However, knowledge of VMs and VISs is widely scattered in numerous published papers which lack standardization, integration and curation. To address these challenges, we built a pilot database of human disease-related Virus Mutations, Integration sites and Cis-effects (ViMIC), which specializes in three features: virus mutation sites, viral integration sites and target genes. In total, the ViMIC provides information on 31 712 VMs entries, 105 624 VISs, 16 310 viral target genes and 1 110 015 virus sequences of eight viruses in 77 human diseases obtained from the public domain. Furthermore, in ViMIC users are allowed to explore the cis-effects of virus-host interactions by surveying 78 histone modifications, binding of 1358 transcription regulators and chromatin accessibility on these VISs. We believe ViMIC will become a valuable resource for the virus research community. The database is available at http://bmtongji.cn/ViMIC/index.php.
Collapse
Affiliation(s)
- Ying Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Yuantao Tong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zeyu Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rongbin Zheng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Danqi Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinxuan Yang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hui Zong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fanglin Tan
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yujia Xie
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Honglian Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoyan Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
De Castro F, De Luca E, Benedetti M, Fanizzi FP. Platinum compounds as potential antiviral agents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Rai KR, Shrestha P, Yang B, Chen Y, Liu S, Maarouf M, Chen JL. Acute Infection of Viral Pathogens and Their Innate Immune Escape. Front Microbiol 2021; 12:672026. [PMID: 34239508 PMCID: PMC8258165 DOI: 10.3389/fmicb.2021.672026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viral infections can cause rampant disease in human beings, ranging from mild to acute, that can often be fatal unless resolved. An acute viral infection is characterized by sudden or rapid onset of disease, which can be resolved quickly by robust innate immune responses exerted by the host or, instead, may kill the host. Immediately after viral infection, elements of innate immunity, such as physical barriers, various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, provide the first line of defense for viral clearance. Innate immunity not only plays a critical role in rapid viral clearance but can also lead to disease progression through immune-mediated host tissue injury. Although elements of antiviral innate immunity are armed to counter the viral invasion, viruses have evolved various strategies to escape host immune surveillance to establish successful infections. Understanding complex mechanisms underlying the interaction between viruses and host’s innate immune system would help develop rational treatment strategies for acute viral infectious diseases. In this review, we discuss the pathogenesis of acute infections caused by viral pathogens and highlight broad immune escape strategies exhibited by viruses.
Collapse
Affiliation(s)
- Kul Raj Rai
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Prasha Shrestha
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bincai Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shasha Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
10
|
Carvalho FS, Porto NKA, Azevedo PVM, Magalhães PKA, Araújo END, Correia MS, Silva KMD, Pavão JMSJ, Ferreira JRDS, Maior LPS, Cavalcanti MGS, Ferreira-Júnior GC, Matos-Rocha TJ. Agents causing genital infections in routine cytological tests: frequency and characteristics of Papanicolaou smears. BRAZ J BIOL 2021; 82:e238180. [PMID: 34161422 DOI: 10.1590/1519-6984.238180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Urinary tract infections are responsible for most human infections, these are caused by bacteria, fungi, protozoa and associated microorganisms. The goal of this study was to determine the rate of vaginal infection-causing agents in routine cytological exams and also to evaluate the characteristics of positive tested Pap smears. A retrospective documental with descriptive aspect research was performed in a Clinical Pathology laboratory from Maceió-AL. The results of the Pap smears exams for Trichomonas vaginalis, Gardnerella vaginalis, Candida spp and HPV were arranged in a database as well as other data such as bacterial, protozoan, fungal and viral coinfections. The sample was composed by 18.645 women who have undergone Pap smear exams from 2013 to 2017. Of these analyzed exams, 27.4% in 2013, 10.9% in 2014, 10.6% in 2015, 15.2% in 2016 and 13.67% in 2017 were within normal range, however more than half of these exams presented some infections caused by unspecific or microbiological agents. By analyzing all the reports, 4.073 (21.84%) presented inflammations caused by some species of infectious agent with the following rate order: G. vaginalis and T. vaginalis. Furthermore, it was possible to confirm high rates of coinfection by and Candida spp. The rate of genital infections in this study highlights that there is a public health matter that must be controlled, which points a greater need for monitoring, guidance and actions towards greater awareness in order to prevent these problems.
Collapse
Affiliation(s)
| | - N K A Porto
- Universidade Estadual de Ciências da Saúde de Alagoas, Maceió, AL, Brasil
| | | | | | | | - M S Correia
- Centro Universitário Cesmac, Maceió, AL, Brasil
| | - K M da Silva
- Universidade Estadual de Ciências da Saúde de Alagoas, Maceió, AL, Brasil
| | | | - J R da S Ferreira
- Universidade Estadual de Ciências da Saúde de Alagoas, Maceió, AL, Brasil
| | - L P S Maior
- Centro Universitário Cesmac, Maceió, AL, Brasil
| | | | - G C Ferreira-Júnior
- Instituto Federal de Educação, Ciência e Tecnologia do Acre - IFAC, Xapuri, AC, Brasil
| | - T J Matos-Rocha
- Centro Universitário Cesmac, Maceió, AL, Brasil.,Universidade Estadual de Ciências da Saúde de Alagoas, Maceió, AL, Brasil
| |
Collapse
|
11
|
Chikowe I, Mtewa AG, Tembo D, Smith D, Ibrahim E, Mwamatope B, Nkhungulu J, Kumpalume P, Maroyi A. Potential of Malawi's medicinal plants in Covid-19 disease management: A review. Malawi Med J 2021; 33:85-107. [PMID: 34777704 PMCID: PMC8560350 DOI: 10.4314/mmj.v33i2.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered an international pandemic that has led to significant public health problems. To date, limited evidence exists to suggest that drugs are effective against the disease. As possible treatments are being investigated, herbal medicines have shown potential for producing novel antiviral agents for the COVID-19 disease. Aim This review explored the potential of Malawi's traditional medicinal plants for the management of COVID-19. Methods The authors searched on PubMed and Google scholar for medicinal plants that are used in Malawi and published in openly available peer reviewed journals. Plants linked with antiviral treatment, anti-COVID-19 activity or COVID-19 symptoms management were targeted. These included activity against pneumonia, inflammation, cough, difficulty in breathing, pain/aches, fever, diarrhoea, rheumatism, fatigue, asthma, immunocompromised and cardiovascular diseases. Results 11 studies were found with 306 plant species. 127 plant species had at least one COVID-19 related pharmacological activity. Of these plant species, the number of herbal entities used for each indication was: pain/aches (87), fever (2), pneumonia (9), breathing/asthma problems (5), coughing (11), diarrhoea (1), immunosuppression (8), blood issues (10), fatigue (2), heart problems (11), inflammation (8), rheumatism (10) and viral diseases (12). Thirty (30) species were used for more than one disease and Azedarachta indica topped the list (6 of the 13 COVID-19 related diseases). The majority of the species had phytochemicals known to have antiviral activity or mechanisms of actions linked to COVID-19 and consequent diseases' treatment pathways. Conclusion Medicinal plants are a promising source of compounds that can be used for drug development of COVID-19 related diseases. This review highlights potential targets for the World Health Organization and other research entities to explore in order to assist in controlling the pandemic.
Collapse
Affiliation(s)
- Ibrahim Chikowe
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi/Kamuzu University of Health Sciences
| | - Andrew G Mtewa
- Chemistry Section, Malawi Institute of Technology, Malawi University of Science and Technology, Thyolo, Malawi
| | - David Tembo
- The Polytechnic, University of Malawi, Blantyre, Malawi/Malawi University of Business and Applied Sciences
| | - Dallas Smith
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi/Kamuzu University of Health Sciences
| | - Edna Ibrahim
- The Polytechnic, University of Malawi, Blantyre, Malawi/Malawi University of Business and Applied Sciences
| | | | - Justin Nkhungulu
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi/Kamuzu University of Health Sciences
| | - Peter Kumpalume
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre, Malawi/Kamuzu University of Health Sciences
| | | |
Collapse
|
12
|
Li W, Qiang X, Qin S, Huang Y, Hu Y, Bai B, Hou J, Gao R, Zhang X, Mi Z, Fan H, Ye H, Tong Y, Mao P. Virome diversity analysis reveals novel enteroviruses and a human picobirnavirus in stool samples from African green monkeys with diarrhea. INFECTION GENETICS AND EVOLUTION 2020; 82:104279. [PMID: 32165243 PMCID: PMC7102571 DOI: 10.1016/j.meegid.2020.104279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
It is important to identify viruses in animals because most infectious diseases in humans are caused by viruses of zoonotic origin. African green monkey is a widely used non-human primate model in biomedical investigations. In this study, total RNAs were extracted from stool samples of 10 African green monkeys with diarrhea. High-throughput sequencing was used to characterize viromes. PCR and Sanger sequencing were used to determine the full genome sequences. Great viral diversity was observed. The dominant viruses were enteroviruses and picobirnaviruses. Six enterovirus genomes and a picobirnavirus RNA-dependent RNA polymerase sequence were characterized. Five enteroviruses belonged to two putative new genotypes of species Enterovirus J. One enterovirus belonged to EV-A92. The picobirnavirus RNA-dependent RNA polymerase sequence had the highest nucleotide similarity (93.48%) with human picobirnavirus isolate GPBV6C2. The present study helped to identify the potential zoonotic viruses in African green monkeys. Further investigations are required to elucidate their pathogenic roles in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Li
- Chinese PLA Medical School, Beijing 100853, China; Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xin Qiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan Hu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Bingke Bai
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jun Hou
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Rong Gao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Huahu Ye
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China.
| | - Yigang Tong
- BAIC-SM, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Panyong Mao
- Chinese PLA Medical School, Beijing 100853, China; Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
13
|
Gast M, Sobek H, Mizaikoff B. Advances in imprinting strategies for selective virus recognition a review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Leiva-Torres GA, Nebesio N, Vidal SM. Discovery of Variants Underlying Host Susceptibility to Virus Infection Using Whole-Exome Sequencing. Methods Mol Biol 2017; 1656:209-227. [PMID: 28808973 PMCID: PMC7120756 DOI: 10.1007/978-1-4939-7237-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The clinical course of any viral infection greatly differs in individuals. This variation results from various viral, host, and environmental factors. The identification of host genetic factors influencing inter-individual variation in susceptibility to several pathogenic viruses has tremendously increased our understanding of the mechanisms and pathways required for immunity. Next-generation sequencing of whole exomes represents a powerful tool in biomedical research. In this chapter, we briefly introduce whole-exome sequencing in the context of genetic approaches to identify host susceptibility genes to viral infections. We then describe general aspects of the workflow for whole-exome sequence analysis together with the tools and online resources that can be used to identify and annotate variant calls, and then prioritize them for their potential association to phenotypes of interest.
Collapse
Affiliation(s)
- Gabriel A Leiva-Torres
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Research Center on Complex Traits, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Nestor Nebesio
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Research Center on Complex Traits, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- McGill University Research Center on Complex Traits, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Evaluation of the Activity of Lamivudine and Zidovudine against Ebola Virus. PLoS One 2016; 11:e0166318. [PMID: 27902714 PMCID: PMC5130197 DOI: 10.1371/journal.pone.0166318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022] Open
Abstract
In the fall of 2014, an international news agency reported that patients suffering from Ebola virus disease (EVD) in Liberia were treated successfully with lamivudine, an antiviral drug used to treat human immunodeficiency virus-1 and hepatitis B virus infections. According to the report, 13 out of 15 patients treated with lamivudine survived and were declared free from Ebola virus disease. In this study, the anti-Ebola virus (EBOV) activity of lamivudine and another antiretroviral, zidovudine, were evaluated in a diverse set of cell lines against two variants of wild-type EBOV. Variable assay parameters were assessed to include different multiplicities of infection, lengths of inoculation times, and durations of dosing. At a multiplicity of infection of 1, lamivudine and zidovudine had no effect on EBOV propagation in Vero E6, Hep G2, or HeLa cells, or in primary human monocyte-derived macrophages. At a multiplicity of infection of 0.1, zidovudine demonstrated limited anti-EBOV activity in Huh 7 cells. Under certain conditions, lamivudine had low anti-EBOV activity at the maximum concentration tested (320 μM). However, lamivudine never achieved greater than 30% viral inhibition, and the activity was not consistently reproducible. Combination of lamivudine and zidovudine showed no synergistic antiviral activity. Independently, a set of in vitro experiments testing lamivudine and zidovudine for antiviral activity against an Ebola-enhanced green fluorescent protein reporter virus was performed at the Centers for Disease Control and Prevention. No antiviral activity was observed for either compound. A study evaluating the efficacy of lamivudine in a guinea pig model of EVD found no survival benefit. This lack of benefit was observed despite plasma lamivudine concentrations in guinea pig of about 4 μg/ml obtained in a separately conducted pharmacokinetics study. These studies found no evidence to support the therapeutic use of lamivudine for the treatment of EVD.
Collapse
|
16
|
Usui Y, Rao NA, Takase H, Tsubota K, Umazume K, Diaz-Aguilar D, Kezuka T, Mochizuki M, Goto H, Sugita S. Comprehensive polymerase chain reaction assay for detection of pathogenic DNA in lymphoproliferative disorders of the ocular adnexa. Sci Rep 2016; 6:36621. [PMID: 27830722 PMCID: PMC5103257 DOI: 10.1038/srep36621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Infectious agents have been identified as a major cause of specific types of human cancers worldwide. Several microorganisms have been identified as potential aggravators of ocular adnexal neoplasms; however, given the rarity of these neoplasms, large epidemiological studies are difficult to coordinate. This study aimed to conduct an exhaustive search for pathogenic DNA in lymphoproliferative disorders (LPD) of the ocular adnexa in a total of 70 patients who were diagnosed with LPD of the ocular adnexa between 2008 and 2013. Specimens were screened for bacterial, viral, fungal, and parasitic DNA by multiplex polymerase chain reaction (PCR) and quantitative real-time PCR. Among cases of conjunctival mucosa-associated lymphoid tissue lymphoma, human herpes virus (HHV)-6, HHV-7, chlamydia, Epstein-Barr virus (EBV) and bacterial 16S ribosomal DNA were detected. In cases of IgG4-related ocular disease, similar pathogens were detected but in a larger number of patients. Our PCR assays detected DNAs of various infectious agents in tumor specimens, especially HHV6, HHV7, and EBV, with different positive rates in various types of LPD. Chronic inflammatory stimulation or activation of oncogenes from these infectious agents might be involved in the pathogenesis of LPD of the ocular adnexa.
Collapse
Affiliation(s)
- Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Narsing A. Rao
- Department of Ophthalmology, University of Southern California, USA
| | - Hiroshi Takase
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiko Umazume
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Daniel Diaz-Aguilar
- David Geffen School of Medicine, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095
| | - Takeshi Kezuka
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Manabu Mochizuki
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
- Miyata Eye Hospital, Miyakonojo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
17
|
Asteltoxins with Antiviral Activities from the Marine Sponge-Derived Fungus Aspergillus sp. SCSIO XWS02F40. Molecules 2015; 21:E34. [PMID: 26712735 PMCID: PMC6272915 DOI: 10.3390/molecules21010034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/06/2023] Open
Abstract
Two new asteltoxins named asteltoxin E (2) and F (3), and a new chromone (4), together with four known compounds were isolated from a marine sponge–derived fungus, Aspergillus sp. SCSIO XWS02F40. The structures of the compounds (1–7) were determined by the extensive 1D- and 2D-NMR spectra, and HRESIMS spectrometry. All the compounds were tested for their antiviral (H1N1 and H3N2) activity. Compounds 2 and 3 showed significant activity against H3N2 with the prominent IC50 values of 6.2 ± 0.08 and 8.9 ± 0.3 μM, respectively. In addition, compound 2 also exhibited inhibitory activity against H1N1 with an IC50 value of 3.5 ± 1.3 μM.
Collapse
|
18
|
Slatter TL, Hung NG, Clow WM, Royds JA, Devenish CJ, Hung NA. A clinicopathological study of episomal papillomavirus infection of the human placenta and pregnancy complications. Mod Pathol 2015; 28:1369-82. [PMID: 26293778 DOI: 10.1038/modpathol.2015.88] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/12/2022]
Abstract
Viral infections are known to adversely affect pregnancy, but scant attention has been given to human papilloma virus (HPV) infection. We aimed to determine the molecular and histopathological features of placental HPV infection, in association with pregnancy complications including fetal growth restriction, pre-maturity, pre-eclampsia, and diabetes. Three hundred and thirty-nine placentae were selected based on the presence or absence of pregnancy complications. Five independent methods were used to identify HPV in the placenta, namely, immunohistochemistry for L1 viral capsid, in situ hybridization to high-risk HPV DNA, PCR, western blotting, and transmission electron microscopy. Pregnancy complications and uterine cervical smear screening results were correlated with placental HPV histopathology. In this study, which was deliberately biased towards complications, HPV was found in the decidua of 75% of placentae (253/339) and was statistically associated with histological acute chorioamnionitis (P<0.05). In 14% (35/253) of the HPV positive cases, HPV L1 immunoreactivity also occurred in the villous trophoblast where it was associated with a lymphohistiocytic villitis (HPV-LHV), and was exclusively of high-risk HPV type. HPV-LHV significantly associated with fetal growth restriction, preterm delivery, and pre-eclampsia (all P<0.05). All cases of pre-eclampsia (20/20) in our cohort had high-risk placental HPV. A further 55 cases (22%, 55/253) of HPV positive placentae had minimal villous trophoblast HPV L1 immunoreactivity, but a sclerosing pauci-immune villitis, statistically associated with diabetes (49.1%, 27/55, P<0.05). For women with placental HPV, 33% (69/207) had an HPV-related positive smear result before pregnancy compared with (9.4% 8/85) of women with HPV-negative placentae (P=0.0001). Our findings support further investigations to determine if vaccination of women and men will improve pregnancy outcomes.
Collapse
Affiliation(s)
- Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - William M Clow
- Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Celia J Devenish
- Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Noelyn A Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Scully C, Samaranayake LP. Emerging and changing viral diseases in the new millennium. Oral Dis 2015; 22:171-9. [PMID: 26179810 PMCID: PMC7167660 DOI: 10.1111/odi.12356] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Abstract
Most viral infections encountered in resource‐rich countries are relatively trivial and transient with perhaps fever, malaise, myalgia, rash (exanthema) and sometimes mucosal manifestations (enanthema), including oral in some. However, the apparent benignity may be illusory as some viral infections have unexpected consequences – such as the oncogenicity of some herpesviruses and human papillomaviruses. Infections are transmitted from various human or animal vectors, especially by close proximity, and the increasing movements of peoples across the globe, mean that infections hitherto confined largely to the tropics now appear worldwide. Global warming also increases the range of movement of vectors such as mosquitoes. Thus recent decades have seen a most dramatic change with the emergence globally also of new viral infections – notably human immunodeficiency viruses (HIV) – and the appearance of some other dangerous and sometimes lethal infections formerly seen mainly in, and reported from, resource‐poor areas especially in parts of Asia, Latin America and Africa. This study offers a brief update of the most salient new aspects of the important viral infections, especially those with known orofacial manifestations or other implications for oral health care.
Collapse
Affiliation(s)
- C Scully
- WHO Collaborating Centre for Oral Health-General Health, London.,UCL, London, UK
| | - L P Samaranayake
- Oral Microbiomics and Infection, School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|