1
|
Zha C, Huang A, Kailasam S, Young D, Dufour A, Sossin WS. Identifying putative substrates of Calpain-15 in neurodevelopment. PLoS One 2025; 20:e0319489. [PMID: 40238785 PMCID: PMC12002525 DOI: 10.1371/journal.pone.0319489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/03/2025] [Indexed: 04/18/2025] Open
Abstract
Calpain 15 (CAPN15) is an intracellular cysteine protease belonging to the non-classical small optic lobe (SOL) family of calpains, which has an important role in developmental processes. Loss of Capn15 in mice leads to developmental eye anomalies and volumetric changes in the brain. Human individuals with biallelic variants in CAPN15 have developmental delay, neurodevelopmental disorders, as well as congenital malformations, including eye anomalies. However, the substrates of Capn15 are still unidentified. Here, using Capn15 KO P2 mice of both sexes, we have used RNA sequencing (RNA-SEQ), proteomics, and N-terminomics/terminal amino isotopic labelling of substrates (TAILS), to examine putative substrates of Capn15. There were few changes in the transcriptome profile, and we could not verify a protein change in one selected mRNA between Capn15-/- and WT mice, although a putative transcription factor linked to these changes, Pax2, did show a significant increase after the loss of Capn15. TAILS revealed a preference for cleavage at basic residues, and while no hits showed a significant change in cleavage, some were more abundant when Capn15 was removed. These included Doublecortin and Tubb3, and the Doublecortin predicted cleavage was at a lysine residue. Cleavages at lysine residues were enriched in peptides that were lost or reduced when Capn15 was removed, but not in cleavages that were unchanged when Capn15 was removed.
Collapse
Affiliation(s)
- Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ally Huang
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Senthilkumar Kailasam
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Trétarre B, Satgé D. Ovarian Cancer in Women with Intellectual Disability: Current Data. Cancers (Basel) 2025; 17:805. [PMID: 40075653 PMCID: PMC11898487 DOI: 10.3390/cancers17050805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE We evaluate ovarian cancer (OC) in women with intellectual disability (ID). METHODS We reviewed the literature and added personal observations. The literature search included data from epidemiological studies on cancer incidence and mortality, institutional experiences, and case reports. We also used data from the Hérault Tumor Registry (HTR) in southern France. RESULTS A total of 72 articles met the inclusion criteria, which included 41 cases of OC. The review yielded 29 (74%) germ cell tumors, mainly in girls and young women, and only 4 (10%) ovarian carcinomas, all in adult women. In contrast, the HTR contained six cases of OC and one borderline tumor in adult women with ID aged > 45 years, but no cancer in children and adolescents with ID. These OC cases in adults were discovered at an advanced stage. We found that symptoms revealing OC in women with ID do not differ from those in the general population. However, diagnosis is more complicated in women with ID because they do not communicate easily and may express pain and unease in an unusual way, often through behavioral changes. CONCLUSION OC could be as frequent in women with ID as in the general population and discovered at a late stage. The literature review indicates that girls and adolescents with ID develop mainly germ cell OC, and few carcinomas have been reported in women with ID. In contrast, the HTR was similar to the general population, with carcinomas in women with ID and no OC in children with ID.
Collapse
Affiliation(s)
- Brigitte Trétarre
- Registre des Tumeurs de l’Hérault, 298 Rue des Apothicaires, 34090 Montpellier, France
- Oncodéfi, Parc Euromédecine, 209 Avenue des Apothicaires, 34090 Montpellier, France;
- Centre d’Epidémiologie et de Recherche en Santé des Populations INSERM U1295, Toulouse III University, 31000 Toulouse, France
| | - Daniel Satgé
- Oncodéfi, Parc Euromédecine, 209 Avenue des Apothicaires, 34090 Montpellier, France;
- UMR 1302 Institut Desbrest d’Epidémiologie et de Santé Publique INSERM, Université de Montpellier, 340093 Montpellier, France
| |
Collapse
|
3
|
Field NR, Dickson KA, Nassif NT, Marsh DJ. SMARCA4 and SMARCA2 co-deficiency: An uncommon molecular signature defining a subset of rare, aggressive and undifferentiated malignancies associated with defective chromatin remodeling. Cancer Lett 2024; 605:217282. [PMID: 39369768 DOI: 10.1016/j.canlet.2024.217282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Genetic mutations and epigenetic modifications affecting multiple cancer-related genes occur synergistically to drive tumorigenesis. Across a wide spectrum of cancers, pathogenic changes have been identified in members of the SWItch/Sucrose Non-Fermentable complex including its two catalytic subunits, SMARCA4 and SMARCA2. During cancer development, it is not uncommon to lose the function of either SMARCA4 or SMARCA2, however, loss of both together has been reported to be synthetic lethal and therefore unexpected. Co-deficiency of SMARCA4 and SMARCA2 occurs as a pathognomonic feature of the early-onset ovarian cancer Small-cell carcinoma of the ovary, hypercalcemic type. The loss of both catalytic subunits is also described in other rare undifferentiated neoplasms including Thoracic SMARCA4-deficient undifferentiated tumors, Malignant rhabdoid tumors and dedifferentiated or undifferentiated carcinomas, predominantly of lung, gastrointestinal, and endometrial origin. This review provides the first extensive characterization of cancers with concurrent SMARCA4 and SMARCA2 loss through the discussion of shared clinical and molecular features. Further, we discuss the mechanisms triggering the loss of catalytic activity, the cellular processes that are dysfunctional as a consequence, and finally, current therapeutic candidates which may selectively target these cancers.
Collapse
Affiliation(s)
- Natisha R Field
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Najah T Nassif
- Cancer Biology, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
4
|
Errichiello E, Lecca M, Vantaggiato C, Motta Z, Zanotta N, Zucca C, Bertuzzo S, Piubelli L, Pollegioni L, Bonaglia MC. Further evidence supporting the role of GTDC1 in glycine metabolism and neurodevelopmental disorders. Eur J Hum Genet 2024; 32:920-927. [PMID: 38605125 PMCID: PMC11291697 DOI: 10.1038/s41431-024-01603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Copy number variants (CNVs) represent the genetic cause of about 15-20% of neurodevelopmental disorders (NDDs). We identified a ~67 kb de novo intragenic deletion on chromosome 2q22.3 in a female individual showing a developmental encephalopathy characterised by epilepsy, severe intellectual disability, speech delay, microcephaly, and thin corpus callosum with facial dysmorphisms. The microdeletion involved exons 5-6 of GTDC1, encoding a putative glycosyltransferase, whose expression is particularly enriched in the nervous system. In a previous study, a balanced de novo translocation encompassing GTDC1 was reported in a male child with global developmental delay and delayed speech and language development. Based on these premises, we explored the transcriptomic profile of our proband to evaluate the functional consequences of the novel GTDC1 de novo intragenic deletion in relation to the observed neurodevelopmental phenotype. RNA-seq on the proband's lymphoblastoid cell line (LCL) showed expression changes of glycine/serine and cytokine/chemokine signalling pathways, which are related to neurodevelopment and epileptogenesis. Subsequent analysis by ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) revealed increased levels of glycine in the proband's LCL and serum compared to matched controls. Given that an increased level of glycine has been observed in the plasma samples of individuals with Rett syndrome, a condition sharing epilepsy, microcephaly, and intellectual disability with our proband, we proposed that the GTDC1 downregulation is implicated in neurodevelopmental impairment by altering glycine metabolism. Furthermore, our findings expanded the phenotypic spectrum of the novel GTDC1-related condition, including microcephaly and epilepsy among relevant clinical features.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicoletta Zanotta
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Claudio Zucca
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Sara Bertuzzo
- Laboratory of Cytogenetics, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | |
Collapse
|
5
|
Blatnik A, Dragoš VŠ, Blatnik O, Stegel V, Klančar G, Novaković S, Drev P, Žagar T, Merlo S, Škof E, Bojadžiski MP, Strojnik K, Krajc M. A Population-Based Study of Patients With Small Cell Carcinoma of the Ovary, Hypercalcemic Type, Encompassing a 30-Year Period. Arch Pathol Lab Med 2024; 148:299-309. [PMID: 37270804 DOI: 10.5858/arpa.2022-0297-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and lethal tumor, characterized by hypercalcemia and early onset and associated with germline and somatic SMARCA4 variants. OBJECTIVE.— To identify all known cases of SCCOHT in the Slovenian population from 1991 to 2021 and present genetic testing results, histopathologic findings, and clinical data for these patients. We also estimate the incidence of SCCOHT. DESIGN.— We conducted a retrospective analysis of hospital medical records and data from the Slovenian Cancer Registry in order to identify cases of SCCOHT and obtain relevant clinical data. Histopathologic review of tumor samples with assessment of immunohistochemical staining for SMARCA4/BRG1 was undertaken to confirm the diagnosis of SCCOHT. Germline and somatic genetic analyses were performed using targeted next-generation sequencing. RESULTS.— Between 1991 and 2021, we identified 7 cases of SCCOHT in a population of 2 million. Genetic causes were determined in all cases. Two novel germline loss-of-function variants in SMARCA4 LRG_878t1:c.1423_1429delTACCTCA p.(Tyr475Ilefs*24) and LRG_878t1:c.3216-1G>T were identified. At diagnosis, patients were ages 21 to 41 and had International Federation of Gynecology and Obstetrics, or FIGO, stage IA-III disease. Outcomes were poor, with 6 of 7 patients dying of disease-related complications within 27 months from diagnosis. One patient had stable disease for 12 months while receiving immunotherapy. CONCLUSIONS.— We present genetic, histopathologic, and clinical characteristics for all cases of SCCOHT identified in the Slovenian population during a 30-year period. We report 2 novel germline SMARCA4 variants, possibly associated with high penetrance. We estimate the minimal incidence of SCCOHT to be 0.12 per 1 million per year.
Collapse
Affiliation(s)
- Ana Blatnik
- From the Departments of Clinical Cancer Genetics (A. Blatnik, Strojnik, Krajc)
- Institute of Oncology Ljubljana, Ljubljana, Slovenia; and the Biotechnical Faculty (A. Blatnik, Dragoš)
- University of Ljubljana, Ljubljana, Slovenia
| | - Vita Šetrajčič Dragoš
- Molecular Diagnostics (Dragoš, Stegel, Klančar, Novaković)
- Institute of Oncology Ljubljana, Ljubljana, Slovenia; and the Biotechnical Faculty (A. Blatnik, Dragoš)
- University of Ljubljana, Ljubljana, Slovenia
| | - Olga Blatnik
- Pathology (O. Blatnik, Drev)
- University of Ljubljana, Ljubljana, Slovenia
| | - Vida Stegel
- Molecular Diagnostics (Dragoš, Stegel, Klančar, Novaković)
- University of Ljubljana, Ljubljana, Slovenia
| | - Gašper Klančar
- Molecular Diagnostics (Dragoš, Stegel, Klančar, Novaković)
- University of Ljubljana, Ljubljana, Slovenia
| | - Srdjan Novaković
- Molecular Diagnostics (Dragoš, Stegel, Klančar, Novaković)
- University of Ljubljana, Ljubljana, Slovenia
| | - Primož Drev
- Pathology (O. Blatnik, Drev)
- University of Ljubljana, Ljubljana, Slovenia
| | - Tina Žagar
- the Epidemiology and Cancer Registry Sector (Žagar)
- University of Ljubljana, Ljubljana, Slovenia
| | - Sebastjan Merlo
- the Divisions of Surgery (Merlo)
- Faculty of Medicine (Merlo, Krajc)
- University of Ljubljana, Ljubljana, Slovenia
| | - Erik Škof
- Oncology (Škof, Bojadžiski)
- University of Ljubljana, Ljubljana, Slovenia
| | | | - Ksenija Strojnik
- From the Departments of Clinical Cancer Genetics (A. Blatnik, Strojnik, Krajc)
- University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Krajc
- From the Departments of Clinical Cancer Genetics (A. Blatnik, Strojnik, Krajc)
- Faculty of Medicine (Merlo, Krajc)
- University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Byrjalsen A, Stoltze U, Mehrjouy M, Frederiksen JH, Bak M, Birkedal U, Hasle H, Gerdes A, Schmiegelow K, Wadt K, Hansen TVO. The effect of a single SMARCA4 exon deletion on RNA splicing: Implications for variant classification. Mol Genet Genomic Med 2023; 11:e2232. [PMID: 37430472 PMCID: PMC10568377 DOI: 10.1002/mgg3.2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/10/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Exon deletions are generally considered pathogenic, particularly when they are located out of frame. Here, we describe a pediatric, female patient presenting with hypercalcemia and a small cell carcinoma of the ovary, hypercalcemic type, and carrying a germline de novo SMARCA4 exon 14 deletion. METHODS The SMARCA4 deletion was identified by whole genome sequencing, and the effect on the RNA level was examined by gel- and capillary electrophoresis and nanopore sequencing. RESULTS The deletion was in silico predicted to be truncating, but RNA analysis revealed two major transcripts with deletion of exon 14 alone or exon 14 through 15, where the latter was located in-frame. Because the patient's phenotype matched that of other patients with pathogenic germline variants in SMARCA4, the deletion was classified as likely pathogenic. CONCLUSION We propose to include RNA analysis in classification of single-exon deletions, especially if located outside of known functional domains, as this can identify any disparate effects on the RNA and DNA level, which may have implications for variant classification using the American College of Medical Genetics and Genomics guidelines.
Collapse
Affiliation(s)
- Anna Byrjalsen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ulrik Stoltze
- Department of Pediatrics and Adolescent Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mana Mehrjouy
- Department of Pediatrics and Adolescent Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | | | - Mads Bak
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ulf Birkedal
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Henrik Hasle
- Department of PediatricsAarhus University HospitalAarhus NDenmark
| | - Anne‐Marie Gerdes
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Karin Wadt
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Pan XB, He YS, Lu Z, Pan HR, Wei ZY, Jin YY, Wang J, Chen JH. Epitranscriptomic investigation of myopia-associated RNA editing in the retina. Front Neurosci 2023; 17:1220114. [PMID: 37449273 PMCID: PMC10336353 DOI: 10.3389/fnins.2023.1220114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Myopia is one of the most common causes of vision loss globally and is significantly affected by epigenetics. Adenosine-to-inosine (A-to-I RNA) editing is an epigenetic process involved in neurological disorders, yet its role in myopia remains undetermined. We performed a transcriptome-wide analysis of A-to-I RNA editing in the retina of form-deprivation myopia mice. Our study identified 91 A-to-I RNA editing sites in 84 genes associated with myopia. Notably, at least 27 (32.1%) of these genes with myopia-associated RNA editing showed existing evidence to be associated with myopia or related ocular phenotypes in humans or animal models, such as very low-density lipoprotein receptor (Vldlr) in retinal neovascularization and hypoxia-induced factor 1 alpha (Hif1a). Moreover, functional enrichment showed that RNA editing enriched in FDM was primarily involved in response to fungicides, a potentially druggable process for myopia prevention, and epigenetic regulation. In contrast, RNA editing enriched in controls was mostly involved in post-embryonic eye morphogenesis. Our results demonstrate altered A-to-I RNA editing associated with myopia in an experimental mouse model and warrant further study on its role in myopia development.
Collapse
Affiliation(s)
- Xu-Bin Pan
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zijing Lu
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Hao-Ran Pan
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Borja NA, Schrier Vergano SA, Tekin M. Coffin-Siris syndrome and cancer susceptibility. GENETICS IN MEDICINE OPEN 2023; 1:100818. [PMID: 39669229 PMCID: PMC11613554 DOI: 10.1016/j.gimo.2023.100818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 12/14/2024]
Abstract
Coffin-Siris syndrome (CSS) is a rare neurodevelopmental disorder that is associated with multiple congenital anomalies and caused by de novo monoallelic germline pathogenic variants in BAF-complex genes. Despite their function as tumor suppressors, the cancer risk in patients with CSS remains unclear. We analyzed cancer sequencing data sets, conducted a comprehensive literature review of patients with CSS diagnosed with malignancies, and examined a cohort of 376 CSS registry patients to estimate cancer frequency. A review of the literature identified several reports of patients with CSS diagnosed with a malignancy, with ARID1A being the most frequent causative gene and associated with hepatoblastoma in 3 cases. Although no cases of malignancy were reported among the patients in the CSS registry, only 26 patients with ARID1A-CSS were available for analysis. Combining these patients with all cases reported in the literature led to the estimate of hepatoblastoma prevalence in ARID1A-CSS of 3.6% (95% CI 0.79%-10.4%). Our findings suggest the hepatoblastoma risk among patients with ARID1A-CSS may exceed the established 1% risk threshold and therefore warrant surveillance. There remains insufficient evidence to support any other CSS gene-cancer association, emphasizing the need for further systematic study.
Collapse
Affiliation(s)
- Nicholas A. Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL
| | - Samantha A. Schrier Vergano
- Division of Medical Genetics and Metabolism, Children’s Hospital of the King’s Daughters, Norfolk, VA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL
- John P. Hussmann Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
9
|
Chan-Pak-Choon F, Roca C, Chong AS, Nogué C, Dahlum S, Austin R, Mar Fan H, van Spaendonck-Zwarts KY, Lambie NK, Robertson T, Siebert R, Rivera B, Foulkes WD. SMARCA4-associated schwannomatosis. Acta Neuropathol 2023; 145:505-507. [PMID: 36786840 DOI: 10.1007/s00401-023-02546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/15/2023]
Affiliation(s)
- Fiona Chan-Pak-Choon
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Carla Roca
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anne-Sophie Chong
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Clara Nogué
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Centre, Ulm, Germany
| | - Rachel Austin
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Helen Mar Fan
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Karin Y van Spaendonck-Zwarts
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Neil K Lambie
- Anatomical Pathology, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Thomas Robertson
- Pathology Queensland, Faculty of Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Centre, Ulm, Germany
| | - Barbara Rivera
- Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
- Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Novel germline SMARCA4 mutation in Small Cell Carcinoma of the Ovary, Hypercalcemic Type. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2022. [DOI: 10.1016/j.cpccr.2022.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Cárcamo B, Masotto B, Baquero-Vaquer A, Ceballos-Saenz D, Zapata-Aldana E. "Cancer in ARID1A-Coffin-Siris syndrome: Review and report of a child with hepatoblastoma". Eur J Med Genet 2022; 65:104600. [PMID: 36049608 DOI: 10.1016/j.ejmg.2022.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Coffin-Siris syndrome (CSS) is a rare neurodevelopmental and multisystemic disorder with wide genetic heterogeneity and phenotypic variability caused by pathogenic variants in the BAF complex with 341 cases enrolled in the CSS/BAF-related disorders registry by 2021. Pathogenic variants of ARID1A account for 7-8% of cases with CSS phenotype. Malignancy has been previously reported in six individuals with CSS associated with BAF mutations. Two of these malignancies including one acute lymphoid leukemia and one hepatoblastoma were reported in ARID1A-associated CSS (ARID1A-CSS). Alterations in ARID1A are among the most common molecular aberrations in human cancer. Somatic deletion of 1p and specifically of 1p36.11 containing ARID1A is frequently seen in hepatoblastoma and has been associated with high-risk features. Here we report a child with CSS Phenotype and a novel de novo variant of ARID1A with hepatoblastoma. Because hepatoblastoma has an incidence of 1 per million children, the presence of hepatoblastoma in 2 of 30 known cases of ARID1A-CSS is significant. ARID1A-CSS should be included among the cancer predisposition syndromes associated with an increased risk of hepatoblastoma and tumour surveillance considered for these patients. The role of ARID1A in the pathogenesis and outcome of hepatoblastoma deserves further investigation.
Collapse
Affiliation(s)
- Benjamín Cárcamo
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Paul L. Foster School of Medicine, Texas Tech University Health Science Center El Paso, El Paso, TX, USA; El Paso Children's Hospital, El Paso, TX, USA
| | | | | | - Delia Ceballos-Saenz
- Telethon Children's Rehabilitation Centre (Centro de Rehabilitación e inclusión Infantil Teleton), Guerrero, Mexico
| | - Eugenio Zapata-Aldana
- Telethon Children's Rehabilitation Centre (Centro de Rehabilitación e inclusión Infantil Teleton), Guerrero, Mexico; Medical Genetics, Sistemas Genómicos, Paterna, Spain.
| |
Collapse
|
12
|
Hardcastle A, Berry AM, Campbell IM, Zhao X, Liu P, Gerard AE, Rosenfeld JA, Sisoudiya SD, Hernandez-Garcia A, Loddo S, Di Tommaso S, Novelli A, Dentici ML, Capolino R, Digilio MC, Graziani L, Rustad CF, Neas K, Ferrero GB, Brusco A, Di Gregorio E, Wellesley D, Beneteau C, Joubert M, Van Den Bogaert K, Boogaerts A, McMullan DJ, Dean J, Giuffrida MG, Bernardini L, Varghese V, Shannon NL, Harrison RE, Lam WWK, McKee S, Turnpenny PD, Cole T, Morton J, Eason J, Jones MC, Hall R, Wright M, Horridge K, Shaw CA, Chung WK, Scott DA. Identifying phenotypic expansions for congenital diaphragmatic hernia plus (CDH+) using DECIPHER data. Am J Med Genet A 2022; 188:2958-2968. [PMID: 35904974 PMCID: PMC9474674 DOI: 10.1002/ajmg.a.62919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 01/31/2023]
Abstract
Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.
Collapse
Affiliation(s)
- Amy Hardcastle
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Aliska M. Berry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ian M. Campbell
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Amanda E. Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Saumya D. Sisoudiya
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Sara Loddo
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Silvia Di Tommaso
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria L. Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maria C. Digilio
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ludovico Graziani
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Medical Genetics Unit, Tor Vergata Hospital, Rome, Italy
| | - Cecilie F. Rustad
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Giovanni B. Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
- Città della Salute e della Scienza University Hospital, Torino, Italy
| | | | - Diana Wellesley
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, Hampshire, UK
- University Hospital Southampton, Southampton, Hampshire, UK
| | - Claire Beneteau
- Nantes Université, CHU de Nantes, UF 9321 de Fœtopathologie et Génétique, Nantes, France
| | - Madeleine Joubert
- Nantes Université, CHU de Nantes, UF 9321 de Fœtopathologie et Génétique, Nantes, France
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven–KU Leuven, Leuven, Belgium
| | - Anneleen Boogaerts
- Center for Human Genetics, University Hospitals Leuven–KU Leuven, Leuven, Belgium
| | - Dominic J. McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, UK
| | - John Dean
- Clinical Genetics Service, Ashgrove House, NHS Grampian, Aberdeen, UK
| | - Maria G. Giuffrida
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Laura Bernardini
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Nora L Shannon
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rachel E. Harrison
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Wayne W. K. Lam
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, Scotland
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Peter D. Turnpenny
- Clinical Genetics Department, Royal Devon and Exeter Hospital, Exeter, UK
| | - Trevor Cole
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, UK
| | - Jenny Morton
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, UK
| | - Jacqueline Eason
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Marilyn C. Jones
- University of California, San Diego and Rady Children’s Hospital, San Diego, CA, USA
| | - Rebecca Hall
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Wright
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Karen Horridge
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Krishnamurthy N, Kato S, Lippman S, Kurzrock R. Chromatin remodeling (SWI/SNF) complexes, cancer, and response to immunotherapy. J Immunother Cancer 2022. [PMCID: PMC9442488 DOI: 10.1136/jitc-2022-004669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Chromatin regulation involves four subfamilies composed of ATP-dependent multifunctional protein complexes that remodel the way DNA is packaged. The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex subfamily mediates nucleosome reorganization and hence activation/repression of critical genes. The SWI/SNF complex is composed of the BRG-/BRM-associated factor and Polybromo-associated BAF complexes, which in turn have multiple subunits. Significantly, ~20% of malignancies harbor alterations in >1 of these subunits, making the genes encoding SWI/SNF family members among the most vulnerable to genomic aberrations in cancer. ARID1A is the largest subunit of the SWI/SNF complex and is altered in ~40%–50% of ovarian clear cell cancers and ~15%–30% of cholangiocarcinomas, in addition to a variety of other malignancies. Importantly, outcome was improved after immune checkpoint blockade (ICB) in patients with ARID1A-altered versuss wild-type tumors, and this result was independent of microsatellite instability or tumor mutational burden. Another subunit—PBRM1—is mutated in ~40% of clear cell renal cell carcinomas and ~12% of cholangiocarcinomas; there are contradictory reports regarding ICB responsiveness. Two other SWI/SNF subunits of interest are SMARCA4 and SMARCB1. SMARCA4 loss is the hallmark of small cell carcinoma of the ovary hypercalcemic type (and is found in a variety of other malignancies); SMARCA4 germline alterations lead to rhabdoid tumor predisposition syndrome-2; SMARCB1 germline alterations, rhabdoid tumor predisposition syndrome-1. Remarkable, although anecdotal, responses to ICB have been reported in both SMARCA4-aberrant and SMARCB1-aberrant advanced cancers. This review focuses on the role that SWI/SNF chromatin remodeling subunits play in carcinogenesis, the immune microenvironment, and in immunotherapy responsiveness.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Yale University, New Haven, Connecticut, USA
| | - Shumei Kato
- Yale University, New Haven, Connecticut, USA
- Department of Medicine, Division of Hematology/Oncology, and Center for Personalized Cancer Therapy, University of California, Moores Cancer Center, La Jolla, California, USA
| | - Scott Lippman
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Hematology/Oncology, and Center for Personalized Cancer Therapy, University of California, Moores Cancer Center, La Jolla, California, USA
| | - Razelle Kurzrock
- Worldwide Innovative Network for Personalized Cancer Therapy, San Diego, California, USA
| |
Collapse
|
14
|
Marques P, Korbonits M. Approach to the Patient With Pseudoacromegaly. J Clin Endocrinol Metab 2022; 107:1767-1788. [PMID: 34792134 DOI: 10.1210/clinem/dgab789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/19/2022]
Abstract
Pseudoacromegaly encompasses a heterogeneous group of conditions in which patients have clinical features of acromegaly or gigantism, but no excess of GH or IGF-1. Acromegaloid physical features or accelerated growth in a patient may prompt referral to endocrinologists. Because pseudoacromegaly conditions are rare and heterogeneous, often with overlapping clinical features, the underlying diagnosis may be challenging to establish. As many of these have a genetic origin, such as pachydermoperiostosis, Sotos syndrome, Weaver syndrome, or Cantú syndrome, collaboration is key with clinical geneticists in the diagnosis of these patients. Although rare, awareness of these uncommon conditions and their characteristic features will help their timely recognition.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| |
Collapse
|
15
|
Küry S, Ebstein F, Mollé A, Besnard T, Lee MK, Vignard V, Hery T, Nizon M, Mancini GM, Giltay JC, Cogné B, McWalter K, Deb W, Mor-Shaked H, Li H, Schnur RE, Wentzensen IM, Denommé-Pichon AS, Fourgeux C, Verheijen FW, Faurie E, Schot R, Stevens CA, Smits DJ, Barr E, Sheffer R, Bernstein JA, Stimach CL, Kovitch E, Shashi V, Schoch K, Smith W, van Jaarsveld RH, Hurst AC, Smith K, Baugh EH, Bohm SG, Vyhnálková E, Ryba L, Delnatte C, Neira J, Bonneau D, Toutain A, Rosenfeld JA, Audebert-Bellanger S, Gilbert-Dussardier B, Odent S, Laumonnier F, Berger SI, Smith AC, Bourdeaut F, Stern MH, Redon R, Krüger E, Margueron R, Bézieau S, Poschmann J, Isidor B, Isidor B. Rare germline heterozygous missense variants in BRCA1-associated protein 1, BAP1, cause a syndromic neurodevelopmental disorder. Am J Hum Genet 2022; 109:361-372. [PMID: 35051358 DOI: 10.1016/j.ajhg.2021.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44007 Nantes, France.
| |
Collapse
|
16
|
Mardinian K, Adashek JJ, Botta GP, Kato S, Kurzrock R. SMARCA4: Implications of an Altered Chromatin-Remodeling Gene for Cancer Development and Therapy. Mol Cancer Ther 2021; 20:2341-2351. [PMID: 34642211 PMCID: PMC8643328 DOI: 10.1158/1535-7163.mct-21-0433] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
The SWI/SNF chromatin remodeling complex, via nucleosome topology modulation, regulates transcription. The SMARCA4 (BRG1) subunit codes for the ATPase energy engine of the SWI/SNF complex. SMARCA4 is a tumor suppressor that is aberrant in ∼5% to 7% of human malignancies. Class I SMARCA4 alterations (truncating mutations, fusions, and homozygous deletion) lead to loss of function whereas class II alterations (missense mutations) have a dominant negative/gain-of-function effect and/or loss-of function. SMARCA4 alterations typify the ultra-rare small cell carcinomas of the ovary hypercalcemic type (SCCOHT) and SMARCA4-deficient thoracic and uterine sarcomas; they are also found in a subset of more common tumors, for example, lung, colon, bladder, and breast carcinomas. Germline variants in the SMARCA4 gene lead to various hereditary conditions: rhabdoid tumor predisposition syndrome-2 (RTPS2), characterized by loss-of-function alterations and aggressive rhabdoid tumors presenting in infants and young children; and Coffin-Siris syndrome, characterized by dominant negative/gain-of function alterations and developmental delays, microcephaly, unique facies, and hypoplastic nails of the fifth fingers or toes. A minority of rhabdoid tumors have a germline SMARCA4 variant as do >40% of women with SCCOHT. Importantly, immune checkpoint blockade has shown remarkable, albeit anecdotal, responses in SCCOHT. In addition, there is ongoing research into BET, EZH2, HDAC, CDK4/6, and FGFR inhibitors, as well as agents that might induce synthetic lethality via DNA damage repair impairment (ATR inhibitors and platinum chemotherapy), or via the exploitation of mitochondrial oxidative phosphorylation inhibitors or AURKA inhibitors, in SMARCA4-aberrant cancers.
Collapse
Affiliation(s)
- Kristina Mardinian
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Gregory P Botta
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California. .,WIN Consortium, Paris, France
| |
Collapse
|
17
|
Qian Y, Zhou Y, Wu B, Chen H, Xu S, Wang Y, Zhang P, Li G, Xu Q, Zhou W, Xu X, Wang H. Novel Variants of the SMARCA4 Gene Associated with Autistic Features Rather Than Typical Coffin-Siris Syndrome in Eight Chinese Pediatric Patients. J Autism Dev Disord 2021; 52:5033-5041. [PMID: 34813034 DOI: 10.1007/s10803-021-05365-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental-related disorders with a high genetic risk. Recently, chromatin remodeling factors have been found to be related to ASDs. SMARCA4 is such a catalytic subunit of the chromatin-remodeling complex. In this report, we identified seven novel missense variants in the SMARCA4 gene from eight pediatric patients. All eight patients had moderate to severe intellectual disability, and seven showed autistic/likely autistic features. Compared with the patients reported in the literature, our patients were less likely to show craniofacial or finger/toe anomalies. Our findings further supported that SMARCA4 is associated with ASDs. We suggest that individuals with the abovementioned phenotypes should consider genetic testing.
Collapse
Affiliation(s)
- Yanyan Qian
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yuanfeng Zhou
- Neurology Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Bingbing Wu
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Huiyao Chen
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Suzhen Xu
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yao Wang
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ping Zhang
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Gang Li
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenhao Zhou
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Huijun Wang
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
18
|
Mehta A, Diwan H, Bansal D, Gupta M. TTF1-positive SMARCA4/BRG1 deficient lung adenocarcinoma. J Pathol Transl Med 2021; 56:53-56. [PMID: 34775734 PMCID: PMC8743805 DOI: 10.4132/jptm.2021.09.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
SMARCA4/BRG1-deficient lung adenocarcinoma (SD-LUAD) is being recognized as a distinct subtype based on subtle differences in its clinical, morphological, and immunophenotypic attributes compared to other non–small cell lung carcinomas. We present here a case of SD-LUAD with curious thyroid transcription factor 1 (TTF1) expression in a morphologically heterogenous lung adenocarcinoma. The better differentiated area showed preservation of TTF1 expression, and a poorly differentiated tumor had loss of TTF1 expression with universal BRG1 loss.
Collapse
Affiliation(s)
- Anurag Mehta
- Department of Laboratory, Molecular and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre (RGCIRC), New Delhi, India
| | - Himanshi Diwan
- Department of Laboratory, Molecular and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre (RGCIRC), New Delhi, India
| | - Divya Bansal
- Department of Laboratory, Molecular and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre (RGCIRC), New Delhi, India
| | - Manoj Gupta
- Department of Nuclear Medicine, Rajiv Gandhi Cancer Institute and Research Centre (RGCIRC), New Delhi, India
| |
Collapse
|
19
|
Holdhof D, Schoof M, Al-Kershi S, Spohn M, Kresbach C, Göbel C, Hellwig M, Indenbirken D, Moreno N, Kerl K, Schüller U. Brahma-related gene 1 has time-specific roles during brain and eye development. Development 2021; 148:268382. [PMID: 34042968 DOI: 10.1242/dev.196147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
During development, gene expression is tightly controlled to facilitate the generation of the diverse cell types that form the central nervous system. Brahma-related gene 1 (Brg1, also known as Smarca4) is the catalytic subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex that regulates transcription. We investigated the role of Brg1 between embryonic day 6.5 (E6.5) and E14.5 in Sox2-positive neural stem cells (NSCs). Being without major consequences at E6.5 and E14.5, loss of Brg1 between E7.5 and E12.5 resulted in the formation of rosette-like structures in the subventricular zone, as well as morphological alterations and enlargement of neural retina (NR). Additionally, Brg1-deficient cells showed decreased survival in vitro and in vivo. Furthermore, we uncovered distinct changes in gene expression upon Brg1 loss, pointing towards impaired neuron functions, especially those involving synaptic communication and altered composition of the extracellular matrix. Comparison with mice deficient for integrase interactor 1 (Ini1, also known as Smarcb1) revealed that the enlarged NR was Brg1 specific and was not caused by a general dysfunction of the SWI/SNF complex. These results suggest a crucial role for Brg1 in NSCs during brain and eye development.
Collapse
Affiliation(s)
- Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Sina Al-Kershi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany.,Bioinformatics Facility, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149 Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
20
|
Isidro RA, Dong F, Hornick JL, Wee JO, Agoston A, Patil DT, Deshpande V, Zhao L. Verrucous carcinoma of the oesophagus is a genetically distinct subtype of oesophageal squamous cell carcinoma. Histopathology 2021; 79:642-649. [PMID: 33960520 DOI: 10.1111/his.14395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023]
Abstract
AIMS Oesophageal verrucous carcinoma (VSCC) is a rare and morphologically distinct type of oesophageal squamous cell carcinoma (SCC). Diagnosing VSCC on biopsy material is challenging, given the lack of significant atypia and the presence of keratinising epithelium and exophytic growth. The molecular pathogenesis of VSCC remains unclear. The aim of this study was to characterise the genomic landscape of VSCC in comparison to conventional oesophageal SCC. METHODS AND RESULTS Three cases of VSCC from the Brigham and Women's Hospital pathology archive were identified. Formalin-fixed, paraffin-embedded (FFPE) tumour tissue was used for p16 immunohistochemistry (IHC), high-risk human papillomavirus (HPV) in-situ mRNA hybridisation (ISH) and DNA isolation. Tumour DNA was sequenced using a targeted massively parallel sequencing assay enriched for cancer-associated genes. Three additional cases of VSCC were identified by image review of The Cancer Genome Atlas (TCGA) oesophageal SCC cohort. VSCC cases were negative for p16 IHC and high-risk HPV ISH. TP53 mutations (P < 0.001) and copy number variants (CNVs) for CDKN2A (P < 0.001), CDKN2B (P < 0.01) and CCND1 (P < 0.01) were absent in VSCC and significantly less frequent in comparison to conventional SCC. Five VSCC cases featured SMARCA4 missense mutations or in-frame deletions compared to only four of 88 conventional SCC cases (P < 0.001). VSCC featured driver mutations in PIK3CA, HRAS and GNAS. Recurrent CNVs were rare in VSCC. CONCLUSIONS VSCC is not only morphologically but also genetically distinct from conventional oesophageal SCC, featuring frequent SMARCA4 mutations and infrequent TP53 mutations or CDKN2A/B CNVs. Molecular findings may aid in establishing the challenging diagnosis of VSCC.
Collapse
Affiliation(s)
- Raymond A Isidro
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jon O Wee
- Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Agoston Agoston
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Pastorczak A, Krajewska K, Urbanska Z, Szmyd B, Salacinska-Los E, Kobos J, Mlynarski W, Trelinska J. Ovarian carcinoma in children with constitutional mutation of SMARCA4: single-family report and literature review. Fam Cancer 2021; 20:355-362. [PMID: 33907931 PMCID: PMC8484133 DOI: 10.1007/s10689-021-00258-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/15/2021] [Indexed: 01/08/2023]
Abstract
Ovarian carcinoma is an extremely rare malignancy in children, often developing on the underlying inherited background. Female carriers of pathogenic germline mutations of SMARCA4 are at risk of an aggressive type of undifferentiated ovarian cancer called small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). Regardless of age of the patient, stage of the disease, and oncological treatment, the prognosis for SCCOHT is poor. Therefore, early intervention with risk-reducing surgeries is recommended for these patients. In this study, we report genetic testing of a family with two children carrying pathogenic germline mutations of SMARCA4 and summarize the course of SCCOHT in all pediatric patients reported in the literature with constitutional defects identified within the SMARCA4 locus.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738, Lodz, Poland.
| | - Karolina Krajewska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738, Lodz, Poland
| | - Zuzanna Urbanska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738, Lodz, Poland
| | - Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738, Lodz, Poland
| | | | - Józef Kobos
- Department of Histology and Embryology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738, Lodz, Poland
| | - Joanna Trelinska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738, Lodz, Poland
| |
Collapse
|
22
|
Bonometti A, Lobascio G, Boveri E, Cesari S, Lecca M, Arossa A, Spinillo A, Errichiello E, Paulli M. Acute megakaryoblastic leukemia with a novel GATA1 mutation in a second trimester stillborn fetus with trisomy 21. Leuk Lymphoma 2021; 62:2276-2279. [PMID: 33783296 DOI: 10.1080/10428194.2021.1907377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Arturo Bonometti
- Unit of Anatomic Pathology, Department of Molecular Medicine, IRCCS San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Gessica Lobascio
- Unit of Anatomic Pathology, Department of Molecular Medicine, IRCCS San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Emanuela Boveri
- Unit of Anatomic Pathology, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Stefania Cesari
- Unit of Anatomic Pathology, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessia Arossa
- Unit of Obstetrics and Gynecology, IRCCS S. Matteo Foundation, University of Pavia, Pavia, Italy
| | - Arsenio Spinillo
- Unit of Obstetrics and Gynecology, IRCCS S. Matteo Foundation, University of Pavia, Pavia, Italy
| | - Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, Department of Molecular Medicine, IRCCS San Matteo Foundation, University of Pavia, Pavia, Italy.,Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Del Baldo G, Carta R, Alessi I, Merli P, Agolini E, Rinelli M, Boccuto L, Milano GM, Serra A, Carai A, Locatelli F, Mastronuzzi A. Rhabdoid Tumor Predisposition Syndrome: From Clinical Suspicion to General Management. Front Oncol 2021; 11:586288. [PMID: 33692948 PMCID: PMC7937887 DOI: 10.3389/fonc.2021.586288] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Rhabdoid tumors are rare aggressive malignancies in infants and young children with a poor prognosis. The most common anatomic localizations are the central nervous system, the kidneys, and other soft tissues. Rhabdoid tumors share germline and somatic mutations in SMARCB1 or, more rarely, SMARCA4, members of the SWI/SNF chromatin-remodeling complex. Rhabdoid tumor predisposition syndrome (RTPS) is a condition characterized by a high risk of developing rhabdoid tumors, among other features. RTPS1 is characterized by pathogenic variants in the SMARCB1 gene, while RTPS2 has variants in SMARCA4. Interestingly, germline variants of SMARCB1 and SMARCA4 have been identified also in patients with Coffin-Siris syndrome. Children with RTPS typically present with tumors before 1 year of age and in a high percentage of cases develop synchronous or multifocal tumors with aggressive clinical features. The diagnosis of RTPS should be considered in patients with rhabdoid tumors, especially if they have multiple primary tumors and/or in individuals with a family history. Because germline mutations result in an increased risk of carriers developing rhabdoid tumors, genetic counseling, and surveillance for all family members with this condition is recommended.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberto Carta
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Iside Alessi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Merli
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, United States.,School of Nursing, College of Behavioral, Social and Health Science, Clemson University, Clemson, SC, United States
| | - Giuseppe Maria Milano
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Annalisa Serra
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Maternal, Infantile, and Urological Sciences, University of Rome La Sapienza, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
24
|
Frühwald MC, Nemes K, Boztug H, Cornips MCA, Evans DG, Farah R, Glentis S, Jorgensen M, Katsibardi K, Hirsch S, Jahnukainen K, Kventsel I, Kerl K, Kratz CP, Pajtler KW, Kordes U, Ridola V, Stutz E, Bourdeaut F. Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition: a report from the SIOPE Host Genome Working Group. Fam Cancer 2021; 20:305-316. [PMID: 33532948 PMCID: PMC8484234 DOI: 10.1007/s10689-021-00229-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
The rhabdoid tumor (RT) predisposition syndromes 1 and 2 (RTPS1 and 2) are rare genetic conditions rendering young children vulnerable to an increased risk of RT, malignant neoplasms affecting the kidney, miscellaneous soft-part tissues, the liver and the central nervous system (Atypical Teratoid Rhabdoid Tumors, ATRT). Both, RTPS1&2 are due to pathogenic variants (PV) in genes encoding constituents of the BAF chromatin remodeling complex, i.e. SMARCB1 (RTPS1) and SMARCA4 (RTPS2). In contrast to other genetic disorders related to PVs in SMARCB1 and SMARCA4 such as Coffin-Siris Syndrome, RTPS1&2 are characterized by a predominance of truncating PVs, terminating transcription thus explaining a specific cancer risk. The penetrance of RTPS1 early in life is high and associated with a poor survival. However, few unaffected carriers may be encountered. Beyond RT, the tumor spectrum may be larger than initially suspected, and cancer surveillance offered to unaffected carriers (siblings or parents) and long-term survivors of RT is still a matter of discussion. RTPS2 exposes female carriers to an ill-defined risk of small cell carcinoma of the ovaries, hypercalcemic type (SCCOHT), which may appear in prepubertal females. RT surveillance protocols for these rare families have not been established. To address unresolved issues in the care of individuals with RTPS and to propose appropriate surveillance guidelines in childhood, the SIOPe Host Genome working group invited pediatric oncologists and geneticists to contribute to an expert meeting. The current manuscript summarizes conclusions of the panel discussion, including consented statements as well as non-evidence-based proposals for validation in the future.
Collapse
Affiliation(s)
- M C Frühwald
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - K Nemes
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - H Boztug
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M C A Cornips
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D G Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, MAHSC, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
| | - R Farah
- Department of Pediatrics, Division of Hematology/Oncology, LAU Medical Center-Rizk Hospital, Ashrafieh, Beirut, Lebanon
| | - S Glentis
- Pediatric Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - M Jorgensen
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
| | - K Katsibardi
- Pediatric Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - S Hirsch
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - K Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - I Kventsel
- Department of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - K Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - C P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - K W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - U Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - V Ridola
- Department of Pediatric Oncology and Haematology, Mitera Children's Hospital, Athens, Greece
| | - E Stutz
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - F Bourdeaut
- Institut Curie, SIREDO Pediatric Cancer Center, INSERM U830, Laboratory of Translational Research in Pediatric Oncology, Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
25
|
Nambirajan A, Singh V, Bhardwaj N, Mittal S, Kumar S, Jain D. SMARCA4/BRG1-Deficient Non-Small Cell Lung Carcinomas: A Case Series and Review of the Literature. Arch Pathol Lab Med 2021; 145:90-98. [PMID: 33367658 DOI: 10.5858/arpa.2019-0633-oa] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 01/04/2023]
Abstract
CONTEXT.— Somatic mutations in SMARCA4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4) gene and/or BRG1 (Brahma-related gene 1) loss identifies a subset of non-small cell lung carcinomas (NSCLCs) lacking alterations in EGFR (epidermal growth factor receptor), ALK (anaplastic lymphoma kinase), and ROS1 (ROS proto-oncogene 1) genes. Preliminary observations suggest responsiveness to immunotherapy and targeted therapies. OBJECTIVE.— To study BRG1 loss in NSCLCs and elucidate the clinicopathologic profile of such SMARCA4-deficient NSCLCs. DESIGN.— Non-small cell lung carcinomas diagnosed during 6 years were subject to immunohistochemistry for BRG1 and BRM (Brahma). Tumors with BRG1 loss were stained with antibodies against thyroid transcription factor 1 (TTF-1), p40, cytokeratins, hepatocyte paraffin 1 (Hep Par 1), Sal-like protein 4 (SALL4), CD34, SRY-box 2 (SOX2), chromogranin, synaptophysin, p53, integrase interactor 1, ALK, and ROS1. EGFR mutation testing was performed by polymerase chain reaction-based method. RESULTS.— Among 100 NSCLCs tested, 4 cases (4%) showed BRG1 loss. The histology ranged from solid adenocarcinomas (n = 1) to large cell/poorly differentiated carcinomas (n = 3) with clear cell cytology in 2 cases. All showed loss/reduction of BRM with variable cytokeratin and SALL4 expression, and were negative for TTF-1, p40, Hep Par 1, ALK, ROS1, and EGFR mutations. CD34 and SOX2 were negative in all 4 cases. Isolated BRM loss was common (21%), distributed across all NSCLC subtypes including squamous cell carcinomas and a hepatoid adenocarcinoma. CONCLUSIONS.— BRG1 loss occurs in a subset of TTF-1/p40-negative poorly differentiated NSCLCs. Identification and follow-up will clarify the prognosis, diagnostic criteria, and potential for therapeutic personalization.
Collapse
Affiliation(s)
- Aruna Nambirajan
- From the Departments of Pathology (Nambirajan, Bhardwaj, Jain, Singh), All India Institute of Medical Sciences, New Delhi, India
| | - Varsha Singh
- From the Departments of Pathology (Nambirajan, Bhardwaj, Jain, Singh), All India Institute of Medical Sciences, New Delhi, India
| | - Nishu Bhardwaj
- From the Departments of Pathology (Nambirajan, Bhardwaj, Jain, Singh), All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Mittal
- and Pulmonary Medicine (Mittal), All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India (Kumar)
| | - Deepali Jain
- From the Departments of Pathology (Nambirajan, Bhardwaj, Jain, Singh), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Diel H, Ding C, Grehn F, Chronopoulos P, Bartsch O, Hoffmann EM. First observation of secondary childhood glaucoma in Coffin-Siris syndrome: a case report and literature review. BMC Ophthalmol 2021; 21:28. [PMID: 33430815 PMCID: PMC7802219 DOI: 10.1186/s12886-020-01788-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Severe congenital ophthalmological malformations and glaucoma might be an important occasional feature in patients with Coffin-Siris syndrome (CSS), especially Coffin-Siris syndrome 9 (CSS9, OMIM #615866) caused by SOX11 mutation. Recently, primary (open-angle) glaucoma was described in two children with the most common form of Coffin-Siris syndrome, CSS1 (OMIM #135900) by ARID1B (AT-rich interaction domain-containing protein 1B) gene mutation. In this article, we present the first report of glaucoma with Coffin-Siris syndrome 9 as well as the first report of secondary glaucoma with any form of Coffin-Siris syndrome. These findings indicate that secondary glaucoma is an occasional finding in patients with Coffin-Siris syndrome. CASE PRESENTATION A child with secondary childhood glaucoma and additional ocular manifestations was evaluated and treated at the childhood glaucoma centre in Mainz, Germany. Examination under general anaesthesia revealed ocular anterior segment dysgenesis (ASD) (Peters type iridocorneal dysgenesis) in combination with congenital limbal stem cell deficiency (LSCD), aniridia, and cataract. The patient also had multiple other congenital anomalies and severe developmental delay. To explain his combination of anomalies, molecular genetic analysis from peripheral blood was performed in late 2018 and early 2019. Following normal findings with a panel diagnostic of 18 genes associated with congenital glaucoma, whole exome sequencing was performed and revealed a novel likely pathogenic heterozygous variant c.251G>T, p.(Gly84Val) in the SOX11 gene (SRY-related HMG-box gene 11). The variant had occurred de novo. Thus, the multiple congenital anomalies and developmental delay of the patient represented Coffin-Siris syndrome 9 (CSS9, OMIM #615866). CONCLUSIONS When eye diseases occur in combination with other systemic features, genetic analysis can be seminal. Results indicate that glaucoma is an occasional feature of patients with Coffin-Siris syndrome. As early treatment may improve the visual outcome of patients with glaucoma, we suggest that patients with Coffin-Siris syndrome should receive specific ophthalmological screening.
Collapse
Affiliation(s)
- Heidi Diel
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D – 55131 Mainz, Germany
| | - Can Ding
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz Grehn
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D – 55131 Mainz, Germany
| | - Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D – 55131 Mainz, Germany
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Esther M. Hoffmann
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D – 55131 Mainz, Germany
| |
Collapse
|
27
|
Errichiello E, Giorda R, Gambale A, Iolascon A, Zuffardi O, Giglio S. RB1CC1 duplication and aberrant overexpression in a patient with schizophrenia: further phenotype delineation and proposal of a pathogenetic mechanism. Mol Genet Genomic Med 2020; 9:e1561. [PMID: 33340270 PMCID: PMC7963413 DOI: 10.1002/mgg3.1561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/20/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Background Copy number variants in coding and noncoding genomic regions have been implicated as risk factor for schizophrenia (SCZ). Rare duplications of the RB1CC1 gene were found enriched in SCZ patients. Considering that the effect of such duplications on RB1CC1 expression has never been evaluated and partial gene duplications of RB1CC1 have also been reported in SCZ patients, it is unclear whether the pathogenesis is mediated by haploinsufficiency rather than genuine overexpression of the gene. Methods and Results We studied a patient with schizophrenia, suicidality, and obesity, who carried a de novo RB1CC1 complete duplication, as assessed by high‐resolution array‐CGH. Molecular breakpoint cloning allowed to identify nonhomologous end joining (NHEJ) as driving mechanism in this rearrangement. On the contrary, trio‐based whole‐exome sequencing excluded other potential causative variants related to the phenotype. Functional assays showed significant overexpression of RB1CC1 in the peripheral blood lymphocytes of the proband compared to control subjects, suggesting overdosage as leading mechanism in SCZ pathophysiology. Conclusion We hypothesized a pathogenetic model that might explain the correlation between RB1CC1 overexpression and schizophrenia by altering different cell signaling pathways, including autophagy, a promising therapeutic target for schizophrenic patients.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Giorda
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Antonella Gambale
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II" of Naples, Naples, Italy.,CEINGE, Advanced Biotechnologies, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II" of Naples, Naples, Italy.,CEINGE, Advanced Biotechnologies, Naples, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
28
|
Errichiello E, Malara A, Grimod G, Avolio L, Balduini A, Zuffardi O. Low penetrance COL5A1 variants in a young patient with intracranial aneurysm and very mild signs of Ehlers-Danlos syndrome. Eur J Med Genet 2020; 64:104099. [PMID: 33189937 DOI: 10.1016/j.ejmg.2020.104099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022]
Abstract
Spontaneous cervical artery dissection (CeAD) is a major cause of ischemic stroke in young adults, whose genetic susceptibility factors are still largely unknown. Nevertheless, subtle ultrastructural connective tissue alterations (especially in the collagen fibril morphology) are recognized in a large proportion of CeAD patients, in which recent genetic investigations reported an enrichment of variants in genes associated with known connective tissue disorders. In this regard, COL5A1 variants have been reported in a small subset of CeAD patients, with or without classical Ehlers-Danlos syndrome (cEDS) features. We investigated a 22-year-old patient with intracranial aneurysm and mild connective tissue manifestations reminiscent of EDS. Whole-exome sequencing identified two COL5A1 missense variants in trans configuration: NM_000093.5:c.[1588G>A];[4135C>T], NP_000084.3:p.[(Gly530Ser)];[(Pro1379Ser)]. Functional assays demonstrated a significant decrease of collagen α1(V) chain expression in both heterozygous parents compared to control cells, and an additive effect of these two variants in the proband. Interestingly, both parents manifested very subtle EDS signs, such as atrophic scars, recurrent bone fractures, colonic diverticulosis, varicose veins, and osteoarthritis. Our findings emphasize the involvement of COL5A1 in the predisposition to vascular phenotypes and provide novel insights on the c.1588G>A variant, whose functional significance has not been definitely established. In fact, it was previously reported as both "disease modifying", and as a biallelic causative mutation (with heterozygous individuals showing subtle clinical signs of cEDS). We speculated that the c.1588G>A variant might lead to overt phenotype in combination with additional genetic "hits" lowering the collagen α1(V) chain expression below a hypothetical disease threshold.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy
| | - Gianluca Grimod
- Unit of Neurosurgery, Department of Neuroscience, Hospital A. Manzoni, Lecco, Italy
| | - Luigi Avolio
- Department of Pediatric Surgery, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientifico San Matteo Foundation, Pavia, Italy
| | - Orsetta Zuffardi
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
29
|
Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, Aoi H, Azuma Y, Itai T, Saida K, Fukuda H, Sekiguchi F, Sakaguchi T, Lei M, Ohori S, Sakamoto M, Kato M, Koike T, Takahashi Y, Tanda K, Hyodo Y, Honjo RS, Bertola DR, Kim CA, Goto M, Okazaki T, Yamada H, Maegaki Y, Osaka H, Ngu LH, Siew CG, Teik KW, Akasaka M, Doi H, Tanaka F, Goto T, Guo L, Ikegawa S, Haginoya K, Haniffa M, Hiraishi N, Hiraki Y, Ikemoto S, Daida A, Hamano SI, Miura M, Ishiyama A, Kawano O, Kondo A, Matsumoto H, Okamoto N, Okanishi T, Oyoshi Y, Takeshita E, Suzuki T, Ogawa Y, Handa H, Miyazono Y, Koshimizu E, Fujita A, Takata A, Miyake N, Mizuguchi T, Matsumoto N. Efficient detection of copy-number variations using exome data: Batch- and sex-based analyses. Hum Mutat 2020; 42:50-65. [PMID: 33131168 DOI: 10.1002/humu.24129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.
Collapse
Affiliation(s)
- Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Aoi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine Juntendo University, Tokyo, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Sakaguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ming Lei
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Takayoshi Koike
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Koichi Tanda
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Yuki Hyodo
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Rachel S Honjo
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Masahide Goto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Tetsuya Okazaki
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Yamada
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshihiro Maegaki
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Lock-Hock Ngu
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Ch'ng G Siew
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Keng W Teik
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Manami Akasaka
- Department of Pediatrics, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohide Goto
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Muzhirah Haniffa
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Nozomi Hiraishi
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | - Satoru Ikemoto
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Atsuro Daida
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Masaki Miura
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Pediatrics, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Osamu Kawano
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Akane Kondo
- Clinical Genetics Center, Shikoku Medical Center for Children and Adults, National Hospital Organization, Kagawa, Japan
| | - Hiroshi Matsumoto
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tohru Okanishi
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan.,Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yukimi Oyoshi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Faculty of Medicine Juntendo University, Tokyo, Japan
| | - Yoshiyuki Ogawa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yayoi Miyazono
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
30
|
FANCA, TP53, and del(5q)/RPS14 alterations in a patient with T-cell non-Hodgkin lymphoma and concomitant Fanconi anemia and Li-Fraumeni syndrome. Cancer Genet 2020; 256-257:179-183. [PMID: 33183999 DOI: 10.1016/j.cancergen.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/01/2020] [Accepted: 10/25/2020] [Indexed: 11/23/2022]
Abstract
We traced the neoplastic history (from 5 to 11 years of age) of a child with concomitant Fanconi anemia and Li-Fraumeni syndrome. Interestingly, the patient developed a highly malignant T-cell non-Hodgkin lymphoma (NHL), which does not represent the typical tumor type in the two aforementioned syndromes, presumably due to the underlying genomic instability. By using a combination of molecular and immunohistochemical approaches, we characterized the accumulation of multiple genetic alterations in a single patient, with both germline (parentally inherited biallelic FANCA variants and a likely de novo nonsense variant in TP53) and somatic (TP53 loss of heterozygosity and 5q interstitial deletion) contributions. Our findings support the interplay of TP53 and FANC genes in DNA damage response pathways and further highlight the genetic heterogeneity of lymphomas as well as the contribution of genomic instability to lymphomagenesis.
Collapse
|
31
|
Pijuan J, Rodríguez-Sanz M, Natera-de Benito D, Ortez C, Altimir A, Osuna-López M, Roura M, Ugalde M, Van de Vondel L, Reina-Castillón J, Fons C, Benítez R, Nascimento A, Hoenicka J, Palau F. Translational Diagnostics: An In-House Pipeline to Validate Genetic Variants in Children with Undiagnosed and Rare Diseases. J Mol Diagn 2020; 23:71-90. [PMID: 33223419 DOI: 10.1016/j.jmoldx.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Diagnosis is essential for the management and treatment of patients with rare diseases. In a group of patients, the genetic study identifies variants of uncertain significance or inconsistent with the phenotype; therefore, it is urgent to develop novel strategies to reach the definitive diagnosis. Herein, we develop the in-house Translational Diagnostics Program (TDP) to validate genetic variants as part of the diagnostic process with the close collaboration of physicians, clinical scientists, and research scientists. The first 7 of 33 consecutive patients for whom exome-based tests were not diagnostic were investigated. The TDP pipeline includes four steps: (i) phenotype assessment, (ii) literature review and prediction of in silico pathogenicity, (iii) experimental functional studies, and (iv) diagnostic decision-making. Re-evaluation of the phenotype and re-analysis of the exome allowed the diagnosis in one patient. In the remaining patients, the studies included either cDNA cloning or PCR-amplified genomic DNA, or the use of patients' fibroblasts. A comparative computational analysis of confocal microscopy images and studies related to the protein function was performed. In five of these six patients, evidence of pathogenicity of the genetic variant was found, which was validated by physicians. The current research demonstrates the feasibility of the TDP to support and resolve intramural medical problems when the clinical significance of the patient variant is unknown or inconsistent with the phenotype.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - María Rodríguez-Sanz
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Arola Altimir
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Mireia Osuna-López
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Roura
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Maddi Ugalde
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Liedewei Van de Vondel
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judith Reina-Castillón
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carme Fons
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Raúl Benítez
- Automatic Control Department and Biomedical Engineering Research Center, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Department of Genetic Medicine-IPER, Hospital Sant Joan de Déu, Barcelona, Spain; Clinic Institute of Medicine and Dermatology, Hospital Clínic, Barcelona, Spain; Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Mitrakos A, Lazaros L, Pantou A, Mavrou A, Kanavakis E, Tzetis M. Coffin-Siris Syndrome 4-Related Spectrum in a Young Woman Caused by a Heterozygous SMARCA4 Deletion Detected by High-Resolution aCGH. Mol Syndromol 2020; 11:141-145. [PMID: 32903985 DOI: 10.1159/000508563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/26/2020] [Indexed: 11/19/2022] Open
Abstract
Coffin-Siris Syndrome 4 is an autosomal dominant congenital malformation syndrome caused by heterozygous mutations in the SMARCA4 gene with its main features being intellectual disability, developmental delay, behavioral abnormalities, and hypoplastic or absent fifth fingernails and fifth distal phalanges. Here, we report a young woman with developmental delay, moderate intellectual disability, and bilateral sensorineural hearing loss, referred for genetic testing. High-resolution chromosomal microarray analysis identified a 428-kb deletion in chromosome 19 which included the SMARCA4 gene. We conclude that haploinsufficiency of SMARCA4 may be a valid pathophysiological mechanism leading to milder Coffin-Siris syndrome phenotypes.
Collapse
Affiliation(s)
- Anastasios Mitrakos
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece.,Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros Lazaros
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Amelia Pantou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Ariadni Mavrou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Emmanuel Kanavakis
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
33
|
Improving the phenotype description of Basel-Vanagaite-Smirin-Yosef syndrome, MED25-related: polymicrogyria as a distinctive neuroradiological finding. Neurogenetics 2020; 22:19-25. [PMID: 32816121 DOI: 10.1007/s10048-020-00625-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Basel-Vanagaite-Smirin-Yosef syndrome (BVSYS) is an extremely rare autosomal recessive genetic disorder caused by variants in the MED25 gene. It is characterized by severe developmental delay and variable craniofacial, neurological, ocular, and cardiac anomalies. Since 2015, through whole exome sequencing, 20 patients have been described with common clinical features and biallelic variants in MED25, leading to a better definition of the phenotype associated with BVSYS. We report two young sisters, born to consanguineous parents, presenting with intellectual disability, neurological findings, and dysmorphic features typical of BVSYS, and also with bilateral perisylvian polymicrogyria. The younger sister died at the age of 1 year without autoptic examination. Whole exome sequencing detected a homozygous frameshift variant in the MED25 gene: NM_030973.3:c.1778_1779delAG, p.(Gln593Argfs). This report further delineates the most common clinical features of BVSYS and points to polymicrogyria as a distinctive neuroradiological feature of this syndrome.
Collapse
|
34
|
Li D, Ahrens-Nicklas RC, Baker J, Bhambhani V, Calhoun A, Cohen JS, Deardorff MA, Fernández-Jaén A, Kamien B, Jain M, Mckenzie F, Mintz M, Motter C, Niles K, Ritter A, Rogers C, Roifman M, Townshend S, Ward-Melver C, Schrier Vergano SA. The variability of SMARCA4-related Coffin-Siris syndrome: Do nonsense candidate variants add to milder phenotypes? Am J Med Genet A 2020; 182:2058-2067. [PMID: 32686290 DOI: 10.1002/ajmg.a.61732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022]
Abstract
SMARCA4 encodes a central ATPase subunit in the BRG1-/BRM-associated factors (BAF) or polybromo-associated BAF (PBAF) complex in humans, which is responsible in part for chromatin remodeling and transcriptional regulation. Variants in this and other genes encoding BAF/PBAF complexes have been implicated in Coffin-Siris Syndrome, a multiple congenital anomaly syndrome classically characterized by learning and developmental differences, coarse facial features, hypertrichosis, and underdevelopment of the fifth digits/nails of the hands and feet. Individuals with SMARCA4 variants have been previously reported and appear to display a variable phenotype. We describe here a cohort of 15 unrelated individuals with SMARCA4 variants from the Coffin-Siris syndrome/BAF pathway disorders registry who further display variability in severity and degrees of learning impairment and health issues. Within this cohort, we also report two individuals with novel nonsense variants who appear to have a phenotype of milder learning/behavioral differences and no organ-system involvement.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Janice Baker
- Genomic Medicine, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Vikas Bhambhani
- Genomic Medicine, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Amy Calhoun
- Division of Medical Genetics and Genomics, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew A Deardorff
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alberto Fernández-Jaén
- Department of Neuropediatrics, Hospital Universitario Quirónsalud, Universidad Europea de Madrid, Madrid, Spain
| | - Benjamin Kamien
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Mahim Jain
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiona Mckenzie
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Mark Mintz
- CNNH NeuroHealth and the Clinical Research Center of New Jersey, Voorhees, New Jersey, USA
| | | | - Kirsten Niles
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Alyssa Ritter
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Curtis Rogers
- Division of Clinical Genetics, Greenwood Genetics Center, Greenville, South Carolina, USA
| | - Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Sharron Townshend
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | | | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia, USA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
35
|
Lin B, Kesserwan C, Quinn EA, Einhaus SL, Wright KD, Azzato EM, Orr BA, Upadhyaya SA. Anaplastic Astrocytoma in a Child With Coffin-Siris Syndrome and a Germline SMARCE1 Mutation: A Case Report. J Pediatr Hematol Oncol 2020; 42:e177-e180. [PMID: 30499906 DOI: 10.1097/mph.0000000000001361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Coffin-Siris syndrome (CSS) is a rare congenital disorder with variable clinical phenotype consisting of developmental delay and characteristic facial features. It is caused by mutations in the chromatin remodeling switch/sucrose nonfermenting complex. Although SWI/SNF genes are widely implicated in tumorigenesis, only 8 cases of neoplasm have been reported in patients with CSS. We report a case of anaplastic astrocytoma (WHO grade III) in an 18-month-old child with CSS due to a de novo germline missense SMARCE1 mutation. Additional molecular features of the tumor are described as well. The role of missense SMARCE1 mutations in tumor predisposition in children with CSS should be further investigated to better inform genetic counselling.
Collapse
Affiliation(s)
- Beryl Lin
- Faculty of Medicine, University of New South Wales, Australia
| | | | - Emily A Quinn
- Department of Human Genetics and Genetic Counseling, Keck Graduate Institute, Claremont, CA
| | | | - Karen D Wright
- Department of Hematology/Oncology, Dana-Farber Cancer and Blood Disorders Center, Boston, MA
| | | | | | | |
Collapse
|
36
|
Hu B, Lin JZ, Yang XB, Sang XT. The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: A review. Cell Prolif 2020; 53:e12791. [PMID: 32162380 PMCID: PMC7162795 DOI: 10.1111/cpr.12791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy with a high global prevalence and a dismal prognosis. Studies are urgently needed to examine the molecular pathogenesis and biological characteristics of HCC. Chromatin remodelling, an integral component of the DNA damage response, protects against DNA damage‐induced genome instability and tumorigenesis by triggering the signalling events that activate the interconnected DNA repair pathways. The SWI/SNF complexes are one of the most extensively investigated adenosine triphosphate‐dependent chromatin remodelling complexes, and mutations in genes encoding SWI/SNF subunits are frequently observed in various human cancers, including HCC. The mutated SWI/SNF complex subunits exert dual functions by accelerating or inhibiting HCC initiation and progression. Furthermore, the abnormal SWI/SNF complexes influence the transcription of interferon‐stimulated genes, as well as the differentiation, activation and recruitment of several immune cell types. In addition, they exhibit synergistic effects with immune checkpoint inhibitors in the treatment of diverse tumour types. Therefore, understanding the mutations and deficiencies of the SMI/SNF complexes, together with the associated functional mechanisms, may provide a novel strategy to treat HCC through targeting the related genes or modulating the tumour microenvironment.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Tischkowitz M, Huang S, Banerjee S, Hague J, Hendricks WPD, Huntsman DG, Lang JD, Orlando KA, Oza AM, Pautier P, Ray-Coquard I, Trent JM, Witcher M, Witkowski L, McCluggage WG, Levine DA, Foulkes WD, Weissman BE. Small-Cell Carcinoma of the Ovary, Hypercalcemic Type-Genetics, New Treatment Targets, and Current Management Guidelines. Clin Cancer Res 2020; 26:3908-3917. [PMID: 32156746 DOI: 10.1158/1078-0432.ccr-19-3797] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and highly aggressive ovarian malignancy. In almost all cases, it is associated with somatic and often germline pathogenic variants in SMARCA4, which encodes for the SMARCA4 protein (BRG1), a subunit of the SWI/SNF chromatin remodeling complex. Approximately 20% of human cancers possess pathogenic variants in at least one SWI/SNF subunit. Because of their role in regulating many important cellular processes including transcriptional control, DNA repair, differentiation, cell division, and DNA replication, SWI/SNF complexes with mutant subunits are thought to contribute to cancer initiation and progression. Fewer than 500 cases of SCCOHT have been reported in the literature and approximately 60% are associated with hypercalcemia. SCCOHT primarily affects females under 40 years of age who usually present with symptoms related to a pelvic mass. SCCOHT is an aggressive cancer, with long-term survival rates of 30% in early-stage cases. Although various treatment approaches have been proposed, there is no consensus on surveillance and therapeutic strategy. An international group of multidisciplinary clinicians and researchers recently formed the International SCCOHT Consortium to evaluate current knowledge and propose consensus surveillance and therapeutic recommendations, with the aim of improving outcomes. Here, we present an overview of the genetics of this cancer, provide updates on new treatment targets, and propose management guidelines for this challenging cancer.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom. .,East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Jennifer Hague
- East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - William P D Hendricks
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | | | - Jessica D Lang
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | - Krystal A Orlando
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Amit M Oza
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Isabelle Ray-Coquard
- Centre Anti cancereux Léon Bérard, & University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Jeffrey M Trent
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - William D Foulkes
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
38
|
El Hadidy N, Uversky VN. Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development. Int J Mol Sci 2019; 20:ijms20215260. [PMID: 31652801 PMCID: PMC6862534 DOI: 10.3390/ijms20215260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The two-meter-long DNA is compressed into chromatin in the nucleus of every cell, which serves as a significant barrier to transcription. Therefore, for processes such as replication and transcription to occur, the highly compacted chromatin must be relaxed, and the processes required for chromatin reorganization for the aim of replication or transcription are controlled by ATP-dependent nucleosome remodelers. One of the most highly studied remodelers of this kind is the BRG1- or BRM-associated factor complex (BAF complex, also known as SWItch/sucrose non-fermentable (SWI/SNF) complex), which is crucial for the regulation of gene expression and differentiation in eukaryotes. Chromatin remodeling complex BAF is characterized by a highly polymorphic structure, containing from four to 17 subunits encoded by 29 genes. The aim of this paper is to provide an overview of the role of BAF complex in chromatin remodeling and also to use literature mining and a set of computational and bioinformatics tools to analyze structural properties, intrinsic disorder predisposition, and functionalities of its subunits, along with the description of the relations of different BAF complex subunits to the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Nashwa El Hadidy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290 Moscow Region, Russia.
| |
Collapse
|
39
|
Wei J, Wang Y, Li P, Fan L, Li M, Wang Z. Small-cell carcinoma-associated ovarian mucinous carcinoma: A case report and literature review. Pathol Res Pract 2019; 215:152619. [PMID: 31585810 DOI: 10.1016/j.prp.2019.152619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/24/2022]
Abstract
Neuroendocrine neoplasm-associated ovarian mucinous carcinoma occurs extremely rarely. Here, we report an ovarian composite tumor consisting of small-cell carcinoma and mucinous carcinoma in a 51-year-old woman presented with abdominal distention. Ultrasonography revealed the presence of a complex irregular cystic solid mass. Microscopic findings showed pulmonary-type small-cell carcinoma-associated, intestinal-type ovarian mucinous carcinoma-with positive results for several neuroendocrine markers (chromogranin, CD56) and the thyroid transcription factor-1. The patient underwent total hysterectomy, bilateral salpingo-oophorectomy, omentectomy, and six cycles of adjuvant chemotherapy but died eight months after the surgery due to disease progression. Few reports are available in China on this clinicopathological feature in this composite tumor type. The timely identification of ovarian small-cell carcinoma among other ovarian tumors is critically important to the accurate and prompt determination of the therapy due to its high invasiveness and metastatic potential.
Collapse
Affiliation(s)
- Jie Wei
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, the Air Force Military Medical University. No.169 Changlexi Road, Xincheng District, Xi'an 710032, PR China.
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, the Air Force Military Medical University. No.169 Changlexi Road, Xincheng District, Xi'an 710032, PR China.
| | - Peifeng Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, the Air Force Military Medical University. No.169 Changlexi Road, Xincheng District, Xi'an 710032, PR China.
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, the Air Force Military Medical University. No.169 Changlexi Road, Xincheng District, Xi'an 710032, PR China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, the Air Force Military Medical University. No.169 Changlexi Road, Xincheng District, Xi'an 710032, PR China.
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, the Air Force Military Medical University. No.169 Changlexi Road, Xincheng District, Xi'an 710032, PR China.
| |
Collapse
|
40
|
|
41
|
Cappuccio G, Brunetti-Pierri R, Torella A, Pinelli M, Castello R, Casari G, Nigro V, Banfi S, Simonelli F, Brunetti-Pierri N. Retinal dystrophy in an individual carrying a de novo missense variant of SMARCA4. Mol Genet Genomic Med 2019; 7:e682. [PMID: 30973214 PMCID: PMC6565552 DOI: 10.1002/mgg3.682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Coffin-Siris syndrome (CSS) is characterized by intellectual disability, dysmorphic facial features, growth deficiency, microcephaly, and abnormalities of the fifth fingers/toes. CSS is caused by mutations in several genes of the BRG1-associated factor pathway including SMARCA4. METHODS Whole-exome sequencing was performed on a 14-year-old female individual who presented with mild intellectual disability and dysmorphic features, tooth abnormalities, and short stature. She had brachydactyly but no aplasia or hypoplasia of the distal phalanx or nail of the fifth digit. She was also found to have retinal dystrophy that has not been previously reported in CSS. RESULTS The individual presented herein was found to harbor a previously unreported de novo variant in SMARCA4. CONCLUSION This case expands the phenotypic spectrum of CSS manifestations.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Raffaella Brunetti-Pierri
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Pinelli
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Giorgio Casari
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| |
Collapse
|
42
|
Marques P, Korbonits M. Pseudoacromegaly. Front Neuroendocrinol 2019; 52:113-143. [PMID: 30448536 DOI: 10.1016/j.yfrne.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly - usually affecting the face and extremities -, or gigantism - accelerated growth/tall stature - will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
43
|
Bögershausen N, Wollnik B. Mutational Landscapes and Phenotypic Spectrum of SWI/SNF-Related Intellectual Disability Disorders. Front Mol Neurosci 2018; 11:252. [PMID: 30123105 PMCID: PMC6085491 DOI: 10.3389/fnmol.2018.00252] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022] Open
Abstract
Mutations in genes that encode proteins of the SWI/SNF complex, called BAF complex in mammals, cause a spectrum of disorders that ranges from syndromic intellectual disability to Coffin-Siris syndrome (CSS) to Nicolaides-Baraitser syndrome (NCBRS). While NCBRS is known to be a recognizable and restricted phenotype, caused by missense mutations in SMARCA2, the term CSS has been used lately for a more heterogeneous group of phenotypes that are caused by mutations in either of the genes ARID1B, ARID1A, ARID2, SMARCA4, SMARCB1, SMARCE1, SOX11, or DPF2. In this review, we summarize the current knowledge on the phenotypic traits and molecular causes of the above named conditions, consider the question whether a clinical distinction of the phenotypes is still adequate, and suggest the term "SWI/SNF-related intellectual disability disorders" (SSRIDDs). We will also outline important features to identify the ARID1B-related phenotype in the absence of classic CSS features, and discuss distinctive and overlapping features of the SSRIDD subtypes. Moreover, we will briefly review the function of the SWI/SNF complex in development and describe the mutational landscapes of the genes involved in SSRIDD.
Collapse
Affiliation(s)
- Nina Bögershausen
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
44
|
Abstract
The SWItch Sucrose non-fermentable (SWI/SNF) complex is a highly conserved multi-subunit complex of proteins encoded by numerous genes mapped to different chromosomal regions. The complex regulates the process of chromatin remodelling and hence plays a central role in the epigenetic regulation of gene expression, cell proliferation and differentiation. During the last three decades, the SWI/SNF complex has been increasingly recognized as a central molecular event driving the initiation and/or progression of several benign and malignant neoplasms of different anatomic origin and having diverse histomorphological appearance. Atypical teratoid/rhabdoid tumors (AT/RT) and renal/extrarenal malignant rhabdoid tumors of childhood, epithelioid sarcoma and small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) represent the most commonly recognized SWI/SNF-driven neoplasms. Approximately one-third of pediatric malignant rhabdoid tumors are linked to germline SWI/SNF alterations (SMARCB1/INI1, rarely SMARCA4) resulting in occasional familial clustering of these highly aggressive malignancies (so-called rhabdoid tumor predisposition syndrome, RTPS, types 1 and 2, respectively). However, more recently, inherited SWI/SNF-deficiency has been linked to several benign syndromic tumors including a subset of familial schwannomatosis (linked to SMARCB1) and multiple meningiomas (linked to SMARCE1) as well as others. Beyond neoplasms, several congenital developmental functional disorders such as Coffin-Siris syndrome and intellectual disability are now known to be SWI/SNF-related. The latter are essentially not associated with SWI/SNF-driven neoplasms, although at least anecdotal cases have documented concurrence of both neoplastic and developmental disorders. This review summarizes the most important SWI/SNF-driven diseases with a main focus on neoplasms.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Germany.
| | - William D Foulkes
- Departments of Human Genetics, Medicine and Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. MEDICINES 2018; 5:medicines5010016. [PMID: 29389895 PMCID: PMC5874581 DOI: 10.3390/medicines5010016] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.
Collapse
|
46
|
Kurtas N, Arrigoni F, Errichiello E, Zucca C, Maghini C, D'Angelo MG, Beri S, Giorda R, Bertuzzo S, Delledonne M, Xumerle L, Rossato M, Zuffardi O, Bonaglia MC. Chromothripsis and ring chromosome 22: a paradigm of genomic complexity in the Phelan-McDermid syndrome (22q13 deletion syndrome). J Med Genet 2018; 55:269-277. [PMID: 29378768 PMCID: PMC5869459 DOI: 10.1136/jmedgenet-2017-105125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Introduction Phelan-McDermid syndrome (PMS) is caused by SHANK3 haploinsufficiency. Its wide phenotypic variation is attributed partly to the type and size of 22q13 genomic lesion (deletion, unbalanced translocation, ring chromosome), partly to additional undefined factors. We investigated a child with severe global neurodevelopmental delay (NDD) compatible with her distal 22q13 deletion, complicated by bilateral perisylvian polymicrogyria (BPP) and urticarial rashes, unreported in PMS. Methods Following the cytogenetic and array-comparative genomic hybridization (CGH) detection of a r(22) with SHANK3 deletion and two upstream duplications, whole-genome sequencing (WGS) in blood and whole-exome sequencing (WES) in blood and saliva were performed to highlight potential chromothripsis/chromoanagenesis events and any possible BPP-associated variants, even in low-level mosaicism. Results WGS confirmed the deletion and highlighted inversion and displaced order of eight fragments, three of them duplicated. The microhomology-mediated insertion of partial Alu-elements at one breakpoint junction disrupted the topological associating domain joining NFAM1 to the transcriptional coregulator TCF20. WES failed to detect BPP-associated variants. Conclusions Although we were unable to highlight the molecular basis of BPP, our data suggest that SHANK3 haploinsufficiency and TCF20 misregulation, both associated with intellectual disability, contributed to the patient’s NDD, while NFAM1 interruption likely caused her skin rashes, as previously reported. We provide the first example of chromoanasynthesis in a constitutional ring chromosome and reinforce the growing evidence that chromosomal rearrangements may be more complex than estimated by conventional diagnostic approaches and affect the phenotype by global alteration of the topological chromatin organisation rather than simply by deletion or duplication of dosage-sensitive genes.
Collapse
Affiliation(s)
- Nehir Kurtas
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Filippo Arrigoni
- Neuroimaging Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | | | - Claudio Zucca
- Clinical Neurophysiology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Cristina Maghini
- Neuromuscular Disorders Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Maria Grazia D'Angelo
- Neuromuscular Disorders Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Silvana Beri
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sara Bertuzzo
- Cytogenetics Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | | | - Luciano Xumerle
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
47
|
Goudie C, Witkowski L, Vairy S, McCluggage WG, Foulkes WD. Paediatric ovarian tumours and their associated cancer susceptibility syndromes. J Med Genet 2017; 55:1-10. [DOI: 10.1136/jmedgenet-2017-104926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 10/28/2017] [Indexed: 01/08/2023]
Abstract
Non-epithelial ovarian tumours are rare neoplasms that occasionally arise in childhood and adolescence. They can be associated with various cancer susceptibility syndromes. The morphological overlap seen across these tumours and their rarity can make the diagnosis challenging. In the case of an incorrect diagnosis, the underlying genetic susceptibility may be missed. In this review, we outline the genetic background of ovarian non-epithelial tumours arising in children, emphasizing the genes harbouring pathogenic germline variants associated with each tumour type. Specifically, juvenile granulosa cell tumours, Sertoli-Leydig cell tumours, sex cord tumours with annular tubules, Sertoli cell tumours, germ cell tumours and small cell carcinoma of the ovary of hypercalcaemic type are discussed in this review. For each tumour type, we detail the personal and family history features and the presenting characteristics of the ovarian tumour as well as the pathological features and molecular markers that point towards a cancer predisposition syndrome. Throughout, we stress the need for specialised pathological review in difficult cases.
Collapse
|