1
|
Jiang X, Yan Q, He J, Zheng Z, Peng X, Cao X, Zhou F, Nie J, Kang T. Interfering with Dusp2 alleviates high glucose-induced vascular endothelial cell dysfunction by promoting p38 MAPK pathway activation. Exp Cell Res 2023; 430:113720. [PMID: 37479052 DOI: 10.1016/j.yexcr.2023.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Hyperglycemia-induced vascular endothelial cell dysfunction is a major factor contributing to diabetic lower extremity ischemia. We intend to investigate the role of Dusp2 in hyperglycemia-induced vascular endothelial cell dysfunction and related mechanisms. METHODS The human umbilical vein endothelial cells (HUVECs) were treated with high glucose (HG) as the cell model. Streptozotocin injection was performed to induce diabetes and femoral artery ligation was to induce hind limb ischemia in mice. The levels of Dusp2, p-p38 MAPK, E2F4, and p38 MAPK were evaluated by Western blot or quantitative real-time PCR. The laser Doppler perfusion imaging was conducted to measure blood flow recovery. The cell counting kit-8, transwell, and tube formation assay were performed to evaluate cell proliferation, migration, and angiogenesis, respectively. CD31 immunohistochemical staining was carried out to detect the capillary density of gastrocnemius. The dual-luciferase reporter gene assay and Chromatin immunoprecipitation assay were executed to explore the interaction between E2F4 and Dusp2. RESULTS Dusp2 was highly expressed in HG-induced HUVECs and diabetic lower extremity ischemia model mice. Interference with Dusp2 promoted cell proliferation, migration, and angiogenesis, as well as alleviated mouse diabetic hindlimb ischemia. Dusp2 knockdown up-regulated p-p38 MAPK levels. We verified the binding between E2F4 and Dusp2. Overexpressing E2F4 suppressed Dusp2 levels and promoted cell proliferation, migration, and angiogenesis, co-overexpression of Dusp2 reversed the results. CONCLUSIONS Overexpressing E2F4 promotes endothelial cell proliferation, migration, and angiogenesis by inhibiting Dusp2 expression and activating p38 MAPK to alleviate vascular endothelial cell dysfunction under HG stimulation.
Collapse
Affiliation(s)
- Xinmiao Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qiong Yan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiaqi He
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoyan Cao
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fangbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jungang Nie
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Kang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Dong JG, Chen MR, Rao D, Zhang N, He S, Na L. Genome-wide analysis of long noncoding RNA profiles in pseudorabies-virus-infected PK15 cells. Arch Virol 2023; 168:240. [PMID: 37668724 DOI: 10.1007/s00705-023-05859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
Recently, an increasing number of studies have shown that long noncoding RNAs (lncRNAs) are involved in host metabolism after infection with pseudorabies virus (PRV). In our study, via RNA sequencing analysis, a total of 418 mRNAs, 137 annotated lncRNAs, and 312 new lncRNAs were found to be differentially expressed. These lncRNAs were closely associated with metabolic regulation and immunity-related signalling pathways, including the T-cell receptor signalling pathway, chemokine signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway, TNF signalling pathway, Ras signalling pathway, calcium signalling pathway, and phosphatidylinositol signalling system. Real-time PCR indicated that several mRNAs and lncRNAs involved in the regulation of the immune effector process, T-cell receptor signalling pathway, TNF signalling pathway, MAPK signalling pathway, and chemokine signalling pathways were significantly expressed. These mRNAs and lncRNAs might play a role in PRV infection.
Collapse
Affiliation(s)
- Jian-Guo Dong
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ming-Rui Chen
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dan Rao
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ning Zhang
- Jiangsu Vocational College Agriculture and Forestry, Jurong, 212400, China
- Henan Fengyuan Hepu Agriculture and Animal Husbandry Co. LTD, Zhumadian, 463900, China
| | - Shuhai He
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lei Na
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Lee YC, Wang WY, Lin HH, Huang YR, Lin YC, Hsiao KY. The Functional Roles and Regulation of Circular RNAs during Cellular Stresses. Noncoding RNA 2022; 8:ncrna8030038. [PMID: 35736635 PMCID: PMC9228399 DOI: 10.3390/ncrna8030038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of regulatory RNA involved in many biological, physiological and pathological processes by functioning as a molecular sponge, transcriptional/epigenetic/splicing regulator, modulator of protein–protein interactions, and a template for encoding proteins. Cells are constantly dealing with stimuli from the microenvironment, and proper responses rely on both the precise control of gene expression networks and protein–protein interactions at the molecular level. The critical roles of circRNAs in the regulation of these processes have been heavily studied in the past decades. However, how the microenvironmental stimulation controls the circRNA biogenesis, cellular shuttling, translation efficiency and degradation globally and/or individually remains largely uncharacterized. In this review, how the impact of major microenvironmental stresses on the known transcription factors, splicing modulators and epitranscriptomic regulators, and thereby how they may contribute to the regulation of circRNAs, is discussed. These lines of evidence will provide new insight into how the biogenesis and functions of circRNA can be precisely controlled and targeted for treating human diseases.
Collapse
Affiliation(s)
- Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wei-Yu Wang
- Division of Hemato-Oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan;
| | - Hui-Hsuan Lin
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Yi-Ren Huang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ya-Chi Lin
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Kuei-Yang Hsiao
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Bachelor Program of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-42-284-0468 (ext. 8433)
| |
Collapse
|
4
|
Broholm M, Degett TH, Furbo S, Fiehn AMK, Bulut M, Litman T, Eriksen JO, Troelsen JT, Gjerdrum LMR, Gögenur I. Colonic Stent as Bridge to Surgery for Malignant Obstruction Induces Gene Expressional Changes Associated with a More Aggressive Tumor Phenotype. Ann Surg Oncol 2021; 28:8519-8531. [PMID: 34467497 DOI: 10.1245/s10434-021-10226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Colonic stent is recommended as a bridge to elective surgery for malignant obstruction to improve short-term clinical outcomes for patients with colorectal cancer. However, since the oncological outcomes remain controversial, this study aimed to investigate the impact of self-expandable metallic stent (SEMS) on the tumor microenvironment. METHODS Patients treated with colonic stent as a bridge to surgery from 2010 to 2015 were identified from hospital records. Tumor biopsies and resected tumor samples of the eligible patients were retrieved retrospectively. Gene expression analysis was performed using the NanoString nCounter PanCancer IO 360 gene expression panel. RESULTS Of the 164 patients identified, this study included 21 who underwent colonic stent placement as a bridge to elective surgery. Gene expression analysis revealed 82 differentially expressed genes between pre- and post-intervention specimens, of which 72 were upregulated and 10 downregulated. Among the significantly upregulated genes, 46 are known to have protumor functions, of which 26 are specifically known to induce tumorigenic mechanisms such as proliferation, migration, invasion, angiogenesis, and inflammation. In addition, ten differentially expressed genes were identified that are known to promote antitumor functions. CONCLUSION SEMS induces gene expressional changes in the tumor microenvironment that are associated with tumor progression in colorectal cancer and may potentiate a more aggressive phenotype. Future studies are warranted to establish optimal timing of surgery after SEMS insertion in patients with obstructive colorectal cancer.
Collapse
Affiliation(s)
- Malene Broholm
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark. .,Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Thea Helene Degett
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Pathology, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mustafa Bulut
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Wang CA, Li CF, Huang RC, Li YH, Liou JP, Tsai SJ. Suppression of Extracellular Vesicle VEGF-C-mediated Lymphangiogenesis and Pancreatic Cancer Early Dissemination By a Selective HDAC1/2 Inhibitor. Mol Cancer Ther 2021; 20:1550-1560. [PMID: 34210825 DOI: 10.1158/1535-7163.mct-20-0963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by early dissemination and poor drug response. Therefore, it is an unmet medical need to develop new strategies for treatment. As aberrant activation of ERK due to KRAS activating mutation is a driving force for PDAC, a brake system that can terminate ERK signaling represents an ideal druggable target. Herein, we demonstrate that forced expression of dual specificity phosphatase-2 (DUSP2), a specific ERK phosphatase, abrogated tumor formation and loss of Dusp2 facilitated Kras-driven PDAC progression. We report that a selective HDAC1/2 inhibitor (B390) has multifaceted therapeutic potential in PDAC by restoring the expression and function of DUSP2. In vitro study showed that treatment with B390 inhibited growth and migration abilities of PDAC cells, decreased extracellular vesicle-associated VEGF-C expression, and suppressed lymphatic endothelial cell proliferation. In vivo, B390 not only suppressed tumor growth by increasing tumor cell death, it also inhibited lymphangiogenesis and lymphovascular invasion. Taken together, our data demonstrate that B390 was able to alleviate loss of DUSP2-mediated pathologic processes, which provides the proof-of-concept evidence to demonstrate the potential of using selective HDAC1/2 inhibitors in PDAC treatment and suggests reinstating DUSP2 expression may be a strategy to subside PDAC progression.
Collapse
Affiliation(s)
- Chu-An Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Rho-Chi Huang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yo-Hua Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Gao PP, Qi XW, Sun N, Sun YY, Zhang Y, Tan XN, Ding J, Han F, Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188562. [PMID: 33964330 DOI: 10.1016/j.bbcan.2021.188562] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Reversible phosphorylation of proteins, controlled by kinases and phosphatases, is involved in various cellular processes. Dual-specificity phosphatases (DUSPs) can dephosphorylate phosphorylated serine, threonine and tyrosine residues. This family consists of 61 members, 44 of which have been identified in human, and these 44 members are classified into six subgroups, the phosphatase and tensin homolog (PTEN) protein phosphatases (PTENs), mitogen-activated protein kinase phosphatases (MKPs), atypical DUSPs, cell division cycle 14 (CDC14) phosphatases (CDC14s), slingshot protein phosphatases (SSHs), and phosphatases of the regenerating liver (PRLs). Growing evidence has revealed dysregulation of DUSPs as one of the common phenomenons and highlighted their key roles in human cancers. Furthermore, their differential expression may be a potential biomarker for tumor prognosis. Despite this, there are still many unstudied members of DUSPs need to further explore their precise roles and mechanism in cancers. Most importantly, the systematic review is very limited on the functional/mechanistic characteristics and clinical application of DUSPs at present. In this review, the structures, functions and underlying mechanisms of DUSPs are systematically reviewed, and the molecular and functional characteristics of DUSPs in different tumor types according to the current researches are summarized. In addition, the potential roles of the unstudied members and the possible different mechanisms of DUSPs in cancer are discussed and classified based on homology alignment and structural domain analyses. Moreover, the specific characteristics of their expression and prognosis are further determined in more than 30 types of human cancers by using the online databases. Finally, their potential application in precise diagnosis, prognosis and treatment of different types of cancers, and the main possible problems for the clinical application at present are prospected.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Na Sun
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan-Yuan Sun
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130023, China
| | - Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Paracrine interleukin-8 affects mesenchymal stem cells through the Akt pathway and enhances human umbilical vein endothelial cell proliferation and migration. Biosci Rep 2021; 41:228273. [PMID: 33843989 PMCID: PMC8493446 DOI: 10.1042/bsr20210198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Interleukin-8 (IL-8) promotes cell homing and angiogenesis, but its effects on activating human bone marrow mesenchymal stem cells (BMSCs) and promoting angiogenesis are unclear. We used bioinformatics to predict these processes. In vitro, BMSCs were stimulated in a high-glucose (HG) environment with 50 or 100 μg/ml IL-8 was used as the IL-8 group. A total of 5 μmol/l Triciribine was added to the two IL-8 groups as the Akt inhibitor group. Cultured human umbilical vein endothelial cells (HUVECs) were cultured in BMSCs conditioned medium (CM). The changes in proliferation, apoptosis, migration ability and levels of VEGF and IL-6 in HUVECs were observed in each group. Seventy processes and 26 pathways were involved in vascular development, through which IL-8 affected BMSCs. Compared with the HG control group, HUVEC proliferation absorbance value (A value), Gap closure rate, and Transwell cell migration rate in the IL-8 50 and IL-8 100 CM groups were significantly increased (P<0.01, n=30). However, HUVEC apoptosis was significantly decreased (P<0.01, n=30). Akt and phospho-Akt (P-Akt) protein contents in lysates of BMSCs treated with IL-8, as well as VEGF and IL-6 protein contents in the supernatant of BMSCs treated with IL-8, were all highly expressed (P<0.01, n=15). These analyses confirmed that IL-8 promoted the expression of 41 core proteins in BMSCs through the PI3K Akt pathway, which could promote the proliferation and migration of vascular endothelial cells. Therefore, in an HG environment, IL-8 activated the Akt signaling pathway, promoted paracrine mechanisms of BMSCs, and improved the proliferation and migration of HUVECs.
Collapse
|
8
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
9
|
E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPα. Oncogene 2020; 40:262-276. [PMID: 33122826 DOI: 10.1038/s41388-020-01527-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 11/08/2022]
Abstract
Pancreatic cancer is one of the most fatal cancers in humans. While it thrives in a state of malnutrition, the mechanism by which pancreatic cancer cells adapt to metabolic stress through metabolic reprogramming remains unclear. Here, we showed that UBR5, an E3 ubiquitin ligase, was significantly upregulated in pancreatic cancer patient samples compared to the levels in adjacent normal tissues. Levels of UBR5 were closely related to a malignant phenotype and shorter survival among pancreatic cancer patients. Multivariate analyses also revealed that UBR5 overexpression was an independent predictor of poor outcomes among patients with pancreatic cancer. Functional assays revealed that UBR5 contributes to the growth of pancreatic cancer cells by inducing aerobic glycolysis. Furthermore, we demonstrated that UBR5 knockdown increased levels of fructose-1,6-bisphosphatase (FBP1), an important negative regulator in the process of aerobic glycolysis in many cancers. We found a significant negative correlation between levels of UBR5 and FBP1, further demonstrating that UBR5-induced aerobic glycolysis is dependent on FBP1 in pancreatic cancer cells. Mechanistically, UBR5 regulates FBP1 expression by modulating C/EBPα, directly binding to C/EBPα, and promoting its ubiquitination and degradation. Together, these results identify a mechanism used by pancreatic cancer cells to survive the nutrient-poor tumour microenvironment and also provide insight regarding the role of UBR5 in pancreatic cancer cell adaptation to metabolic stresses.
Collapse
|
10
|
Łukaszewicz-Zając M, Pączek S, Mroczko P, Kulczyńska-Przybik A. The Significance of CXCL1 and CXCL8 as Well as Their Specific Receptors in Colorectal Cancer. Cancer Manag Res 2020; 12:8435-8443. [PMID: 32982437 PMCID: PMC7501593 DOI: 10.2147/cmar.s267176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Every year, almost 2 million people develop colorectal cancer (CRC), which makes it the fourth most common malignancy worldwide. It is also estimated that approximately 48% of CRC patients will die from the disease. Thus, noninvasive and accurate methods for early detection and prevention of CRC are sorely needed. It is suggested that C-X-C motif ligand 1 (CXCL1) and C-X-C motif ligand 8 (CXCL8) as well as their cognate receptors can mediate tumor growth, proliferation, survival, neoangiogenesis and metastasis of malignant cells, including CRC. However, little is known about the clinical significance of these proteins as potential biomarkers for CRC. Therefore, in our review, we performed a comprehensive literature search using the PubMed database to identify original articles that investigated whether CXCL1 and CXCL8 and their receptors play a role in CRC pathogenesis. In summary, our review highlighted the potential significance of CXCL1/CXCR2 and CXCL8/CXCR1,-2 in the diagnosis and progression of CRC as well as indicated their potential therapeutic significance. However, given the non-specific nature of analyzed chemokines and a small number of studies concerning the assessment of blood concentration of these proteins in CRC patients, investigations need to be continued in the future before selected chemokines could be established as biomarkers for CRC.
Collapse
Affiliation(s)
| | - Sara Pączek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
11
|
Li J, Huang L, Zhao H, Yan Y, Lu J. The Role of Interleukins in Colorectal Cancer. Int J Biol Sci 2020; 16:2323-2339. [PMID: 32760201 PMCID: PMC7378639 DOI: 10.7150/ijbs.46651] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Despite great progress has been made in treatment strategies, colorectal cancer (CRC) remains the predominant life-threatening malignancy with the feature of high morbidity and mortality. It has been widely acknowledged that the dysfunction of immune system, including aberrantly expressed cytokines, is strongly correlated with the pathogenesis and progression of colorectal cancer. As one of the most well-known cytokines that were discovered centuries ago, interleukins are now uncovering new insights into colorectal cancer therapy. Herein, we divide currently known interleukins into 6 families, including IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family and IL-17 family. In addition, we comprehensively reviewed the oncogenic or antitumour function of each interleukin involved in CRC pathogenesis and progression by elucidating the underlying mechanisms. Furthermore, by providing interleukins-associated clinical trials, we have further driven the profound prospect of interleukins in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ling Huang
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hanzhang Zhao
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuheng Yan
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
12
|
Chen PS, Chiu WT, Hsu PL, Lin SC, Peng IC, Wang CY, Tsai SJ. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci 2020; 27:63. [PMID: 32389123 PMCID: PMC7212687 DOI: 10.1186/s12929-020-00658-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essentially required by most eukaryotic organisms as a scavenger to remove harmful electron and hydrogen ions or as a critical substrate to ensure the proper execution of enzymatic reactions. All nucleated cells can sense oxygen concentration and respond to reduced oxygen availability (hypoxia). When oxygen delivery is disrupted or reduced, the organisms will develop numerous adaptive mechanisms to facilitate cells survived in the hypoxic condition. Normally, such hypoxic response will cease when oxygen level is restored. However, the situation becomes complicated if hypoxic stress persists (chronic hypoxia) or cyclic normoxia-hypoxia phenomenon occurs (intermittent hypoxia). A series of chain reaction-like gene expression cascade, termed hypoxia-mediated gene regulatory network, will be initiated under such prolonged or intermittent hypoxic conditions and subsequently leads to alteration of cellular function and/or behaviors. As a result, irreversible processes occur that may cause physiological disorder or even pathological consequences. A growing body of evidence implicates that hypoxia plays critical roles in the pathogenesis of major causes of mortality including cancer, myocardial ischemia, metabolic diseases, and chronic heart and kidney diseases, and in reproductive diseases such as preeclampsia and endometriosis. This review article will summarize current understandings regarding the molecular mechanism of hypoxia in these common and important diseases.
Collapse
Affiliation(s)
- Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Pei-Ling Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - I-Chen Peng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
13
|
Wang CA, Chang IH, Hou PC, Tai YJ, Li WN, Hsu PL, Wu SR, Chiu WT, Li CF, Shan YS, Tsai SJ. DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination. J Extracell Vesicles 2020; 9:1746529. [PMID: 32341770 PMCID: PMC7170376 DOI: 10.1080/20013078.2020.1746529] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Early dissemination is a unique characteristic and a detrimental process of pancreatic ductal adenocarcinoma (PDAC); however, the underlying mechanism remains largely unknown. Here, we investigate the role of dual-specificity phosphatase-2 (DUSP2)-vascular endothelial growth factor-C (VEGF-C) axis in mediating PDAC lymphangiogenesis and lymphovascular invasion. Expression of DUSP2 is greatly suppressed in PDAC, which results in increased aberrant expression of extracellular vesicle (EV)-associated VEGF-C secretion. EV-VEGF-C exerts paracrine effects on lymphatic endothelial cells and autocrine effects on cancer cells, resulting in the lymphovascular invasion of cancer cells. Tissue-specific knockout of Dusp2 in mouse pancreas recapitulates PDAC phenotype and lymphovascular invasion. Mechanistically, loss-of-DUSP2 enhances proprotein convertase activity and vesicle trafficking to promote the release of the mature form of EV-VEGF-C. Collectively, these findings represent a conceptual advance in understanding pancreatic cancer lymphovascular invasion and suggest that loss-of-DUSP2-mediated VEGF-C processing may play important roles in early dissemination of pancreatic cancer. Abbreviations: DUSP2: dual-specificity phosphatase-2; VEGF-C: vascular endothelial growth factor-C; EV: extracellular vesicles; PDAC: pancreatic ductal adenocarcinoma; KD: knockdown.
Collapse
Affiliation(s)
- Chu-An Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Heng Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Pei-Chi Hou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jing Tai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundational Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
14
|
Liu W, Tian X, Ding X, Zhang L. Expression of Dual-Specificity Phosphatase 2 (DUSP2) in Patients with Serous Ovarian Carcinoma and in SKOV3 and OVCAR3 Cells In Vitro. Med Sci Monit 2019; 25:10180-10189. [PMID: 31889045 PMCID: PMC6953438 DOI: 10.12659/msm.919089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Ovarian cancer commonly presents at a late stage and is associated with poor prognosis. The most common histological subtype is serous ovarian carcinoma. Dual-specificity phosphatase 2 (DUSP2) is a protein phosphatase and substrate for mitogen-activated protein kinases (MAPKs) with increased expression levels in malignancy. This study aimed to evaluate the expression of DUSP2 in tumor tissues from patients with serous ovarian carcinoma and the association with tumor grade, stage, and patient survival and to investigate the effects of DUSP2 expression in SKOV3 and OVCAR3 cells in vitro. MATERIAL AND METHODS Tumor tissue and adjacent normal ovarian tissue from 127 patients with histologically confirmed serous ovarian carcinoma underwent quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry to measure DUSP2 mRNA and protein expression, respectively. Tumor grade, stage, and clinicopathological data underwent correlation analysis with DUSP2 expression, and survival data were assessed with Kaplan-Meier and Cox regression analysis. The effects of DUSP2 expression on the proliferation and migration of SKOV3 and OVCAR3 cells were evaluated. RESULTS Immunohistochemistry showed that DUSP2 was down-regulated in serous ovarian carcinoma tissues compared with adjacent ovarian tissues, and was significantly correlated with tumor stage. Survival analysis showed that DUSP2 expression was an independent risk factor for patient survival. DUSP2 expression in SKOV3 and OVCAR3 cells in vitro suppressed cell proliferation and migration. CONCLUSIONS Down-regulation of DUSP2 expression in serous ovarian carcinoma was an independent risk factor for patient survival, and its expression in SKOV3 and OVCAR3 cells inhibited cell proliferation and migration in vitro.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Xiaomin Tian
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Xue Ding
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Leiying Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| |
Collapse
|
15
|
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA, Alvarez-Sánchez ME. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front Oncol 2019; 9:1370. [PMID: 31921634 PMCID: PMC6915110 DOI: 10.3389/fonc.2019.01370] [Citation(s) in RCA: 609] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
During angiogenesis, new vessels emerge from existing endothelial lined vessels to promote the degradation of the vascular basement membrane and remodel the extracellular matrix (ECM), followed by endothelial cell migration, and proliferation and the new generation of matrix components. Matrix metalloproteinases (MMPs) participate in the disruption, tumor neovascularization, and subsequent metastasis while tissue inhibitors of metalloproteinases (TIMPs) downregulate the activity of these MMPs. Then, the angiogenic response can be directly or indirectly mediated by MMPs through the modulation of the balance between pro- and anti-angiogenic factors. This review analyzes recent knowledge on MMPs and their participation in angiogenesis.
Collapse
Affiliation(s)
- Saray Quintero-Fabián
- Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - Rodrigo Arreola
- Psychiatric Genetics Department, National Institute of Psychiatry "Ramón de la Fuente", Clinical Research Branch, Mexico City, Mexico
| | | | - Julio César Torres-Romero
- Biochemistry and Molecular Genetics Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Merida, Mexico
| | - Victor Arana-Argáez
- Pharmacology Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Julio Lara-Riegos
- Biochemistry and Molecular Genetics Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Merida, Mexico
| | | | | |
Collapse
|
16
|
Tomar VS, Baral TK, Nagavelu K, Somasundaram K. Serine/threonine/tyrosine-interacting-like protein 1 (STYXL1), a pseudo phosphatase, promotes oncogenesis in glioma. Biochem Biophys Res Commun 2019; 515:241-247. [PMID: 31146910 DOI: 10.1016/j.bbrc.2019.05.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022]
Abstract
Phosphatases play an important role in cellular signaling and are often found dysregulated in cancers including glioblastoma (GBM). A comprehensive bioinformatics analysis of phosphatases (n = 403) in multiple datasets revealed their deregulation in GBM. Among the differentially regulated phosphatases (n = 186; 46.1%), majority of them were found to be regulated by microRNA (n = 94; 50.5%) followed by DNA methylation (n = 22; 11.8%) and altered copy number variation (n = 10; 5.37%). STYXL1 (Serine/threonine/tyrosine-interacting-like protein 1) was found to be the second most amplified gene in GBM, upregulated, and correlated to poor prognosis. The expression of STYXL1 was also found to be higher in IDH1 mutant gliomas and G-CIMP- gliomas which are reported to be more aggressive than their corresponding counterparts. Silencing STYXL1 inhibited glioma cell growth, soft agar colony formation, migration, invasion, proliferation, and xenograft tumor growth. Further, ectopic expression of STYXL1 was found to promote glioma cell growth, soft agar colony formation, migration, and RasV12 induced in-vitro transformation of immortalized human astrocytes, thus confirming its oncogenic potential in GBM. In this report, we provide a comprehensive overview of deregulation of phosphatases in GBM and demonstrate for the first time, the oncogenic nature of STYXL1 in GBM. This study might be useful for treatment of GBM patients with deregulated STYXL1.
Collapse
Affiliation(s)
- Vivek Singh Tomar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Tapan Kumar Baral
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
17
|
Ling C, Nishimoto K, Rolfs Z, Smith LM, Frey BL, Welham NV. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. SCIENCE ADVANCES 2019; 5:eaav7384. [PMID: 31086819 PMCID: PMC6506241 DOI: 10.1126/sciadv.aav7384] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 05/27/2023]
Abstract
Fibrocytes (FCs) are hematopoietic lineage cells that migrate to sites of injury, transition to a mesenchymal phenotype, and help to mediate wound repair. Despite their relevance to human fibrotic disorders, there are few data characterizing basic FC biology. Herein, using proteomic, bioenergetic, and bioengineering techniques, we conducted deep phenotypic characterization of differentiating and mature FCs. Differentiation was associated with metabolic reprogramming that favored oxidative phosphorylation. Mature FCs had distinct proteomes compared to classic mesenchymal cells, formed functional stromae that supported epithelial maturation during in vitro organotypic culture, and exhibited in vivo survival and self-tolerance as connective tissue isografts. In an in vitro scratch assay, FCs promoted fibroblast migration and wound closure by paracrine signaling via the chemokine CXCL8 (interleukin-8). These findings characterize important aspects of FC differentiation and show that, in addition to their role in wound healing, FCs hold potential as an easily isolated autologous cell source for regenerative medicine.
Collapse
Affiliation(s)
- Changying Ling
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kohei Nishimoto
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zach Rolfs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathan V. Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
18
|
Yin H, He W, Li Y, Xu N, Zhu X, Lin Y, Gou X. Loss of DUSP2 predicts a poor prognosis in patients with bladder cancer. Hum Pathol 2019; 85:152-161. [DOI: 10.1016/j.humpath.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
|
19
|
Bezzerri V, Piacenza F, Caporelli N, Malavolta M, Provinciali M, Cipolli M. Is cellular senescence involved in cystic fibrosis? Respir Res 2019; 20:32. [PMID: 30764828 PMCID: PMC6376730 DOI: 10.1186/s12931-019-0993-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy.
| |
Collapse
|
20
|
Wu MH, Hsiao KY, Tsai SJ. Hypoxia: The force of endometriosis. J Obstet Gynaecol Res 2019; 45:532-541. [PMID: 30618168 DOI: 10.1111/jog.13900] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
AIM Summarize recent findings of how hypoxia regulates numerous important processes to facilitate the implantation, proliferation and progression of ectopic endometriotic lesions. METHODS Most up-to-date evidences about how hypoxia contributes to the disease pathogenesis of endometriosis and potential therapeutic approaches were collected by conducting a comprehensive search of medical literature electronic databases. Quality of data was analyzed by experienced experts including gynecologist and basic scientists. RESULTS Uterus is a highly vascularized organ, which makes endometrial cells constantly expose to high concentration of oxygen. When endometrial tissues shed off from the eutopic uterus and retrograde to the peritoneal cavity, they face severe hypoxic stress. Even with successful implantation to ovaries or peritoneum, the hypoxic stress remains as a critical issue because endometrial cells are used to live in the well-oxygenated environment. Under the hypoxia condition, cells undergo epigenetic modulation and evolve several survival processes including steroidogenesis, angiogenesis, inflammation and metabolic switch. The complex gene regulatory network driven by hypoxia ensures endometriotic cells can survive under the hostile peritoneal microenvironment. CONCLUSION Hypoxia plays critical roles in promoting pathological processes to facilitate the development of endometriosis. Targeting hypoxia-mediated gene network represents an alternative approach for the treatment of endometriosis.
Collapse
Affiliation(s)
- Meng-Hsing Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Yang Hsiao
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Heras SCDL, Martínez-Balibrea E. CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World J Gastroenterol 2018; 24:4738-4749. [PMID: 30479461 PMCID: PMC6235799 DOI: 10.3748/wjg.v24.i42.4738] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women, worldwide. In the early stages of the disease, biomarkers predicting early relapse would improve survival rates. In metastatic patients, the use of predictive biomarkers could potentially result in more personalized treatments and better outcomes. The CXC family of chemokines (CXCL1 to 17) are small (8 to 10 kDa) secreted proteins that attract neutrophils and lymphocytes. These chemokines signal through chemokine receptors (CXCR) 1 to 8. Several studies have reported that these chemokines and receptors have a role in either the promotion or inhibition of cancer, depending on their capacity to suppress or stimulate the action of the immune system, respectively. In general terms, activation of the CXCR1/CXCR2 pathway or the CXCR4/CXCR7 pathway is associated with tumor aggressiveness and poor prognosis; therefore, the specific inhibition of these receptors is a possible therapeutic strategy. On the other hand, the lesser known CXCR3 and CXCR5 axes are generally considered to be tumor suppressor signaling pathways, and their stimulation has been suggested as a way to fight cancer. These pathways have been studied in tumor tissues (using immunohistochemistry or measuring mRNA levels) or serum [using enzyme-linked immuno sorbent assay (ELISA) or multiplexing techniques], among other sample types. Common variants in genes encoding for the CXC chemokines have also been investigated as possible biomarkers of the disease. This review summarizes the most recent findings on the role of CXC chemokines and their receptors in CRC and discusses their possible value as prognostic or predictive biomarkers as well as the possibility of targeting them as a therapeutic strategy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/mortality
- Colorectal Neoplasms/pathology
- Humans
- Neoplasm Recurrence, Local/diagnosis
- Prognosis
- Receptors, CXCR/antagonists & inhibitors
- Receptors, CXCR/immunology
- Receptors, CXCR/metabolism
- Signal Transduction/drug effects
- Survival Rate
Collapse
Affiliation(s)
- Sara Cabrero-de las Heras
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Germans Trias i Pujol health research institute (IGTP), Badalona, Barcelona 08916, Catalunya, Spain
- Program of Predictive and Personalized Cancer Medicine (PMPPC), Germans Trias i Pujol health research institute (IGTP), Badalona, Barcelona 08916, Catalunya, Spain
| | | |
Collapse
|
22
|
Fei M, Guan J, Xue T, Qin L, Tang C, Cui G, Wang Y, Gong H, Feng W. Hypoxia promotes the migration and invasion of human hepatocarcinoma cells through the HIF-1α-IL-8-Akt axis. Cell Mol Biol Lett 2018; 23:46. [PMID: 30258464 PMCID: PMC6149064 DOI: 10.1186/s11658-018-0100-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most common cause of cancer-related death worldwide. The 5-year survival rate remains low despite considerable research into treatments of HCC, including surgery, radiotherapy and chemotherapy. Many mechanisms within HCC still require investigation, including the influence of hypoxia, which has a crucial role in many cancers and is associated with metastasis. Hypoxia inducible factor-1α (HIF-1α) is known to regulate the expression of many chemokines, including interleukin-8 (IL-8), which is associated with tumor metastasis. Although many studies have reported that HIF-1α is associated with HCC migration and invasion, the underlying mechanisms remain unknown. Methods The expression level of HIF-1α was determined in HCC cells. The correlation of IL-8 and HIF-1α expressions was assessed via knockdown of HIF-1α. HCC cells were also used to assess the influence of HIF-1α on HCC cell migration and invasion. LY294002, an inhibitor of the Akt pathway, was used to confirm the associated signaling pathways. Results We observed a significant attenuation of cell migration and invasion after silencing of HIF-1α. Exogenously expressing IL-8 restored migration and invasion. Akt was found to be involved in this process. Conclusion Hypoxia promotes HCC cell migration and invasion through the HIF-1α–IL-8–Akt axis.
Collapse
Affiliation(s)
- Maoyun Fei
- Department of General Surgery, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| | - Jianming Guan
- Department of Ultrasound, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| | - Tao Xue
- Central Laboratory, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| | - Lianjin Qin
- Department of General Surgery, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| | - Chengwu Tang
- Department of Hepatobiliary Pancreatic Surgery, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| | - Ge Cui
- Department of General Surgery, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| | - Yao Wang
- Department of General Surgery, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| | - Hui Gong
- Central Laboratory, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| | - Wenming Feng
- Department of Hepatobiliary Pancreatic Surgery, The First People's Hospital of Huzhou, No.158 Guangchanghou Road, Zhejiang Province 313000 Huzhou, People's Republic of China
| |
Collapse
|
23
|
Yang L, Chang Y, Cao P. CCR7 preservation via histone deacetylase inhibition promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells. Exp Cell Res 2018; 371:231-237. [PMID: 30107147 DOI: 10.1016/j.yexcr.2018.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/16/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022]
Abstract
The effects of Histone deacetylase (HDAC) inhibition on epithelial-mesenchymal transition (EMT) differs in various types of cancers. However, its function in hepatocellular carcinoma (HCC) is not well-explored. In this study, we investigated the effect of HDAC inhibition on EMT in HCC cells by using trichostatin A (TSA) and valproic acid (VPA). The results showed that TSA/VPA significantly induced EMT phenotype, as demonstrated by the decreased level of E-cadherin, increased level of N-cadherin, vimentin, Twist and snail, and enhanced capacity of cell migration and invasion. In addition, CCR7 was speculated and confirmed as a function target of HDAC inhibition. CCR7 promotes the progression of HCC and is associated with poor survival. Knockdown of CCR7 significantly attenuated the effect of TSA on EMT. Moreover, our results demonstrated that HDAC inhibition up-regulates CCR7 via reversing the promoter hypoacetylation and increasing CCR7 transcription. Taken together, our study has identified the function of HDAC in EMT of HCC and suggested a novel mechanism through which TSA/VPA exerts its carcinogenic roles in HCC. HDAC inhibitors require careful caution before their application as new anticancer drugs.
Collapse
Affiliation(s)
- Lingling Yang
- Department of Gastroenterology, Baoji Central hospital, Baoji 721008, China
| | - Yanxiang Chang
- Department of Oncology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710003, China
| | - Peilong Cao
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
24
|
Lo Nigro C, Vivenza D, Denaro N, Lattanzio L, Fortunato M, Crook T, Merlano MC. DUSP2 methylation is a candidate biomarker of outcome in head and neck cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:271. [PMID: 30094257 DOI: 10.21037/atm.2018.06.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Biomarkers predictive of response to chemoradiotherapy (CRT) regimens for locally advanced head and neck squamous cell carcinoma (LA-HNSCC) are urgently required to identify patients in whom this approach is likely to be effective. TP53 mutations and epidermal growth factor (EGFR) overexpression are common markers of disease. Dual-specificity-phosphatase-2 (DUSP2) has an essential role in cell proliferation, cancer and immune responses. Methods Aberrant DUSP2 methylation was investigated by pyrosequencing in 5 HNSCC cell lines, 112 LA-HNSCC tumours. EGFR was investigated by immunohistochemistry and TP53 was analysed by sequencing. Results We demonstrate methylation-dependent transcriptional silencing of DUSP2 in HNSCC cell lines. In LA-HNSCC patients, aberrant methylation in the DUSP2 CpG island was present in 51/112 cases (45.5%). LA-HNSCC cases with wild-type TP53, overexpression of EGFR and unmethylated DUSP2 had the worst overall survival (P≤0.001). Conclusions DUSP2 methylation, when combined with EGFR and TP53, is a candidate biomarker of clinical outcome in LA-HNSCC treated with CRT.
Collapse
Affiliation(s)
- Cristiana Lo Nigro
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Daniela Vivenza
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Nerina Denaro
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Laura Lattanzio
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Mirella Fortunato
- Department of Pathology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Tim Crook
- Department of Oncology, St. Lukes Cancer Centre, Guildford, UK
| | - Marco Carlo Merlano
- Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| |
Collapse
|
25
|
Dong W, Li N, Pei X, Wu X. Differential expression of DUSP2 in left- and right-sided colon cancer is associated with poor prognosis in colorectal cancer. Oncol Lett 2018; 15:4207-4214. [PMID: 29541187 PMCID: PMC5835964 DOI: 10.3892/ol.2018.7881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/08/2017] [Indexed: 01/18/2023] Open
Abstract
Dual-specificity phosphatase-2 (DUSP2), a negative regulator of extracellular-regulated kinase activity, has been identified as an important kinase with emerging roles in cancer. However, the clinical significance of DUSP2 in colorectal cancer (CRC) remains to be fully elucidated. In the present study, the expression of DUSP2 was investigated using immunohistochemistry in 96 patients with CRC. Cell viability was estimated using a cell counting kit-8 assay, and cell apoptosis by flow cytometry. The relationship between DUSP2 expression and patient characteristics, including overall survival, were studied retrospectively in these patients. It was found that DUSP2 was differentially expressed between left-sided colon carcinoma (LSCC) and right-sided colon carcinoma (RSCC). It was also found that decreased expression of DUSP2 was correlated with significantly shorter overall survival (P=0.001) and short distant-metastasis-free survival (P=0.002). In univariate comparisons, the decreased expression of DUSP2 was found to be an independent risk factor for poor survival rate (HR 3.55, CI 1.092-9.896; P=0.002). It was also found that the enforced overexpression of DUSP2 sensitized CRC cells to cetuximab. In conclusion, the findings demonstrated that DUSP2 was differentially expressed between RSCC and LSCC, and that the overexpression of DUSP2 increased the inhibitory effect of cetuximab in CRC, suggesting that DUSP2 may be a novel biomarker and therapeutic target in CRC therapy.
Collapse
Affiliation(s)
- Wenjie Dong
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Na Li
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiufeng Pei
- Department of Internal Medical Oncology, Tumor Hospital of Baotou, Baotou, Inner Mongolia 014030, P.R. China
| | - Xinai Wu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
26
|
Zhou X, An D, Liu X, Jiang M, Yuan C, Hu J. TNFα induces tolerant production of CXC chemokines in colorectal cancer HCT116 cells via A20 inhibition of ERK signaling. Int Immunopharmacol 2017; 54:296-302. [PMID: 29175508 DOI: 10.1016/j.intimp.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
Ubiquitin editing enzyme A20 functions as a tumor suppressor in various cancer. However, the mechanism for A20 regulation of cancer progress is not fully understood. In this study, we found that in human colorectal cancer HCT116 cells, TNFα induced a tolerant production of CXC chemokines, including CXCL1, 2, and 8 in a dose and time dependent manner. TNFα pre-treatment of HCT116 cells down-regulated the chemokine production induced by TNFα re-treatment. TNFα induced the phosphorylation of MAPKs ERK, JNK, P38 and NF-κB P65, but only ERK inhibition decreased TNFα-induced chemokine production. Both RT-PCR and FACS results showed that TNFα treatment did not regulate the expression of TNF receptors. However, TNFα up-regulated the expression of A20 at both mRNA and protein levels significantly. TNFα pre-treatment inhibited the signal transduction of MAPKs induced by TNFα re-stimulation, and A20 over-expression decreased the signal transduction of ERK and P38. Meanwhile, A20 inhibition by RNA interference reversed chemokine down-regulation induced by TNFα re-stimulation after TNFα pre-treatment. Taken together, these results suggested that in human colorectal cancer cells, A20 may function to inhibit cancer progression via down-regulation of TNFα-induced chemokine production by suppression of ERK signaling.
Collapse
Affiliation(s)
- Xin Zhou
- Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China; Graduate School, University of South China, Hengyang, Hunan 421001, China
| | - Dongjian An
- Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China.
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Chuang Yuan
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China.
| |
Collapse
|
27
|
Hsiao KY, Chang N, Tsai JL, Lin SC, Tsai SJ, Wu MH. Hypoxia-inhibited DUSP2 expression promotes IL-6/STAT3 signaling in endometriosis. Am J Reprod Immunol 2017; 78. [PMID: 28440564 DOI: 10.1111/aji.12690] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
PROBLEM How does hypoxia-mediated downregulation of dual-specificity phosphatase-2 (DUSP2) promote the development of endometriotic lesions? METHOD OF STUDY The levels of IL-6 and DUSP2 were assessed in eutopic stromal cells with DUSP2 knockdown or hypoxia treatment. Bromodeoxyuridine (BrdU) incorporation was applied for evaluating cell proliferation. The protein levels of DUSP2, cleaved caspase-3, phosphorylated STAT3, and STAT3 were analyzed using immunoblot. RESULTS The genomewide analysis of cells with DUSP2 overexpression indicated IL-6 regulates multiple pathways related to inflammation, proliferation, and apoptosis. DUSP2 overexpression significantly suppressed IL-6 expression, while DUSP2 knockdown promoted IL-6 expression. The hypoxia-treated eutopic stromal cells expressed higher levels of IL-6, recapitulating the elevated levels of IL-6 in ectopic stromal cells. The treatment with IL-6 elicited the phosphorylation of STAT3, mimicking the elevated levels of phosphorylated STAT3 in the ectopic stromal cells. The IL-6-treated eutopic stromal cells showed more BrdU incorporation and less cleaved caspase-3, which can be reversed by STAT3 inhibitor. CONCLUSION Hypoxia-induced IL-6 production in endometriotic lesions is mediated via downregulation of DUSP2, which causes aberrant activation of STAT3 signaling pathway and helps the endometriotic cells survive under the ectopic environment.
Collapse
Affiliation(s)
- Kuei-Yang Hsiao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ning Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Ling Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsing Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|