1
|
Villarreal OE, Xu Y, Tran H, Machado A, Prescod D, Anderson A, Minelli R, Peoples M, Martinez AH, Lee HM, Wong CW, Fowlkes N, Kanikarla P, Sorokin A, Alshenaifi J, Coker O, Lin K, Bristow C, Viale A, Shen JP, Parseghian C, Marszalek JR, Corcoran R, Kopetz S. Adaptive Plasticity Tumor Cells Modulate MAPK-Targeting Therapy Response in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634215. [PMID: 39896605 PMCID: PMC11785218 DOI: 10.1101/2025.01.22.634215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
MAPK pathway inhibitors (MAPKi) are increasingly used in the treatment of advanced colorectal cancer, but often produce short-lived responses in patients. Although acquired resistance by de novo mutations in tumors have been found to reduce response in some patients, additional mechanisms underlying the limited response durability of MAPK targeting therapy remain unknown. Here, we denote new contributory tumor biology and provide insight on the impact of tumor plasticity on therapy response. Analysis of MAPKi treated patients revealed activation of stemness programs and increased ASCL2 expression, which are associated with poor outcomes. Greater ASCL2 with MAPKi treatment was also seen in patient-derived CRC models, independent of driver mutations. We find ASCL2 denotes a distinct cell population, arising from phenotypic plasticity, with a proliferative, stem-like phenotype, and decreased sensitivity to MAPKi therapy, which were named adaptive plasticity tumor (APT) cells. MAPK pathway suppression induces the APT phenotype in cells, resulting in APT cell enrichment in tumors and limiting therapy response in preclinical and clinical data. APT cell depletion improved MAPKi treatment efficacy and extended MAPKi response durability in mice. These findings uncover a cellular program that mitigates the impact of MAPKi therapies and highlights the importance of addressing tumor plasticity to improve clinical outcomes.
Collapse
|
2
|
Fernández-Nogueira P, Linzoain-Agos P, Cueto-Remacha M, De la Guia-Lopez I, Recalde-Percaz L, Parcerisas A, Gascon P, Carbó N, Gutierrez-Uzquiza A, Fuster G, Bragado P. Role of semaphorins, neuropilins and plexins in cancer progression. Cancer Lett 2024; 606:217308. [PMID: 39490515 DOI: 10.1016/j.canlet.2024.217308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Progress in understanding nervous system-cancer interconnections has emphasized the functional role of semaphorins (SEMAs) and their receptors, neuropilins (NRPs) and plexins (PLXNs), in cancer progression. SEMAs are a conserved and extensive family of broadly expressed soluble and membrane-associated proteins that were first described as regulators of axon guidance and neural and vascular development. However, recent advances have shown that they can have a dual role in cancer progression, acting either as tumor promoters or suppressors. SEMAs effects result from their interaction with specific co-receptors/receptors NRPs/PLXNs, that have also been described to play a role in cancer progression. They can influence both cancer cells and tumor microenvironment components modulating various aspects of tumorigenesis such as oncogenesis, tumor growth, invasion and metastatic spread or treatment resistance. In this review we focus on the role of these axon guidance signals and their receptors and co-receptors in various aspects of cancer. Furthermore, we also highlight their potential application as novel approaches for cancer treatment in the future.
Collapse
Affiliation(s)
- P Fernández-Nogueira
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - P Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - M Cueto-Remacha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - I De la Guia-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - L Recalde-Percaz
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Parcerisas
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain
| | - P Gascon
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - N Carbó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - G Fuster
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain.
| | - P Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Knipper K, Lyu SI, Jung JO, Alich N, Popp FC, Schröder W, Fuchs HF, Bruns CJ, Quaas A, Nienhueser H, Schmidt T. Semaphorin 3F (SEMA3F) influences patient survival in esophageal adenocarcinoma. Sci Rep 2024; 14:20589. [PMID: 39232098 PMCID: PMC11375056 DOI: 10.1038/s41598-024-71616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
In esophageal adenocarcinoma, the presence of lymph node metastases predicts patients' survival even after curative resection. Currently, there is no highly accurate marker for detecting the presence of lymph node metastasis. The SEMA3F/NRP2 axis was initially characterized in axon guidance and recent evidence has revealed its significant involvement in lymphangiogenesis, angiogenesis, and carcinogenesis. Hence, the objective of this study was to elucidate the roles of SEMA3F and its receptor NRP2 in esophageal adenocarcinoma. We conducted an immunohistochemical evaluation of SEMA3F and NRP2 protein expression in 776 patients with esophageal adenocarcinoma who underwent Ivor-Lewis esophagectomy at the University Hospital of Cologne. Total and positive cancer cell counts were digitally analyzed using QuPath and verified by experienced pathologists to ensure accuracy. Positive expression was determined as a cell percentage exceeding the 50th percentile threshold. In our cohort, patients exhibiting SEMA3F positive expression experience significantly lower pT- and pN-stages. In contrast, positive NRP2 expression is associated with the presence of lymph node metastases. Survival analyses showed that the expression status of NRP2 had no impact on patient survival. However, SEMA3F positivity was associated with a favorable patient survival outcome (median OS: 38.9 vs. 26.5 months). Furthermore, SEMA3F could be confirmed as an independent factor for better patient survival in patients with early tumor stage (pT1N0-3: HR = 0.505, p = 0.014, pT1-4N0: HR = 0.664, p = 0.024, pT1N0: HR = 0.483, p = 0.040). In summary, SEMA3F emerges as an independent predictor for a favorable prognosis in patients with early-stage esophageal adenocarcinoma. Additionally, NRP2 expression is linked to a higher risk of lymph node metastases occurrence. We hypothesize that low SEMA3F expression could identify patients with early-stage tumors who might benefit from more aggressive treatment options or intensified follow-up. Furthermore, SEMA3F and its associated pathways should be explored as potential tumor-suppressing agents.
Collapse
Affiliation(s)
- Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| | - Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Jin-On Jung
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Niklas Alich
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Felix C Popp
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Hans F Fuchs
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Henrik Nienhueser
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Hjazi A, Nasir F, Noor R, Alsalamy A, Zabibah RS, Romero-Parra RM, Ullah MI, Mustafa YF, Qasim MT, Akram SV. The pathological role of C-X-C chemokine receptor type 4 (CXCR4) in colorectal cancer (CRC) progression; special focus on molecular mechanisms and possible therapeutics. Pathol Res Pract 2023; 248:154616. [PMID: 37379710 DOI: 10.1016/j.prp.2023.154616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Colorectal cancer (CRC) is comprised of transformed cells and non-malignant cells including cancer-associated fibroblasts (CAF), endothelial vasculature cells, and tumor-infiltrating cells. These nonmalignant cells, as well as soluble factors (e.g., cytokines), and the extracellular matrix (ECM), form the tumor microenvironment (TME). In general, the cancer cells and their surrounding TME can crosstalk by direct cell-to-cell contact and via soluble factors, such as cytokines (e.g., chemokines). TME not only promotes cancer progression through growth-promoting cytokines but also provides resistance to chemotherapy. Understanding the mechanisms of tumor growth and progression and the roles of chemokines in CRC will likely suggest new therapeutic targets. In this line, a plethora of reports has evidenced the critical role of chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine ligand 12 (CXCL12 or SDF-1) axis in CRC pathogenesis. In the current review, we take a glimpse into the role of the CXCR4/CXCL12 axis in CRC growth, metastasis, angiogenesis, drug resistance, and immune escape. Also, a summary of recent reports concerning targeting CXCR4/CXCL12 axis for CRC management and therapy has been delivered.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Rabia Noor
- Amna Inayat Medical College, Lahore, Pakistan
| | - Ali Alsalamy
- College of Medical Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Shaik Vaseem Akram
- Uttaranchal Institute of Technology, Division of Research & Innovation, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
5
|
Li Q, Ma N, Li X, Yang C, Zhang W, Xiong J, Zhu L, Li J, Wen Q, Gao L, Yang C, Rao L, Gao L, Zhang X, Rao J. Reverse effect of Semaphorin-3F on rituximab resistance in diffuse large B-cell lymphoma via the Hippo pathway. Chin Med J (Engl) 2023; 136:1448-1458. [PMID: 37114652 PMCID: PMC10278727 DOI: 10.1097/cm9.0000000000002686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Exploring the underlying mechanism of rituximab resistance is critical to improve the outcomes of patients with diffuse large B-cell lymphoma (DLBCL). Here, we tried to identify the effects of the axon guidance factor semaphorin-3F (SEMA3F) on rituximab resistance as well as its therapeutic value in DLBCL. METHODS The effects of SEMA3F on the treatment response to rituximab were investigated by gain- or loss-of-function experiments. The role of the Hippo pathway in SEMA3F-mediated activity was explored. A xenograft mouse model generated by SEMA3F knockdown in cells was used to evaluate rituximab sensitivity and combined therapeutic effects. The prognostic value of SEMA3F and TAZ (WW domain-containing transcription regulator protein 1) was examined in the Gene Expression Omnibus (GEO) database and human DLBCL specimens. RESULTS We found that loss of SEMA3F was related to a poor prognosis in patients who received rituximab-based immunochemotherapy instead of chemotherapy regimen. Knockdown of SEMA3F significantly repressed the expression of CD20 and reduced the proapoptotic activity and complement-dependent cytotoxicity (CDC) activity induced by rituximab. We further demonstrated that the Hippo pathway was involved in the SEMA3F-mediated regulation of CD20. Knockdown of SEMA3F expression induced the nuclear accumulation of TAZ and inhibited CD20 transcriptional levels via direct binding of the transcription factor TEAD2 and the CD20 promoter. Moreover, in patients with DLBCL, SEMA3F expression was negatively correlated with TAZ, and patients with SEMA3F low TAZ high had a limited benefit from a rituximab-based strategy. Specifically, treatment of DLBCL cells with rituximab and a YAP/TAZ inhibitor showed promising therapeutic effects in vitro and in vivo . CONCLUSION Our study thus defined a previously unknown mechanism of SEMA3F-mediated rituximab resistance through TAZ activation in DLBCL and identified potential therapeutic targets in patients.
Collapse
Affiliation(s)
- Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Chao Yang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Wei Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Lidan Zhu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jiali Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Cheng Yang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Lingyi Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
7
|
Wang C, Song D, Huang Q, Liu Q. Advances in SEMA3F regulation of clinically high-incidence cancers. Cancer Biomark 2023; 38:131-142. [PMID: 37599522 DOI: 10.3233/cbm-230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cancer has become a leading cause of morbidity and mortality in recent years. Its high prevalence has had a severe impact on society. Researchers have achieved fruitful results in the causative factors, pathogenesis, treatment strategies, and cancer prevention. Semaphorin 3F (SEMA3F), a member of the signaling family, was initially reported in the literature to inhibit the growth, invasion, and metastasis of cancer cells in lung cancer. Later studies showed it has cancer-inhibiting effects in malignant tumors such as breast, colorectal, ovarian, oral squamous cell carcinoma, melanoma, and head and neck squamous carcinoma. In contrast, recent studies have reported that SEMA3F is expressed more in hepatocellular carcinoma than in normal tissue and promotes metastasis of hepatocellular carcinoma. We chose lung, breast, colorectal, and hepatocellular carcinomas with high clinical prevalence to review the roles and molecular mechanisms of SEMA3F in these four carcinomas. We concluded with an outlook on clinical interventions for patients targeting SEMA3F.
Collapse
Affiliation(s)
- Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Dezhi Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Li D, Zhang X, Jiang L. Molecular mechanism and potential therapeutic targets of liver metastasis from gastric cancer. Front Oncol 2022; 12:1000807. [PMID: 36439439 PMCID: PMC9682021 DOI: 10.3389/fonc.2022.1000807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 03/22/2024] Open
Abstract
Gastric cancer (GC) is characterized by high invasion and poor prognosis. The occurrence of liver metastasis seriously affects advanced GC prognosis. In recent years, great progress has been made in the field of GC liver metastasis. The abnormal expression of related genes leads to the occurrence of GC liver metastasis through metastasis cascades. The changes in the liver microenvironment provide a pre-metastasis condition for GC cells to colonize and grow. The development of several potential therapeutic targets might provide new therapeutic strategies for its treatment. Therefore, we reviewed the regulatory mechanism of abnormal genes mediating liver metastasis, the effect of liver resident cells on liver metastasis, and potential therapeutic targets, hoping to provide a novel therapeutic option to improve the quality of life and prognosis of GC patients with liver metastasis.
Collapse
Affiliation(s)
- Difeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lili Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Zhu L, Yang F, Wang G, Li Q. CXC Motif Chemokine Receptor Type 4 Disrupts Blood-Brain Barrier and Promotes Brain Metastasis Through Activation of the PI3K/AKT Pathway in Lung Cancer. World Neurosurg 2022; 166:e369-e381. [PMID: 35817351 DOI: 10.1016/j.wneu.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND CXC motif chemokine receptor type 4 (CXCR4) is an indispensable factor in the process of lung cancer brain metastasis (LCBM). The PI3K/AKT signal pathway is crucial in affecting cell invasion and metastasis and serves as a pivotal regulator in LCBM. However, the relationship between CXCR4 and the PI3K/AKT signal pathway is unclear. This study aimed to explore the underlying mechanisms of CXCR4 and PI3K/AKT in LCBM. METHODS Two lung cancer cells (A549 and H1299) and cells transfected with short hairpin RNA (shRNA)-CXCR4 were cocultured with normal human astrocyte cells and human brain endothelial (hCMEC/D3) cells to establish a blood-brain barrier model in vitro. The proliferation, migration, and invasion tight junction proteins (claudin-5, occludin, and ZO-1) were examined. Finally, results were verified in a nude mice model. RESULTS The abilities of cell proliferation, migration, and invasion were significantly reduced in A549 and H1299 cells transfected with shRNA-CXCR4 compared with the negative control group. The proteins phosphorylated PI3K and phosphorylated AKT were downregulated in lung cancer cells transfected with shRNA-CXCR4. The proteins claudin-5, occludin, and ZO-1 were upregulated in the A549 and H1299 cells transfected with shRNA-CXCR4. In vivo experiment results confirmed that the knockdown of CXCR4 played a protective role in the process of LCBM. CONCLUSIONS Our findings revealed that CXCR4 promotes LCBM by regulating the PI3K/Akt signal pathway. We also demonstrated that inhibiting CXCR4 could lead to prevention of LCBM. This study provides further rationale for clinical therapy that targets CXCR4/PI3K/AKT.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fugui Yang
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinchuan Li
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Tao M, Ma H, Fu X, Wang C, Li Y, Hu X, Lv R, Zhou G, Wang J, Liu R, Zhou M, Xu G, Wang Z, Qin X, Long Y, Huang Q, Chen M, Zhou Q. Semaphorin 3F induces colorectal cancer cell chemosensitivity by promoting P27 nuclear export. Front Oncol 2022; 12:899927. [PMID: 36119535 PMCID: PMC9481271 DOI: 10.3389/fonc.2022.899927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal adenocarcinoma (CRC) is the third most common malignancy worldwide. Metastatic CRC has a poor prognosis because of chemotherapy resistance. Our previous study demonstrated that semaphorin 3F (SEMA3F) signaling may contribute to reversing chemotherapy resistance in CRC cells by reducing E-cadherin and integrin αvβ3 expression levels. Another study showed that upregulation of p27 significantly increase the expression of E-cadherin and integrin. This study aimed to evaluate the effect of SEMA3F on P27 and whether it can reverse resistance in CRC cells. We compared the chemosensitivity of human colorectal cancer cell lines with different SEMA3F expression levels to 5-Fu through cell experiment and animal experiment. Then the interaction between SEMA3F and p27 and its possible mechanism were explored by Western Blot, immunofluorescence and immunocoprecipitation. We also compared the disease-free survival of 118 CRC patients with high or low expression of SEMA3F.The results showed that overexpresstion of SEMA3F enhanced the chemotherapy sensitivity and apoptosis of CRC cells in vitro and in vivo. Among 118 postoperative CRC specimens, the disease-free survival of patients with positive SEMA3F expression was significantly longer than that with negative SEMA3F expression after adjuvant treatment. Upregulation of SEMA3F in multicellular spheroid culture (MSC) could increase p27 phosphorylation at serine 10 (Ser10), subsequently promote the cytosolic translocation of P27. Overall, our results reveal a novel molecular mechanism: SEMA3F mediates the degradation of p27 and regulates its subcellular localization to enhance chemosensitivity to 5-Fu in CRC cells, rather than inhibits p27 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qi Zhou
- Department of Oncology, Fuling Central Hospital of Chongqing City, Chongqing, China
| |
Collapse
|
11
|
Hehr CL, Halabi R, McFarlane S. Spatial regulation of amacrine cell genesis by Semaphorin 3f. Dev Biol 2022; 491:66-81. [PMID: 36058267 DOI: 10.1016/j.ydbio.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The axonal projections of retinal ganglion cells (RGCs) of the eye are topographically organized so that spatial information from visual images is preserved. This retinotopic organization is established during development by secreted morphogens that pattern domains of transcription factor expression within naso-temporal and dorso-ventral quadrants of the embryonic eye. Poorly understood are the downstream signaling molecules that generate the topographically organized retinal cells and circuits. The secreted signaling molecule Semaphorin 3fa (Sema3fa) belongs to the Sema family of molecules that provide positional information to developing cells. Here, we test a role for Sema3fa in cell genesis of the temporal zebrafish retina. METHODS We compare retinal cell genesis in wild type and sema3fa CRISPR zebrafish mutants by in situ hybridization and immunohistochemistry. RESULTS We find that mRNAs for sema3fa and known receptors, neuropilin2b (nrp2b) and plexina1a (plxna1a), are expressed by progenitors of the temporal, but not nasal zebrafish embryonic retina. In the sema3faca304/ca304 embryo, initially the domains of expression for atoh7 and neurod4, transcription factors necessary for the specification of RGCs and amacrine cells, respectively, are disrupted. Yet, post-embryonically only amacrine cells of the temporal retina are reduced in numbers, with both GABAergic and glycinergic subtypes affected. CONCLUSIONS These data suggest that Sema3fa acts early on embryonic temporal progenitors to control in a spatially-dependent manner the production of amacrine cells, possibly to allow the establishment of neural circuits with domain-specific functions. We propose that spatially restricted extrinsic signals in the neural retina control cell genesis in a domain-dependent manner.
Collapse
Affiliation(s)
- Carrie Lynn Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rami Halabi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Shibahara Y, Espin-Garcia O, Conner J, Weiss J, Derouet M, Allen J, Allison F, Kalimuthu S, Yeung JC, Darling GE. Intestinal Stem Cell Marker ASCL2 is a Novel Prognostic Predictor in Esophageal Adenocarcinoma. Cureus 2022; 14:e21021. [PMID: 35154991 PMCID: PMC8818334 DOI: 10.7759/cureus.21021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Intestinal stem cell markers play a significant role in esophageal adenocarcinoma carcinogenesis via Barrett’s esophagus; however, its utility as a prognostic biomarker has not been established. Methods We analyzed the immunohistochemical expression of intestinal stem cell markers, ASCL2 and LGR5, using whole slides (35 cases) and tissue microarray (TMA; 64 cases). On TMA slides, adjacent normal squamous epithelium, metaplastic glandular epithelium (Barrett's esophagus), and dysplastic glandular epithelium were inserted when applicable. Two pathologists semi-quantitatively scored stained slides independently, and the results were correlated with clinicopathologic factors and outcomes. Results In whole slides, 51% and 57% expressed high ASCL2 and high LGR5; in TMA, 69% and 88% expressed high ASCL2 and high LGR5, respectively. In TMA, high ASCL2 and low LGR5 expression significantly correlated to a higher number of involved lymph nodes (p=0.027 and p=0.0039), and LGR5 expression significantly correlated to the pathological stage (p=0.0032). Kaplan-Meier analysis showed a negative impact of high ASCL2 expression on overall survival (OS; WS p=0.0168, TMA p=0.0276) as well as progression-free survival (PFS; WS p=0.000638, TMA p=0.0466) but not LGR5. Multivariate Cox regression analysis revealed that ASCL2 expression is an independent prognostic factor for esophageal adenocarcinoma (OS; WS p=0.25, TMA p=0.011. PFS; WS p=0.012, TMA p=0.038). Analysis of the TCGA dataset showed that ASCL2 mRNA levels were correlated to nodal status but not overall survival. Conclusion High expression of the intestinal stem cell marker ASCL2 may predict unfavorable outcomes in surgically resected esophageal adenocarcinoma.
Collapse
|
13
|
Belnoue E, Leystra AA, Carboni S, Cooper HS, Macedo RT, Harvey KN, Colby KB, Campbell KS, Vanderveer LA, Clapper ML, Derouazi M. Novel Protein-Based Vaccine against Self-Antigen Reduces the Formation of Sporadic Colon Adenomas in Mice. Cancers (Basel) 2021; 13:cancers13040845. [PMID: 33671373 PMCID: PMC7923075 DOI: 10.3390/cancers13040845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Colorectal cancer remains a leading cause of cancer-related mortality worldwide. However, high-risk populations with a genetic predisposition for colorectal cancer could benefit greatly from novel and efficacious immunopreventive strategies that afford long-lasting protection. The achaete-scute family bHLH transcription factor 2 (Ascl2) has been identified as a promising target for immunoprevention of colorectal cancer, based on its induction during the formation and progression of colorectal tumors and its minimal expression observed in healthy tissue. The goal of the present study was to determine the efficacy of a protein-based vaccine targeting Ascl2 in combination with an anti-PD-1 treatment in a spontaneous colorectal cancer mouse model. This novel vaccine strategy promotes potent tumor-specific immunity, and prevents the formation of colon adenomas in mice. The results demonstrate that Ascl2 is a promising target for immunoprevention for individuals at elevated risk of developing colorectal cancer. Abstract Novel immunopreventive strategies are emerging that show great promise for conferring long-term protection to individuals at high risk of developing colorectal cancer. The KISIMA vaccine platform utilizes a chimeric protein comprising: (1) a selected tumor antigen; (2) a cell-penetrating peptide to improve antigen delivery and epitope presentation, and (3) a TLR2/4 agonist to serve as a self-adjuvant. This study examines the ability of a KISIMA vaccine against achaete-scute family bHLH transcription factor 2 (Ascl2), an early colon cancer antigen, to reduce colon tumor formation by stimulating an anti-tumor immune response. Vaccine administrations were well-tolerated and led to circulating antibodies and antigen-specific T cells in a mouse model of colorectal cancer. To assess preventive efficacy, the vaccine was administered to mice either alone or in combination with the immune checkpoint inhibitor anti-PD-1. When delivered to animals prior to colon tumor formation, the combination strategy significantly reduced the development of colon microadenomas and adenomas, as compared to vehicle-treated controls. This response was accompanied by an increase in the intraepithelial density of CD3+ T lymphocytes. Together, these data indicate that the KISIMA-Ascl2 vaccine shows great potential to be a safe and potent immunopreventive intervention for individuals at high risk of developing colorectal cancer.
Collapse
Affiliation(s)
- Elodie Belnoue
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Alyssa A. Leystra
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Susanna Carboni
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Harry S. Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Rodrigo T. Macedo
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Kristen N. Harvey
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Kimberly B. Colby
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (K.B.C.); (K.S.C.)
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (K.B.C.); (K.S.C.)
| | - Lisa A. Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
- Correspondence: (M.L.C.); (M.D.)
| | - Madiha Derouazi
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
- Correspondence: (M.L.C.); (M.D.)
| |
Collapse
|
14
|
Xie Z, Li T, Huang B, Liu S, Zhang L, Zhang Q. Semaphorin 3F Serves as a Tumor Suppressor in Esophageal Squamous Cell Carcinoma and is Associated With Lymph Node Metastasis in Disease Progression. Technol Cancer Res Treat 2021; 19:1533033820928117. [PMID: 32441221 PMCID: PMC7249561 DOI: 10.1177/1533033820928117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Esophageal squamous cell carcinoma is one of the leading aggressive malignancies with
high mortality. Semaphorin 3F has been reported to be involved in lymphangiogenesis by
interacting the vascular endothelial growth factor C/neuropilin 2 axis. This study aimed
to assess the clinical and functional role of semaphorin 3F and preliminarily evaluate
the relationship between semaphorin 3F and lymph node metastasis in esophageal squamous
cell carcinoma. Methods: The messenger RNA expression of semaphorin 3F was analyzed using quantitative real-time
polymerase chain reaction. The expression differences of semaphorin 3F between patients
having esophageal squamous cell carcinoma with and without lymph node metastasis were
assessed, and the correlation of semaphorin 3F with vascular endothelial growth factor C
and neuropilin 2 was estimated. The prognostic value of semaphorin 3F was evaluated
using Kaplan-Meier survival curves and Cox regression analysis. Gain- and
loss-functional cell experiments were performed to explore the biological function of
semaphorin 3F, vascular endothelial growth factor C, and neuropilin 2. Results: The messenger RNA expression of semaphorin 3F was reduced in esophageal squamous cell
carcinoma tissues compared with normal tissues, and lower semaphorin 3F expression was
observed in patients having esophageal squamous cell carcinoma with positive lymph node
metastasis. Semaphorin 3F expression was associated with lymph node metastasis and
negatively correlated with vascular endothelial growth factor C and neuropilin 2. Lower
semaphorin 3F expression was related to a poor overall survival of esophageal squamous
cell carcinoma and served as an independent prognostic indicator. In esophageal squamous
cell carcinoma cells, semaphorin 3F messenger RNA expression was also decreased compared
with normal cells, and the overexpression of semaphorin 3F could significantly inhibit
cell proliferation, migration, and invasion. The downregulation of vascular endothelial
growth factor C and neuropilin 2 could inhibit cell proliferation, migration, and
invasion of esophageal squamous cell carcinoma cells. Conclusion: All data indicate that semaphorin 3F serves as a potential prognostic biomarker and
tumor suppressor of esophageal squamous cell carcinoma and may be involved in the lymph
node metastasis development through regulating neuropilin 2.
Collapse
Affiliation(s)
- Zhen Xie
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Tianyue Li
- Department of Medical Examination, Binzhou Medical University Hospital, Binzhou, China
| | - Bingtao Huang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Shuai Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Lianguo Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Qingguang Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
15
|
The oncogenic role of LncRNA FAM83C-AS1 in colorectal cancer development by epigenetically inhibits SEMA3F via stabilizing EZH2. Aging (Albany NY) 2020; 12:20396-20412. [PMID: 33109776 PMCID: PMC7655168 DOI: 10.18632/aging.103835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Inactivation of Semaphorin 3F (SEMA3F) is involved in colorectal cancer development. However, the mechanism by which SEMA3F is regulated remains elusive. Deregulation of lncRNAs have been implicated in multiple human malignancies, including colorectal cancer (CRC). To date, it is still unclear whether and how lncRNA regulates SEMA3F expression and mediates CRC progression. Here we identify the oncogenic role of lncRNA FAM83C antisense RNA 1 (FAM83C-AS1) in CRC. FAM83C-AS1 is upregulated in tumor tissues and cells of CRC, which is negatively correlated with SEMA3F expression. Reciprocally, knockdown of FAM83C-AS1 exhibits inhibitory effects on the malignant transformation of CRC. Moreover, our data uncover that FAM83C-AS1 enhances methylation of SEMA3F promoter H3K27me3 via upregulating methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). Specifically, FAM83C-AS1 stabilizes EZH2 protein through recruiting the zinc finger RANBP2-type containing 1 (ZRANB1). Both in vitro and in vivo rescue assays exhibit that SEMA3F is dispensable for the tumor-promoting effects of FAM83C-AS1 on CRC progression. Our data thus demonstrate that the epigenetic role of FAM83C-AS1 in suppression of SEMA3F expression through stabilization of EZH2 to drive CRC progression, which may be conducive to discovering novel therapeutic targets for the treatment of CRC.
Collapse
|
16
|
Dziobek K, Opławski M, Grabarek B, Zmarzły N, Kiełbasiński R, Leśniak E, Januszyk P, Januszyk K, Adwent I, Dąbruś D, Kieszkowski P, Kiełbasiński K, Kuś-Kierach A, Boroń D. Changes in Expression Pattern of SEMA3F Depending on Endometrial Cancer Grade - Pilot Study. Curr Pharm Biotechnol 2020; 20:727-732. [PMID: 31215376 PMCID: PMC7046987 DOI: 10.2174/1389201020666190619145655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 01/18/2023]
Abstract
Background: In the course of neoplastic diseases, a reduction in SEMA3F expression is observed, which translates into an increase in the proliferative and proangiogenic potential of cells forming the tumor and the surrounding microenvironment. Objective: The aim of this study was to determine the changes in SEMA3F level in endometrial cancer depending on its grade. Methods: The study material consisted of tissue samples: 15 without neoplastic changes (control group) and 45 with endometrial cancer (G1, 17; G2, 15; G3, 13; study group). SEMA3F expression was assessed using the immune-histochemical method. Results: The expression of SEMA3F was observed in the control group (Me = 159.38) and in the study group (G1, Me = 121.32; G2, Me = 0; G3, Me = 130.37). Differences between each grade and control and between individual grades were statistically significant. There were no significant correlations between SEMA3F expression and weight and Body Mass Index (BMI). The reduced SEMA3F expression in tumor tissue compared to healthy tissue indicates that this protein plays key roles in proliferation and angiogenesis. Conclusion: We found that depending on the severity of the disease, cancer adopts different survival strategies, where SEMA3F plays an important role. As a molecular marker, SEMA3F is not sensitive to weight and BMI.
Collapse
Affiliation(s)
- Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Robert Kiełbasiński
- Department of Obstetrics and Gynaecology ward, Health Center in Mikolow, Mikolow, Poland
| | - Ewa Leśniak
- Department of Obstetrics and Gynaecology ward, Health Center in Mikolow, Mikolow, Poland
| | - Piotr Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Krzysztof Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Iwona Adwent
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Dąbruś
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | | | | | - Agnieszka Kuś-Kierach
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Boroń
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland.,Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland
| |
Collapse
|
17
|
Yokota K, Tanaka Y, Harada H, Kaida T, Nakamoto S, Soeno T, Fujiyama Y, Yokota M, Kojo K, Miura H, Yamanashi T, Sato T, Nakamura T, Watanabe M, Yamashita K. WiNTRLINC1/ASCL2/c-Myc Axis Characteristics of Colon Cancer with Differentiated Histology at Young Onset and Essential for Cell Viability. Ann Surg Oncol 2019; 26:4826-4834. [DOI: 10.1245/s10434-019-07780-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 12/20/2022]
|
18
|
A molecular mechanism of mouse placental spongiotrophoblast differentiation regulated by prolyl oligopeptidase. ZYGOTE 2019; 27:49-53. [PMID: 30714556 DOI: 10.1017/s0967199418000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryIn eutherian mammals, the placenta plays a critical role in embryo development by supplying nutrients and hormones and mediating interaction with the mother. To establish the fine connection between mother and embryo, the placenta needs to be formed normally, but the mechanism of placental differentiation is not fully understood. We previously revealed that mouse prolyl oligopeptidase (POP) plays a role in trophoblast stem cell (TSC) differentiation into two placental cell types, spongiotrophoblasts (SpT) and trophoblast giant cells. Here, we focused on SpT differentiation and attempted to elucidate a molecular mechanism. For Ascl2, Arnt, and Egfr genes that are indispensable for SpT formation, we found that a POP-specific inhibitor, SUAM-14746, significantly decreased Ascl2 expression, which was consistent with a significant decrease in expression of Flt1, a gene downstream of Ascl2. Although this downregulation was unlikely to be mediated by the PI3K-Akt pathway, our results indicated that POP controls TSC differentiation into SpT by regulating the Ascl2 gene.
Collapse
|
19
|
Zhou ZH, Wang QL, Mao LH, Li XQ, Liu P, Song JW, Liu X, Xu F, Lei J, He S. Chromatin accessibility changes are associated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells. Cell Cycle 2019; 18:511-522. [PMID: 30712429 PMCID: PMC6422493 DOI: 10.1080/15384101.2019.1578145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023] Open
Abstract
The acidic extracellular microenvironment, namely acidosis, is a biochemical hallmark of solid tumors. However, the tumorigenicity, metastatic potential, gene expression profile and chromatin accessibility of acidosis-adapted colorectal cancer cells remain unknown. The colorectal cancer cell SW620 was cultured in acidic medium (pH 6.5) for more than 3 months to be acidosis-adapted (SW620-AA). In comparison to parental cells, SW620-AA cells exhibit enhanced tumorigenicity and liver metastatic potential in vivo. Following mRNA and lncRNA expression profiling, we validated that OLMF1, NFIB, SMAD9, DGKB are upregulated, while SESN2, MAP1B, UTRN, PCDH19, IL18, LMO2, CNKSR3, GXYLT2 are downregulated in SW620-AA cells. The differentially expressed mRNAs were significantly enriched in DNA remodeling-associated pathways including HDACs deacetylate histones, SIRT1 pathway, DNA methylation, DNA bending complex, and RNA polymerase 1 chain elongation. Finally, chromatin accessibility evaluation by ATAC-sequencing revealed that the differentially opened peaks were enriched in pathways such as small cell lung cancer, pathways in cancer, ErbB signaling, endometrial cancer, and chronic myeloid leukemia, which were mainly distributed in intergenic regions and introns. These results suggest that the chromatin accessibility changes are correlated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells.
Collapse
Affiliation(s)
- Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, the 309 hospital of PLA, Beijing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Liu
- Department of Emergency, Chest Pain Center, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, The 302nd hosptital of PLA, Beijing, China
| | - Xue Liu
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong, China
| | - Feng Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Lei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
CXCR7/CXCR4 heterodimer-induced histone demethylation: a new mechanism of colorectal tumorigenesis. Oncogene 2018; 38:1560-1575. [PMID: 30337690 DOI: 10.1038/s41388-018-0519-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022]
Abstract
Both chemokine receptors (CXCRs) 7 and 4 can facilitate immune cell migration and mediate a vast array of physiological and pathological events. Herein we report, in both human and animal studies, that these two CXCRs can form heterodimers in vivo and promote colorectal tumorigenesis through histone demethylation. Compared with adjacent non-neoplastic tissue, human colorectal cancer (CRC) tissue showed a significant higher expression of CXCR4 and CXCR7, which was colocalized in the cancer cell epithelium. The CXCR/CXCR4 heterodimerization was associated with increased histone demethylase JMJD2A. Villin-CXCR7-CXCR4 transgenic mice demonstrated a greater degree of exacerbated colitis and tumorigenesis than villin-CXCR7 and villin-CXCR4 mice. The CXCR7/CXCR4 heterodimerization also promoted APC mutation-driven colorectal tumorigenesis in APCMin/+/villin-CXCR7-CXCR4 mice. Further analysis showed that the CXCR7/CXCR4 heterodimer induced nuclear βarr1 recruitment and histone demethylase JMJD2A, leading to histone demethylation and resulting in transcription of inflammatory factors and oncogenes. This study uncovered a novel mechanism of colorectal tumorigenesis through the CXCR7/CXCR4 heterodimer-induced histone demethylation. Inhibition of CXCR7/CXCR4 heterodimer-induced histone demethylation could be an effective strategy for the prevention and treatment of colorectal cancer.
Collapse
|
21
|
Wang T, Wu H, Liu S, Lei Z, Qin Z, Wen L, Liu K, Wang X, Guo Y, Liu Q, Liu L, Wang J, Lin L, Mao C, Zhu X, Xiao H, Bian X, Chen D, Xu C, Wang B. SMYD3 controls a Wnt-responsive epigenetic switch for ASCL2 activation and cancer stem cell maintenance. Cancer Lett 2018; 430:11-24. [DOI: 10.1016/j.canlet.2018.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
|
22
|
Tang MW, Malvar Fernández B, Newsom SP, van Buul JD, Radstake TRDJ, Baeten DL, Tak PP, Reedquist KA, García S. Class 3 semaphorins modulate the invasive capacity of rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 2018; 57:909-920. [PMID: 29471421 DOI: 10.1093/rheumatology/kex511] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
Objective Class 3 semaphorins regulate diverse cellular processes relevant to the pathology of RA, including immune modulation, angiogenesis, apoptosis and invasive cell migration. Therefore, we analysed the potential role of class 3 semaphorins in the pathology of RA. Methods Protein and mRNA expression in RA synovial tissue, SF and fibroblast-like synoviocytes (FLS) were determined by immunoblotting and quantitative PCR (qPCR). RA FLS migration and invasion were determined using wound closure and transwell invasion assays, respectively. PlexinA1, neuropilin-1 and neuropilin-2 expression was knocked down using small interfering RNA (siRNA). Activation of FLS intracellular signalling pathways was assessed by immunoblotting. Results mRNA expression of semaphorins (Sema)3B, Sema3C, Sema3F and Sema3G was significantly lower in the synovial tissue of early arthritis patients at baseline who developed persistent disease compared with patients with self-limiting disease after 2 years follow-up. Sema3B and Sema3F expression was significantly lower in arthritis patients fulfilling classification criteria for RA compared with those who did not. FLS expression of Sema3A was induced after stimulation with TNF, IL-1β or lipopolysaccharides (LPS), while Sema3B and Sema3F expression was downregulated. Exogenously applied Sema3A induced the migration and invasive capacity of FLS, while stimulation with Sema3B or Sema3F reduced spontaneous FLS migration, and platelet-derived growth factor induced cell invasion, effects associated with differential regulation of MMP expression and mediated by the PlexinA1 and neuropilin-1 and -2 receptors. Conclusion Our data suggest that modulation of class 3 semaphorin signaling could be a novel therapeutic strategy for modulating the invasive behaviour of FLS in RA.
Collapse
Affiliation(s)
- Man Wai Tang
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Malvar Fernández
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Simon P Newsom
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dominique L Baeten
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul P Tak
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline Research and Development, Stevenage, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kris A Reedquist
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Samuel García
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Yang B, Zhou ZH, Chen L, Cui X, Hou JY, Fan KJ, Han SH, Li P, Yi SQ, Liu Y. Prognostic significance of NFIA and NFIB in esophageal squamous carcinoma and esophagogastric junction adenocarcinoma. Cancer Med 2018; 7:1756-1765. [PMID: 29577671 PMCID: PMC5943462 DOI: 10.1002/cam4.1434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor I (NFI) family members, especially NFIA and NFIB, play essential roles in cancers. The roles of NFIA and NFIB in esophageal squamous cell carcinoma (ESCC) and esophagogastric junction adenocarcinoma (EJA) remain poorly known. This study aimed to determine the expression of NFIA and NFIB in ESCC and EJA and elucidate their prognostic significance. The expression of NFIA and NFIB was examined in 163 ESCC samples and 26 EJA samples by immunohistochemistry. The results showed that high NFIA expression correlated significantly with poor differentiation, lymph node metastasis, and advanced TNM stage in patients with ESCC. High NFIB expression only correlated with poor differentiation in patients with ESCC. Survival analysis showed that NFIA but not NFIB associated with short overall survival (OS) and disease‐free survival (DFS) of patients with ESCC. On the other hand, high NFIB expression correlated with lymph node metastasis, advanced TNM stage, and short OS and DFS in patients with EJA. Finally, multivariate analysis demonstrated that high NFIA expression was an independent prognostic factor for ESCC. Taken together, these results demonstrated that NFIA and NFIB could serve as prognostic indicators for ESCC and EJA, respectively.
Collapse
Affiliation(s)
- Bo Yang
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Zhi-Hang Zhou
- Department of Digestive Disease, the Second affiliated hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Emergency, The General Hospital of PLA, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The General Hospital of PLA, Beijing, China
| | - Jun-Yan Hou
- The Medico-technical Division, The General Hospital of PLA, Beijing, China
| | - Kai-Jie Fan
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Si-Hao Han
- Harvard T.H.Chan School of Public Health, Boston, Massachusetts
| | - Peng Li
- Department of General Surgery, The General Hospital of PLA, Beijing, China
| | - Shao-Qiong Yi
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| | - Yang Liu
- Department of General Thoracic Surgery, The General Hospital of PLA, Beijing, China
| |
Collapse
|
24
|
The intestinal stem cell regulating gene ASCL2 is required for L1-mediated colon cancer progression. Cancer Lett 2018; 424:9-18. [PMID: 29551399 DOI: 10.1016/j.canlet.2018.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Abstract
Aberrant Wnt/β-catenin signaling is a common event during human colorectal cancer (CRC) development. Previously, we characterized members of the L1 family of cell adhesion receptors as targets of β-catenin-LEF1/TCF transactivation that are expressed at the invasive CRC tissue edge. Overexpression of L1 in CRC cells confers enhanced motility, tumorigenesis and liver metastasis. We identified several downstream targets of L1-mediated signaling that are considered key intestinal stem cell signature genes. Here, we investigated the involvement of ASCL2, a Wnt target gene and key determinant of intestinal stem cell state, in L1-mediated CRC progression. In L1 overexpressing CRC cells we found an increase in ASCL2, a decrease in E-cadherin and accumulation of nuclear β-catenin, β-catenin-LEF1/TCF transactivation and target gene expression. The increase in ASCL2 by L1 overexpression enhanced ASCL2 target gene expression, conferred increased motility, tumorigenesis and metastasis, similar to L1 overexpression. Suppression of ASCL2 in cells expressing L1 blocked these tumorigenic properties. In human CRC tissue, ASCL2 was detected in the nuclei of cells at invasive areas of the tumor that also expressed L1. The results suggest that increased ASCL2 expression is a critical step in L1-mediated CRC progression.
Collapse
|
25
|
Peyvandi AA, Abbaszadeh HA, Roozbahany NA, Pourbakht A, Khoshsirat S, Niri HH, Peyvandi H, Niknazar S. Deferoxamine promotes mesenchymal stem cell homing in noise-induced injured cochlea through PI3K/AKT pathway. Cell Prolif 2018; 51:e12434. [PMID: 29341316 DOI: 10.1111/cpr.12434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Over 5% of the world's population suffers from disabling hearing loss. Stem cell homing in target tissue is an important aspect of cell-based therapy, which its augmentation increases cell therapy efficiency. Deferoxamine (DFO) can induce the Akt activation, and phosphorylation status of AKT (p-AKT) upregulates CXC chemokine receptor-4 (CXCR4) expression. We examined whether DFO can enhance mesenchymal stem cells (MSCs) homing in noise-induced damaged cochlea by PI3K/AKT dependent mechanism. MATERIALS AND METHODS Mesenchymal stem cells were treated with DFO. AKT, p-AKT protein and hypoxia inducible factor 1- α (HIF-1α) and CXCR4 gene and protein expression was evaluated by RT- PCR and Western blot analysis. For in vivo assay, rats were assigned to control, sham, noise exposure groups without any treatment or receiving normal, DFO-treated and DFO +LY294002 (The PI3K inhibitor)-treated MSCs. Following chronic exposure to 115 dB white noise, MSCs were injected into the rat cochlea through the round window. Number of Hoechst- labelled cells was determined in the endolymph after 24 hours. RESULTS Deferoxamine increased P-AKT, HIF-1α and CXCR4 expression in MSCs compared to non-treated cells. DFO pre-conditioning significantly increased the homing ability of MSCs into injured ear compared to normal MSCs. These effects of DFO were blocked by LY294002. CONCLUSIONS Pre-conditioning of MSCs by DFO before transplantation can improve stem cell homing in the damaged cochlea through PI3K/AKT pathway activation.
Collapse
Affiliation(s)
- A A Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H-A Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,G. Raymond Chang School, Ryerson University, Toronto, Canada
| | - A Pourbakht
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - S Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Haddadzade Niri
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Yale University, New Haven, CT, USA
| | - S Niknazar
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Wang J, Cai H, Xia Y, Wang S, Xing L, Chen C, Zhang Y, Xu J, Yin P, Jiang Y, Zhao R, Zuo Q, Chen T. Bufalin inhibits gastric cancer invasion and metastasis by down-regulating Wnt/ASCL2 expression. Oncotarget 2018; 9:23320-23333. [PMID: 29805736 PMCID: PMC5955089 DOI: 10.18632/oncotarget.24157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Achaete-scute-like 2 (ASCL2) is a transcription factor containing a basic helix-loop-helix (bHLH) domain and is a downstream target of Wnt signaling in intestinal stem cells. Bufalin is the primary active ingredient in Chan Su, a traditional Chinese medicine obtained from the skin and parotid venom glands of toads. The purpose of this study was to research the anti-invasion and anti-metastasis activity of bufalin in gastric cancer and to identify the potential mechanism. Bufalin inhibited gastric cancer cell invasion and metastasis, suppressed cancer cell colony formation, and inhibited the growth of subcutaneous xenografted tumors in nude mice. Furthermore, bufalin inhibited ASCL2 expression and down-regulated the expression of invasion-related genes such as MMP2, MMP9, and vimentin, thereby suppressing epithelial-mesenchymal transition (EMT) in gastric cancer. A Wnt signaling inhibitor (XAV939) down-regulated invasion and the expression of ASCL2, β-catenin, and vimentin but up-regulated E-cadherin expression. In nude mice, bufalin inhibited the tumorigenic behavior of gastric cancer cells, induced cancer cell apoptosis, and regulated invasion-related gene expression. Together, our results suggest that bufalin arrests invasion and metastasis and that its mechanism of action may involve down-regulating Wnt/ASCL2 expression.
Collapse
Affiliation(s)
- Jie Wang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Han Cai
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yue Xia
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Shiying Wang
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Likai Xing
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Chao Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yong Zhang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Xu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Peihao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yiming Jiang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ronghua Zhao
- Department of Medical, Virogin Biotech Ltd., Vancouver, British Columbia V6S 2L9, Canada
| | - Qingshong Zuo
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Teng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai 200062, China
| |
Collapse
|
27
|
Liu Y, Li R, Yin K, Ren G, Zhang Y. The crucial role of SEMA3F in suppressing the progression of oral squamous cell carcinoma. Cell Mol Biol Lett 2017; 22:32. [PMID: 29299034 PMCID: PMC5745788 DOI: 10.1186/s11658-017-0064-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancy. Semaphorin 3F (SEMA3F) is highly conserved but present at a lower level in various cancers than in healthy tissues. While it has been reported that SEMA3F is involved in cancer cell proliferation, migration and invasion, its function in OSCC remains unknown. Methods The expression of SEMA3F in OSCC tissues and OSCC-derived cells was analyzed using qRT-PCR and western blotting. Using SAS and HSC2 cells, we also monitored the effect of SEMA3F on OSCC cell proliferation, migration and invasion using MTT, colony formation and transwell assays. The function of SEMA3F in OSCC tumor formation was also assessed in vivo. Results SEMA3F was significantly downregulated in OSCC tissues and OSCC-derived cells. SEMA3F shows growth inhibitory activity in SAS and HSC2 cells and may act as a tumor suppressor. It can inhibit the migration and invasion potential of OSCC cells. Our results also demonstrate that SEMA3F can suppress the growth of OSCC cells in vivo. Conclusions This study revealed that SEMA3F plays a role as a tumor suppressor in OSCC cell proliferation, migration and invasion. Our finding provides new insight into the progression of OSCC. Therapeutically, SEMA3F has some potential as a target for OSCC treatment, given sufficient future research.
Collapse
Affiliation(s)
- Yi Liu
- Department of Stomatology, Tianjin First Center Hospital, Tianjin, 300192 People's Republic of China
| | - Ronghua Li
- Department of Stomatology, Tianjin First Center Hospital, Tianjin, 300192 People's Republic of China
| | - Kai Yin
- Department of Stomatology, Tianjin First Center Hospital, Tianjin, 300192 People's Republic of China
| | - Gang Ren
- Department of Stomatology, Tianjin First Center Hospital, Tianjin, 300192 People's Republic of China
| | - Yongdong Zhang
- Department of Stomatology, Tianjin First Center Hospital, Tianjin, 300192 People's Republic of China
| |
Collapse
|
28
|
Chen S, Wang Y, Zhang L, Su Y, Zhang M, Wang J, Zhang X. Exploration of the mechanism of colorectal cancer metastasis using microarray analysis. Oncol Lett 2017; 14:6671-6677. [PMID: 29163694 PMCID: PMC5691382 DOI: 10.3892/ol.2017.7044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the mechanism of metastasis in colorectal cancer (CRC) using microRNA (miRNA) and mRNA expression profiles. The mRNA and miRNA expression profiles of the GSE2509 and GSE56350 datasets were obtained from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified using the limma software package. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs. The predicted target genes associated with the DEMs were identified using the miRWalk database and the enrichment analysis was conducted using the clusterProfiler package. The miRNA-gene molecular interaction network was visualized using the Cytoscape software platform. A total of 544 DEGs and 42 DEMs were identified. DEGs were annotated in 320 GO terms and 11 KEGG pathways. Overall, 366 miRNA-gene pairs were identified and the miRNA-gene network was visualized. Furthermore, the predicted target genes were mainly classified in 12 pathways. The results of the present study suggest that fibronectin type III domain-containing 3B, cysteine rich transmembrane BMP regulator 1 and forkhead box J2 may be potential therapeutic and prognostic targets of metastatic CRC. In addition, pathways in cancer, the Wnt signaling pathway and extracellular matrix-receptor interaction may play a critical role in CRC metastasis.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Yan Wang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Lin Zhang
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Yinan Su
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Mingqing Zhang
- Anorectal Diseases Diagnosis and Treatment Center, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Juan Wang
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| | - Xipeng Zhang
- Department of Anorectal Surgery, Tianjin Union Medical Center Nankai University Affiliated Hospital, Tianjin 30000, P.R. China
| |
Collapse
|
29
|
Zhou ZH, Song JW, Li W, Liu X, Cao L, Wan LM, Tan YX, Ji SP, Liang YM, Gong F. The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. J Exp Clin Cancer Res 2017; 36:130. [PMID: 28927426 PMCID: PMC5606037 DOI: 10.1186/s13046-017-0599-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/12/2017] [Indexed: 11/15/2022] Open
Abstract
Background The tumor acidic microenvironment, a common biochemical event in solid tumors, offers evolutional advantage for tumors cells and even enhances their aggressive phenotype. However, little is known about the molecular mechanism underlying the acidic microenvironment-induced invasion and metastasis. Methods We examined the expression of the acid-sending ion channel (ASIC) family members after acidic exposure using RT-PCR and immunofluoresence. Gene manipulation was applied to reveal the potential of ASIC2 on invasion, proliferation, colony formation of colorectal cancer (CRC). We assessed the in vivo tumor growth by subcutaneous transplantation and metastasis by spleen xenografts. Chromatin immunoprecipitation-sequencing was used to uncover the binding sites of NFAT1. Finally, we examined the expression of ASIC2 in CRC tissues using immunohistochemistry. Results Acidic exposure led to up-regulation of the acid-sensing ion channel, ASIC2, in colorectal cancer (CRC) cells. ASIC2 overexpression in CRC cell lines, SW480 and HCT116, significantly enhanced cell proliferation in vitro and in vivo, while ASIC2 knockdown had the reverse effect. Importantly, ASIC2 promoted CRC cell invasion under acidosis in vitro and liver metastasis in vivo. Mechanistically, ASIC2 activated the calcineurin/NFAT1 signaling pathway under acidosis. Inhibition of the calcineurin/NFAT pathway by cyclosporine A (CsA) profoundly attenuated ASIC2-induced invasion under acidosis. ChIP-seq assay revealed that the nuclear factor, NFAT1, binds to genes clustered in pathways involved in Rho GTPase signaling and calcium signaling. Furthermore, immunohistochemistry showed that ASIC2 expression is increased in CRC samples compared to that in adjacent tissues, and ASIC2 expression correlates with T-stage, distant metastasis, recurrence, and poor prognosis. Conclusion ASIC2 promotes metastasis of CRC cells by activating the calcineurin/NFAT1 pathway under acidosis and high expression of ASIC2 predicts poor outcomes of patients with CRC. Electronic supplementary material The online version of this article (10.1186/s13046-017-0599-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Hang Zhou
- Department of Pathology, the 309th hospital of PLA, Beijing, China
| | - Jin-Wen Song
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Wen Li
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xue Liu
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong, China
| | - Liu Cao
- Department of Surgery, the 15th hospital of PLA, Xinjiang, China
| | - Lu-Ming Wan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Ying-Xia Tan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shou-Ping Ji
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yu-Mei Liang
- Department of Pathology, the 309th hospital of PLA, Beijing, China.
| | - Feng Gong
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China.
| |
Collapse
|
30
|
Shang Y, Chen H, Ye J, Wei X, Liu S, Wang R. HIF-1α/Ascl2/miR-200b regulatory feedback circuit modulated the epithelial-mesenchymal transition (EMT) in colorectal cancer cells. Exp Cell Res 2017; 360:243-256. [PMID: 28899657 DOI: 10.1016/j.yexcr.2017.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/17/2022]
Abstract
We have reported that Achaete scute-like 2 (Ascl2) transcriptionally repressed miR-200 family members and affected the epithelial-mesenchymal transition (EMT)-mesenchymal-epithelial transition (MET) plasticity in colorectal cancer (CRC) cells. However, little is known about the regulation of the Ascl2/miR-200 axis. Here, we found that hypoxia inducible factor-1α (HIF-1α) mRNA levels were positively correlated with Ascl2 mRNA levels and inversely correlated with miR-200b in CRC samples. Mechanistically, we showed that Ascl2 was a downstream target of HIF-1α and had a critical role in the EMT phenotype induced by hypoxia or HIF-1α over-expression. Hypoxia or HIF-1α over-expression activated Ascl2 expression in CRC cells in a direct transcriptional mechanism via binding with the hypoxia-response element (HRE) at the proximal Ascl2 promoter. HIF-1α-induced Ascl2 expression repressed miR-200b expression to induce EMT occurrence. Furthermore, we found HIF-1α was a direct target of miR-200b. MiR-200b bound with the 3'-UTR of HIF-1α in CRC cells. HIF-1α/Ascl2/miR-200b regulatory feedback circuit modulated the EMT-MET plasticity of CRC cells. Our results confirmed a novel HIF-1α/Ascl2/miR-200b regulatory feedback circuit in modulating EMT-MET plasticity of CRC cells, which could serve as a possible therapeutic target.
Collapse
Affiliation(s)
- Yangyang Shang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Haoyuan Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jun Ye
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xiaolong Wei
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Shanxi Liu
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Rongquan Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
31
|
Bing W, Pang X, Qu Q, Bai X, Yang W, Bi Y, Bi X. Simvastatin improves the homing of BMSCs via the PI3K/AKT/miR-9 pathway. J Cell Mol Med 2016; 20:949-61. [PMID: 26871266 PMCID: PMC4831354 DOI: 10.1111/jcmm.12795] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Bone marrow‐derived mesenchymal stem cells (BMSCs) have great therapeutic potential for many diseases. However, the homing of BMSCs to injury sites remains a difficult problem. Recent evidence indicates that simvastatin stimulates AKT phosphorylation, and p‐AKT affects the expression of chemokine (CXC motif) receptor‐4 (CXCR4). Therefore, simvastatin may improve the expression of CXCR4 in BMSCs, and microRNAs (miRs) may participate in this process. In this study, we demonstrated that simvastatin increased both the total and the surface expression of CXCR4 in BMSCs. Stromal cell‐derived factor‐1α (SDF‑1α)‐induced migration of BMSCs was also enhanced by simvastatin, and this action was inhibited by AMD 3100(a chemokine receptor antagonist for CXCR4). The PI3K/AKT pathway was activated by simvastatin in this process, and LY294002 reversed the overexpression of CXCR4 caused by simvastatin. MiR‐9 directly targeted CXCR4 in rat BMSCs, and simvastatin decreased miR‐9 expression. P‐AKT affected the expression of miR‐9; as the phosphorylation of AKT increased, miR‐9 expression decreased. In addition, LY294002 increased miR‐9 expression. Taken together, our results indicated that simvastatin improved the migration of BMSCs via the PI3K/AKT pathway. MiR‐9 also participated in this process, and the phosphorylation of AKT affected miR‐9 expression, suggesting that simvastatin might have beneficial effects in stem cell therapy.
Collapse
Affiliation(s)
- Weidong Bing
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qingxi Qu
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiao Bai
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenwen Yang
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yanwen Bi
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiaolu Bi
- School of Life Science of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
32
|
Zhang N, Chen X. Potential role of O-GlcNAcylation and involvement of PI3K/Akt1 pathway in the expression of oncogenic phenotypes of gastric cancer cells in vitro. Biotechnol Appl Biochem 2015; 63:841-851. [PMID: 26333304 DOI: 10.1002/bab.1441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
O-GlcNAcylation is a monosaccharide modification by a residue of N-acetylglucosamine (GlcNAc) attached to serine or threonine moieties on nuclear and cytoplasmic proteins. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Increasing evidence suggests that O-GlcNAcylation is involved in a variety of human cancers. However, the exact role of O-GlcNAcylation in tumor progression remains unclear. Here, we show that O-GlcNAcylation accelerates oncogenic phenotypes of gastric cancer. First, cell models with increased or decreased O-GlcNAcylation were constructed by OGT overexpression, downregulation of OGA activity with specific inhibitor Thiamet-G, or silence of OGT. MTT assays indicated that O-GlcNAcylation increased proliferation of gastric cancer cells. Soft agar assay and Transwell assays showed that O-GlcNAcylation significantly enhanced cellular colony formation, migration, and invasion in vitro. Akt1 activity was stimulated by upregulation of phosphorylation at Ser473 mediated by elevated O-GlcNAcylation. The enhanced cell invasion by Thiamet-G treatment was suppressed by PI3K inhibitor LY294002. Although the cell invasion induced by Thiamet-G was reduced by Akt1 shRNA, it was still higher in comparison with that to the control (cells with Akt1 shRNA alone). And Akt1 overexpression promoted Thiamet-G-induced cell invasion. These results suggested that O-GlcNAcylation enhanced oncogenic phenotypes possibly partially involving PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Nuobei Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi, People's Republic of China
| | - Xin Chen
- Department of Nuclear Medicine, Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi, People's Republic of China
| |
Collapse
|
33
|
Zhang P, Wang C, Ma T, You S. O-GlcNAcylation enhances the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt1 pathway. Onco Targets Ther 2015; 8:3305-13. [PMID: 26635480 PMCID: PMC4646590 DOI: 10.2147/ott.s82845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The PI3K family participates in multiple signaling pathways to regulate cellular functions. PI3K/Akt signaling pathway plays an important role in tumorigenesis and development. O-GlcNAcylation, a posttranslational modification, is thought to modulate a wide range of biological processes, such as transcription, cell growth, signal transduction, and cell motility. O-GlcNAcylation is catalyzed by the nucleocytoplasmic enzymes, OGT and OGA, which adds or removes O-GlcNAc moieties, respectively. Abnormal O-GlcNAcylation has been implicated in a variety of human diseases. However, the role of O-GlcNAcylation in tumorigenesis and progression of cancer is still under-investigated. Understanding the O-GlcNAc-associated molecular mechanism might be significant for diagnosis and therapy of cancer. Methods Human thyroid anaplastic cancer 8305C cells were used to evaluate the role of O-GlcNAcylation in tumorigenesis and progression of cancer. The global O-GlcNAc level of intracellular proteins was up-regulated by OGA inhibitor Thiamet-G treatment or OGT over-expression. Cell proliferation was assessed by MTT assay. Invasion in vitro was determined by Transwell assay, and phosphorylation of Akt1 at Ser473 was assessed by Western blot for activity of Akt1. PI3K-specific inhibitor LY294002 and RNA interference of Akt1 were used to investigate the impact of PI3K/Akt signaling on the regulation of O-GlcNAcylation during tumor progression. Results Cell models with remarkably up-regulated O-GlcNAcylation were constructed, and then cell proliferation and invasion were determined. The results indicated that the proliferation was not affected by OGA inhibition or OGT overexpression, while the invasion of 8305C cells with OGA inhibition or OGT overexpression was obviously increased. Akt1 activity was stimulated by elevated O-GlcNAcylation by mediating phosphorylation at Ser473. The enhanced invasion of thyroid cancer cells by Thiamet-G treatment or OGT overexpression was significantly depressed by PI3K inhibitor LY294002. Moreover, silence of Akt1 remarkably attenuated the increase of cell invasion induced by Thiamet-G treatment, but the invasion was still higher compared to Akt1-silenced only cells. In other words, Thiamet-G restored the invasion of Akt1-silenced thyroid cancer cells, but it was still lower relative to Thiamet-G-treated only cells. Conclusion Taken together, our findings suggested that O-GlcNAcylation enhanced the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt signaling, which might be a potential target for the diagnosis and treatment of thyroid anaplastic cancer.
Collapse
Affiliation(s)
- Peng Zhang
- General Surgery Department, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Chunli Wang
- General Surgery Department, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Tao Ma
- General Surgery Department, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Shengyi You
- General Surgery Department, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
34
|
Hu XG, Chen L, Wang QL, Zhao XL, Tan J, Cui YH, Liu XD, Zhang X, Bian XW. Elevated expression of ASCL2 is an independent prognostic indicator in lung squamous cell carcinoma. J Clin Pathol 2015; 69:313-8. [PMID: 26483561 DOI: 10.1136/jclinpath-2015-203025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/28/2015] [Indexed: 11/04/2022]
Abstract
AIMS ASCL2, a basic helix-loop-helix (bHLH) transcription factor, is putatively involved in tumour progression. This study aimed to evaluate ASCL2 expression level in non-small-cell carcinoma (NSCLC) and assess its prognostic value for patients. METHODS ASCL2 protein expression was detected by immunohistochemistry (IHC cohort) in 79 cases of squamous cell carcinoma (SCC) and 67 cases of adenocarcinoma (AC). Kaplan-Meier analysis and Cox regression analysis were performed to evaluate the prognostic significance of ASCL2. The same analyses were conducted in a cohort (n=790) from The Cancer Genome Atlas database (TCGA) to validate the expression pattern and prognostic value of ASCL2. RESULTS ASCL2 expression levels were significantly increased in SCC compared with normal lung tissue (p<0.001) and AC (p=0.008). High ASCL2 expression was associated with advanced tumour-node-metastasis (TNM) stage (p=0.023) and worse differentiation status (p=0.001) in SCC, but a positive correlation between ASCL2 expression level and advanced TNM stage (p=0.016) was observed in AC. Kaplan-Meier analysis showed that ASCL2 was prognostic in SCC (p=0.004) but not in AC (p=0.183). Multivariable Cox regression analysis indicated that elevated expression of ASCL2 was an independent prognostic factor (HR 2.764; p=0.030) in SCC patients. The expression pattern and prognostic significance of ASCL2 in SCC and AC were validated using the TCGA cohort. CONCLUSIONS Elevated expression of ASCL2 may identify an aggressive subgroup in SCC and serve as an independent prognostic indicator in these patients.
Collapse
Affiliation(s)
- Xu-Gang Hu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Lu Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Qing-liang Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Xi-long Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Juan Tan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - You-hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Xin-dong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| |
Collapse
|