1
|
Wei T, Li Y, Li B, Xie Q, Huang Y, Wu Z, Chen H, Meng Y, Liang L, Wang M, Geng J, Lei M, Shang J, Guo S, Yang Z, Jia H, Ren F, Zhao T. Plasmid co-expressing siRNA-PD-1 and Endostatin carried by attenuated Salmonella enhanced the anti-melanoma effect via inhibiting the expression of PD-1 and VEGF on tumor-bearing mice. Int Immunopharmacol 2024; 127:111362. [PMID: 38103411 DOI: 10.1016/j.intimp.2023.111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Melanoma, the most perilous form of skin cancer, is known for its inherent resistance to chemotherapy. Even with advances in tumor immunotherapy, the survival of patients with advanced or recurrent melanomas remains poor. Over time, melanoma tumor cells may produce excessive angiogenic factors, necessitating the use of combinations of angiogenesis inhibitors, including broad-spectrum options, to combat melanoma. Among these inhibitors, Endostatin is one of the most broad-spectrum and least toxic angiogenesis inhibitors. We found Endostatin significantly increased the infiltration of CD8+ T cells and reduced the infiltration of M2 tumor-associated macrophages (TAMs) in the melanoma tumor microenvironment (TME). Interestingly, we also observed high expression levels of programmed death 1 (PD-1), an essential immune checkpoint molecule associated with tumor immune evasion, within the melanoma tumor microenvironment despite the use of Endostatin. To address this issue, we investigated the effects of a plasmid expressing Endostatin and PD-1 siRNA, wherein Endostatin was overexpressed while RNA interference (RNAi) targeted PD-1. These therapeutic agents were delivered using attenuated Salmonella in melanoma-bearing mice. Our results demonstrate that pEndostatin-siRNA-PD-1 therapy exhibits optimal therapeutic efficacy against melanoma. We found that pEndostatin-siRNA-PD-1 therapy promotes the infiltration of CD8+ T cells and the expression of granzyme B in melanoma tumors. Importantly, combined inhibition of angiogenesis and PD-1 significantly suppresses melanoma tumor progression compared with the inhibition of angiogenesis or PD-1 alone. Based on these findings, our study suggests that combining PD-1 inhibition with angiogenesis inhibitors holds promise as a clinical strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Tian Wei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yang Li
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, PR China
| | - Baozhu Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Qian Xie
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yujing Huang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Zunge Wu
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Haoqi Chen
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ying Meng
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Lirui Liang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ming Wang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jiaxin Geng
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Mengyu Lei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jingli Shang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Sheng Guo
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Zishan Yang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China.
| | - Tiesuo Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China.
| |
Collapse
|
2
|
Wu Z, Bian Y, Chu T, Wang Y, Man S, Song Y, Wang Z. The role of angiogenesis in melanoma: Clinical treatments and future expectations. Front Pharmacol 2022; 13:1028647. [PMID: 36588679 PMCID: PMC9797529 DOI: 10.3389/fphar.2022.1028647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of melanoma has increased rapidly over the past few decades, with mortality accounting for more than 75% of all skin cancers. The high metastatic potential of Melanoma is an essential factor in its high mortality. Vascular angiogenic system has been proved to be crucial for the metastasis of melanoma. An in-depth understanding of angiogenesis will be of great benefit to melanoma treatment and may promote the development of melanoma therapies. This review summarizes the recent advances and challenges of anti-angiogenic agents, including monoclonal antibodies, tyrosine kinase inhibitors, human recombinant Endostatin, and traditional Chinese herbal medicine. We hope to provide a better understanding of the mechanisms, clinical research progress, and future research directions of melanoma.
Collapse
Affiliation(s)
- Zhuzhu Wu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China,Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Man
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| | - Yongmei Song
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| | - Zhenguo Wang
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| |
Collapse
|
3
|
Liu S, Yu J, Zhang H, Liu J. TP53 Co-Mutations in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Prognosis and Therapeutic Strategy for Cancer Therapy. Front Oncol 2022; 12:860563. [PMID: 35444951 PMCID: PMC9013831 DOI: 10.3389/fonc.2022.860563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. As the most prevalent molecular mutation subtypes in non-small cell lung cancer (NSCLC), EGFR-TKIs are currently a standard first-line therapy for targeting the mutated EGFR in advanced NSCLC patients. However, 20-30% of this subset of patients shows primary resistance to EGFR-TKIs. Patients with co-mutations of EGFR and several other genes have a poor response to EGFR-TKIs, whereas the prognostic and predictive significance of EGFR/TP53 co-mutation in NSCLC patients remains controversial. Meanwhile, little is known about how to choose an optimal therapeutic strategy for this subset of patients. Presently, no drugs targeting TP53 mutations are available on the market, and some p53 protein activators are in the early stage of clinical trials. A combination of EGFR-TKIs with antiangiogenic agents or chemotherapy or other agents might be a more appropriate strategy to tackle the problem. In this review, we describe the prognostic and predictive value of EGFR/TP53 co-mutation in NSCLC patients, investigate the mechanisms of this co-mutation affecting the response to EGFR-TKIs, and further explore optimal regimens effectively to prolong the survival time of the NSCLC patients harboring this co-mutation.
Collapse
Affiliation(s)
- Surui Liu
- Department of Oncology, Jinan Central Hospital, Jinan, China.,Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jin Yu
- Department of Oncology, Jinan Central Hospital, Jinan, China
| | - Hui Zhang
- Department of Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital, Jinan, China
| |
Collapse
|
4
|
Deng X, Li Y, Gu S, Chen Y, Yu B, Su J, Sun L, Liu Y. p53 Affects PGC1α Stability Through AKT/GSK-3β to Enhance Cisplatin Sensitivity in Non-Small Cell Lung Cancer. Front Oncol 2020; 10:1252. [PMID: 32974127 PMCID: PMC7471661 DOI: 10.3389/fonc.2020.01252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Drug resistance greatly limits the therapeutic efficacy of treatment of non-small cell lung cancer (NSCLC). One of the important factors is the dysfunction of tumor suppressor p53. Recent studies have suggested that p53 suppresses tumors by regulating number of mitochondrial proteins, including peroxisome proliferator-activated receptor coactivator (PGC1α). Although several studies have confirmed the interaction between p53 and PGC1α, the precise mechanism has not been completely determined in NSCLC. In this study, we investigated the specific signaling between p53 and PGC1α to improve anti-tumor drug effects on NSCLC. We found that low expression of p53 and high expression of PGC1α correlated with shorter survival time of NSCLC patients. In vitro experiments confirmed that NCI-H1299 (p53-null) cells had high levels of PGC1α and were insensitive to cisplatin (CDDP). When PGC1α was knocked down, the sensitivity to cisplatin was increased. Notably, the stability of PGC1α is an important mechanism in its activity regulation. We demonstrated that p53 decreased the stability of PGC1α via the ubiquitin proteasome pathway, which was mediated by protein kinase B (AKT) inhibition and glycogen synthase kinase (GSK-3β) activation. Therefore, p53 may regulate the stability of PGC1α through the AKT/GSK-3β pathway, thus affect the chemosensitivity of NSCLC.
Collapse
Affiliation(s)
- Xinyue Deng
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuang Gu
- Department of Thoracic Surgery, Jilin Provincial People's Hospital, Changchun, China
| | - Yingying Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bingbing Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Hua Z, Zhan Y, Zhang S, Dong Y, Jiang M, Tan F, Liu Z, Thiele CJ, Li Z. P53/PUMA are potential targets that mediate the protection of brain-derived neurotrophic factor (BDNF)/TrkB from etoposide-induced cell death in neuroblastoma (NB). Apoptosis 2019; 23:408-419. [PMID: 29959561 DOI: 10.1007/s10495-018-1467-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The over-expressions of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB have been reported to induce chemo-resistance in neuroblastoma (NB) cells. In this study, we investigated the roles of P53 and BCL2 family members in the protection of BDNF/TrkB from etoposide-induced NB cell death. TB3 and TB8, two tetracycline (TET)-regulated TrkB-expressing NB cell lines, were utilized. The expressions of P53 and BCL2 family members were detected by Western blot or RT-PCR. Transfection of siRNAs was used to knockdown P53 or PUMA. Activated lentiviral was used to over-express PUMA. Cell survival was performed by MTS assay, and the percentage of cell confluence was measured by IncuCyte ZOOM. Our results showed that etoposide treatment induced significant and time-dependent increase of P53, which could be blocked by pre-treatment with BDNF, and knockdown P53 by transfecting siRNA attenuated etoposide-induced TrkB-expressing NB cell death. PUMA was the most significantly changed BCL2 family member after treatment with etoposide, and pre-treatment with BDNF blocked the increased expression of PUMA. Transfection with siRNA inhibited etoposide-induced increased expression of PUMA, and attenuated etoposide-induced NB cell death. We also found that over-expression of PUMA by infection of activated lentiviral induced TrkB-expressing NB cell death in the absence of etoposide, and treatment of BDNF protected NB cells from PUMA-induced cell death. Our results suggested that P53 and PUMA may be potential targets that mediated the protection of BDNF/TrkB from etoposide-induced NB cell death.
Collapse
Affiliation(s)
- Zhongyan Hua
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yue Zhan
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Simeng Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yudi Dong
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Min Jiang
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Fei Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Liu
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carol J Thiele
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijie Li
- Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
6
|
Guo L, Xu B, Zhou D, Chang G, Fu Y, Liu L, Luo Y. Biophysical and biological characterization of PEGylated recombinant human endostatin. Clin Exp Pharmacol Physiol 2019; 46:920-927. [PMID: 31278773 DOI: 10.1111/1440-1681.13134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023]
Abstract
Recombinant human endostatin (MES), showing potent inhibition on angiogenesis and tumour growth, has great potential as a therapeutic agent for tumours. The aim of this study was to evaluate the biophysical and biological characterization of PEGylated recombinant human endostatin (M2 ES). Recombinant human endostatin was mono-PEGylated by conjugation with methoxy polyethylene glycol aldehyde (mPEG-ALD), and the modification site was identified by digested peptide mapping and matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The purity was assessed by SDS-PAGE, high-performance liquid chromatography (HPLC), and capillary zone electrophoresis. The physicochemical property was analyzed through fluorescence spectroscopy, and circular dichroism. The bioactivity and anti-tumour efficacy of M2 ES were evaluated using an in vitro endothelial cell migration model and a null-mouse xenograft model of a prostatic cancer, respectively. M2 ES molecules contain a single 20 kDa mPEG-ALD molecule conjugated at the N-terminal portion of MES. The purity of M2 ES was greater than 98%. The physicochemical analysis demonstrated that PEGylation does not change the secondary and tertiary structure of MES. Notably, M2 ES retards endothelial cell migration and tumour growth when compared to control group. These biophysical and biological characterization study data contribute to the initiation of the ongoing clinical study.
Collapse
Affiliation(s)
- Lifang Guo
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Daifu Zhou
- National Engineering Laboratory for Anti-tumour Protein Therapeutics, Tsinghua University, Beijing, China
| | - Guodong Chang
- National Engineering Laboratory for Anti-tumour Protein Therapeutics, Tsinghua University, Beijing, China
| | - Yan Fu
- National Engineering Laboratory for Anti-tumour Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yongzhang Luo
- National Engineering Laboratory for Anti-tumour Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Xu S, Tang J, Wang C, Liu J, Fu Y, Luo Y. CXCR7 promotes melanoma tumorigenesis via Src kinase signaling. Cell Death Dis 2019; 10:191. [PMID: 30804329 PMCID: PMC6389959 DOI: 10.1038/s41419-019-1442-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Chemokine receptors have been documented to exert critical functions in melanoma progression. However, current drugs targeting these receptors have limited efficacy in clinical applications, suggesting the urgency to further explore the roles of chemokine receptors in melanoma. Here we found that C–X–C chemokine receptor 7 (CXCR7) was the most highly expressed chemokine receptor in murine melanoma cell lines. In addition, the expression level of CXCR7 was positively correlated with melanoma progression in the clinical samples. High CXCR7 expression was associated with shorter overall survival in melanoma patients. Increased expression of CXCR7 augmented melanoma proliferation in vitro and tumor growth in vivo, whereas knockout of CXCR7 exhibited significant inhibitory effects. Moreover, our data elucidated that CXCR7 activated Src kinase phosphorylation in a β-arrestin2-dependent manner. The administration of the Src kinase inhibitor PP1 or siRNA specific for β-arrestin2 abolished CXCR7-promoted cell proliferation. Importantly, CXCR7 also regulated melanoma angiogenesis and the secretion of vascular endothelial growth factor (VEGF). Subsequent investigations revealed a novel event that the activation of the CXCR7-Src axis stimulated the phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) to accelerate the translation of hypoxia-inducible factor 1α (HIF-1α), which enhanced the secretion of VEGF from melanoma cells. Collectively, our results illuminate the crucial roles of CXCR7 in melanoma tumorigenesis, and indicate the potential of targeting CXCR7 as new therapeutic strategies for melanoma treatment.
Collapse
Affiliation(s)
- Siran Xu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), School of Life Sciences, Peking University, Beijing, China.,The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaze Tang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chunying Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China. .,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China. .,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Liu J, Wang C, Ma X, Tian Y, Wang C, Fu Y, Luo Y. High expression of CCR5 in melanoma enhances epithelial-mesenchymal transition and metastasis via TGFβ1. J Pathol 2019; 247:481-493. [PMID: 30474221 DOI: 10.1002/path.5207] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Chemokine receptors are highly expressed in various cancers and play crucial roles in tumor progression. However, their expression patterns and functions in melanoma are unclear. The present study aimed to identify the chemokine receptors that play critical roles in melanoma progression and unravel the underlying molecular mechanisms. We found that CCR5 was more abundant in melanoma cells than normal cells and was positively associated with tumor malignancy in clinical patients. Animal experiments suggested that CCR5 deficiency in B16/F10 or A375 cells suppressed primary tumor growth and lung metastasis, whereas CCR5 overexpression in B16/F0 cells enhanced primary tumor growth and lung metastasis. CCR5 played a critical role in proliferation and migration of melanoma cells in vitro. Importantly, CCR5 was required for maintenance of the mesenchymal phenotype of metastatic melanoma cells. Mechanistically, CCR5 positively regulated expression of TGFβ1, which in turn induced epithelial-mesenchymal transition and migration via PI3K/AKT/GSK3β signaling. Collectively, our results establish a critical role of CCR5 expressed by melanoma cells in cancer progression and reveal the novel mechanisms controlling this process, which suggests the prognostic value of CCR5 in melanoma patients and provides novel insights into CCR5-targeted strategies for melanoma treatment. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jie Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Caihong Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Xuhui Ma
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yang Tian
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Chunying Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| |
Collapse
|
9
|
Guo L, Geng X, Liu L, Miao Y, Lin Z, Yu M, Fu Y, Liu L, Li B, Luo Y. Quality, bioactivity study, and preclinical acute toxicity, safety pharmacology evaluation of PEGylated recombinant human endostatin (M 2 ES). J Biochem Mol Toxicol 2018; 33:e22257. [PMID: 30536793 DOI: 10.1002/jbt.22257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Endostar, a potent endogenous antiangiogenic factor, is wildly used in clinics. However, it was easily degraded by enzymes and rapidly cleared by the kidneys. To overcome these shortcomings, PEGylated recombinant human endostatin was developed. In this study, the purity of M2 ES was evaluated by silver stain and reversed-phase high-performance liquid chromatography. Ultraviolet spectrum was used to examine the structural of M2 ES and endostar. The bioactivity and antitumor efficacy of M2 ES were evaluated using an in vitro endothelial cell migration model and athymic nude mouse xenograft model of a heterogeneous lung adenocarcinoma, respectively. A preclinical study was performed to evaluate the acute toxicity and safety pharmacology in rhesus monkeys. The purity of M2 ES was more than 98%; PEG modification has no effect on endostatin structure. Compared with the control group, M2 ES dramatically retards endothelial cell migration and tumor growth. After intravenous (IV) infusions of M2 ES at a dose level of three and 75 mg/kg in rhesus monkeys, there was no observable serious adverse event in both acute toxicity and safety pharmacology study. On the basis of the quality and bioactivity study data of M2 ES and the absence of serious side effect in rhesus monkeys, M2 ES was authorized to initiate a phase I clinical trial.
Collapse
Affiliation(s)
- Lifang Guo
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Li Liu
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Yufa Miao
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Zhi Lin
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Min Yu
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Yan Fu
- National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Yongzhang Luo
- National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
11
|
Yan H, Guo W, Li K, Tang M, Zhao X, Lei Y, Nie CL, Yuan Z. Combination of DESI2 and endostatin gene therapy significantly improves antitumor efficacy by accumulating DNA lesions, inducing apoptosis and inhibiting angiogenesis. Exp Cell Res 2018; 371:50-62. [DOI: 10.1016/j.yexcr.2018.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
12
|
Liu G, Feng S, Jia L, Wang C, Fu Y, Luo Y. Lung fibroblasts promote metastatic colonization through upregulation of stearoyl-CoA desaturase 1 in tumor cells. Oncogene 2018; 37:1519-1533. [DOI: 10.1038/s41388-017-0062-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
|