1
|
Pimenta RML, Skon-Hegg C, Rose-Hellekant T, Holy J. Mechanoresponsive patterns of KLF2, 4, 5, and 6 expression differ among subclones from a single mammary tumor. Acta Histochem 2025; 127:152238. [PMID: 39983249 DOI: 10.1016/j.acthis.2025.152238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
A number of Krüppel-like transcription factor (KLF) family members display mechanoresponsive behaviors, and function as mechanosensitive transcription factors. There are many normal and pathological conditions where their roles in mechanotransduction and mechanoadaptation are not well understood, however. In this study, two basic questions regarding KLF mechanoresponsiveness were addressed: 1) are KLF 2, 4, 5, and 6 expressed at different levels among subclones of tumor cells adapted to specific microenvironmental conditions; and 2) is the expression of these KLFs responsive to rapid changes in the physical environment? To address these questions, the heterogeneous and differentially metastatic murine mammary tumor subclones 4T1, 4T07, and 67NR were subjected to physical changes in their culture conditions, and KLF responses assessed. The results show that the expression of different KLFs exhibit distinct responses to reductions in cell tension, as well as cell detachment from 2D and 3D environments. KLF2 and 4 expression is rapidly and temporarily induced upon release of cells from a stiff 2D substrate into liquid suspension culture in all three subclones, and similar responses are observed in two of the subclones upon the release of tension in 3D collagen gel cultures. By contrast, expression patterns of KLF5 and 6 were generally less affected by physical changes in most, but not all, of the cell lines examined. These results support the concept that KLFs differentially participate in transducing physical differences among intratumoral neighborhoods into distinct responses among heterogeneous subclones, thereby contributing to tumor cell behavioral complexity.
Collapse
Affiliation(s)
| | - Cara Skon-Hegg
- Whiteside Institute for Clinical Research, St. Luke's Hospital, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Teresa Rose-Hellekant
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
2
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
De Vriendt S, Laporte E, Abaylı B, Hoekx J, Hermans F, Lambrechts D, Vankelecom H. Single-cell transcriptome atlas of male mouse pituitary across postnatal life highlighting its stem cell landscape. iScience 2025; 28:111708. [PMID: 39898054 PMCID: PMC11787594 DOI: 10.1016/j.isci.2024.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
The pituitary represents the master gland governing the endocrine system. We constructed a single-cell (sc) transcriptomic atlas of male mouse endocrine pituitary by incorporating existing and new data, spanning important postnatal ages in both healthy and injured condition. We demonstrate strong applicability of this new atlas to unravel pituitary (patho)biology by focusing on its stem cells and investigating their complex identity (unveiling stem cell markers) and niche (pinpointing regulatory factors). Importantly, we functionally validated transcriptomic findings using pituitary stem cell organoids, revealing roles for Krüppel-like transcription factor 5 (KLF5), activator protein-1 (AP-1) complex and epidermal growth factor (EGF) pathways in pituitary stem cell regulation. Our investigation substantiated changes in stem cell dynamics during aging, reinforcing the inflammatory/immune nature in elderly pituitary and stem cells. Finally, we show translatability of mouse atlas-based findings to humans, particularly regarding aging-associated profile. This pituitary sc map is a valuable tool to unravel pituitary (patho)biology.
Collapse
Affiliation(s)
- Silke De Vriendt
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Emma Laporte
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Berkehür Abaylı
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Julie Hoekx
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Zhang Z, Liu Y, Xu Y, Xu Z, Jia J, Jin Y, Wang W, Liu L. Abrogation of KLF5 sensitizes BRCA1-proficient pancreatic cancer to PARP inhibition. Acta Biochim Biophys Sin (Shanghai) 2024; 56:576-585. [PMID: 38433576 PMCID: PMC11090855 DOI: 10.3724/abbs.2023288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024] Open
Abstract
Poly ADP-ribose polymerase (PARP) inhibitor monotherapies are selectively effective in patients with pancreatic, breast, prostate, and ovarian cancers with BRCA1 mutations. Cancer patients with more frequent wild-type BRCA show poor responses to PARP inhibitors. Moreover, patients who are initially sensitive to these inhibitors eventually respond poorly to drugs. In the present study, we discover that abrogation of Kruppel-like factor 5 (KLF5) significantly inhibits homologous recombination, which is the main mechanism for DNA double-stranded repair. Furthermore, the downregulation of KLF5 expression promotes the DNA damage induced by olaparib and significantly reduces the IC 50 of the RARP inhibitor in pancreatic cancer cells. Overexpression of BRCA1 reverses the above effects caused by silencing of KLF5. Olaparib combined with a KLF5 inhibitor has an enhanced cytotoxic effect. Mechanistically, we identify BRCA1 as a KLF5 target gene. BRCA1 is positively correlated with KLF5 in PDAC tissue. Our results indicate that inhibition of KLF5 may induce BRCAness in a larger pancreatic cancer subset with proficient BRCA. The combination of KLF5 inhibitors and PARP inhibitors provides a novel treatment strategy to enhance the sensitivity of BRCA1-proficient pancreatic cancer to PARP inhibitors.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yuxin Liu
- of Liver DiseasesShanxi Medical UniversityTaiyuan030001China
| | - Yaolin Xu
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Zijin Xu
- Department of General SurgeryQingpu Branch of Zhongshan Hospital Affiliated to Fudan UniversityShanghai201700China
| | - Jinbin Jia
- of Liver DiseasesShanxi Medical UniversityTaiyuan030001China
| | - Yun Jin
- Department of Hepatobiliary and Pancreatic Surgerythe First People’s Hospital of Yunnan Provincethe Affiliated Hospital of Kunming University of Science and TechnologyKunming650500China
| | - Wenquan Wang
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Liang Liu
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
5
|
García-Sancha N, Corchado-Cobos R, Blanco-Gómez A, Cunillera Puértolas O, Marzo-Castillejo M, Castillo-Lluva S, Alonso-López D, De Las Rivas J, Pozo J, Orfao A, Valero-Juan L, Patino-Alonso C, Perera D, Venkitaraman AR, Mao JH, Chang H, Mendiburu-Eliçabe M, González-García P, Caleiras E, Peset I, Cenador MBG, García-Criado FJ, Pérez-Losada J. Cabergoline as a Novel Strategy for Post-Pregnancy Breast Cancer Prevention in Mice and Human. RESEARCH SQUARE 2024:rs.3.rs-3854490. [PMID: 38405932 PMCID: PMC10889045 DOI: 10.21203/rs.3.rs-3854490/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Post-pregnancy breast cancer often carries a poor prognosis, posing a major clinical challenge. The increasing trend of later-life pregnancies exacerbates this risk, highlighting the need for effective chemoprevention strategies. Current options, limited to selective estrogen receptor modulators, aromatase inhibitors, or surgical procedures, offer limited efficacy and considerable side effects. Here, we report that cabergoline, a dopaminergic agonist, reduces the risk of breast cancer post-pregnancy in a Brca1/P53-deficient mouse model, with implications for human breast cancer prevention. We show that a single dose of cabergoline administered post-pregnancy significantly delayed the onset and reduced the incidence of breast cancer in Brca1/P53-deficient mice. Histological analysis revealed a notable acceleration in post-lactational involution over the short term, characterized by increased apoptosis and altered gene expression related to ion transport. Over the long term, histological changes in the mammary gland included a reduction in the ductal component, decreased epithelial proliferation, and a lower presence of recombinant Brca1/P53 target cells, which are precursors of tumors. These changes serve as indicators of reduced breast cancer susceptibility. Additionally, RNA sequencing identified gene expression alterations associated with decreased proliferation and mammary gland branching. Our findings highlight a mechanism wherein cabergoline enhances the protective effect of pregnancy against breast cancer by potentiating postlactational involution. Notably, a retrospective cohort study in women demonstrated a markedly lower incidence of post-pregnancy breast cancer in those treated with cabergoline compared to a control group. Our work underscores the importance of enhancing postlactational involution as a strategy for breast cancer prevention, and identifies cabergoline as a promising, low-risk option in breast cancer chemoprevention. This strategy has the potential to revolutionize breast cancer prevention approaches, particularly for women at increased risk due to genetic factors or delayed childbirth, and has wider implications beyond hereditary breast cancer cases.
Collapse
Affiliation(s)
| | | | | | - Oriol Cunillera Puértolas
- Unitat de Suport a la Recerca Metropolitana Sud, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), L'Hospitalet de LL
| | - Mercè Marzo-Castillejo
- Unitat de Suport a la Recerca - IDIAP Jordi Gol. Direcció d'Atenció Primària Costa de Ponent, Institut Català de la Salut
| | | | - Diego Alonso-López
- Cancer Research Center (CIC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL)
| | - Javier De Las Rivas
- Cancer Research Center (IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Cientificas & University of Salamanca
| | - Julio Pozo
- Servicio de Citometría, Departamento de Medicina, Biomedical Research Networking Centre on Cancer CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, and Instituto de Biolog
| | | | - Luis Valero-Juan
- Departamento de Ciencias Biomédicas y del Diagnóstico. Universidad de Salamanca
| | | | - David Perera
- The Medical Research Council Cancer Unit, University of Cambridge
| | | | | | | | | | | | | | - Isabel Peset
- Spanish National Cancer Research Centre (CNIO), Madrid
| | | | | | | |
Collapse
|
6
|
Yue Y, Zhang H, Deng P, Tan M, Chen C, Tang B, Li J, Chen F, Zhao Q, Li L, Hao R, Wang H, Luo Y, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. Environmental cadmium exposure facilitates mammary tumorigenesis via reprogramming gut microbiota-mediated glutamine metabolism in MMTV-Erbb2 mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165348. [PMID: 37429473 DOI: 10.1016/j.scitotenv.2023.165348] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Cadmium (Cd) is a heavy metal that has been widely reported to be linked to the onset and progression of breast cancer (BC). However, the mechanism of Cd-induced mammary tumorigenesis remains elusive. In our study, a transgenic mouse model that spontaneously develops tumors through overexpression of wild-type Erbb2 (MMTV-Erbb2) was constructed to investigate the effects of Cd exposure on BC tumorigenesis. The results showed that oral exposure to 3.6 mg/L Cd for 23 weeks dramatically accelerated tumor appearance and growth, increased Ki67 density and enhanced focal necrosis and neovascularization in the tumor tissue of MMTV-Erbb2 mice. Notably, Cd exposure enhanced glutamine (Gln) metabolism in tumor tissue, and 6-diazo-5-oxo-l-norleucine (DON), a Gln metabolism antagonist, inhibited Cd-induced breast carcinogenesis. Then our metagenomic sequencing and mass spectrometry-based metabolomics confirmed that Cd exposure disturbed gut microbiota homeostasis, especially Helicobacter and Campylobacter abundance remodeling, which altered the gut metabolic homeostasis of Gln. Moreover, intratumoral Gln metabolism profoundly increased under Cd-elevated gut permeability. Importantly, depletion of microbiota with an antibiotic cocktail (AbX) treatment led to a significant delay in the appearance of palpable tumors, inhibition of tumor growth, decrease in tumor weight, reduction in Ki67 expression and low-grade pathology in Cd-exposed MMTV-Erbb2 mice. Also, transplantation of Cd-modulated microbiota decreased tumor latency, accelerated tumor growth, increased tumor weight, upregulated Ki67 expression and exacerbated neovascularization as well as focal necrosis in MMTV-Erbb2 mice. In summary, Cd exposure induced gut microbiota dysbiosis, elevated gut permeability and increased intratumoral Gln metabolism, leading to the promotion of mammary tumorigenesis. This study provides novel insights into environmental Cd exposure-mediated carcinogenesis.
Collapse
Affiliation(s)
- Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huadong Zhang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Miduo Tan
- Department of Breast Surgery, The Affiliated Zhuzhou Hospital of Xiang Ya School of Medicine, Central South University, Zhuzhou 412000, Hunan, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Fengqiong Chen
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Qi Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Ling Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Liu Y, Chen Y, Zhao Q, Xie T, Xiang C, Guo Q, Zhang W, Zhou Y, Yuan Y, Zhang Y, Xi T, Li X, Zheng L. A positive TGF-β/miR-9 regulatory loop promotes the expansion and activity of tumour-initiating cells in breast cancer. Br J Pharmacol 2023; 180:2280-2297. [PMID: 37060166 DOI: 10.1111/bph.16092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND AND PURPOSE MicroRNA-9 (miR-9) has previously been described as a dual-functional RNA during breast cancer progression and its roles need to be clarified thoroughly. EXPERIMENTAL APPROACH A miR-9 knockout mode of mouse breast cancer, the MMTV-PyMT model (PyMT-miR-9-/- ), combined with different human breast cancer cell lines were used to evaluate the effects of miR-9 on breast cancer initiation, progression and metastasis. Lin-NECs (Neoplastic mammary epithelial cells) and pNECs (Pre-neoplastic mammary epithelial cells) were isolated and subjected to tumour-initiation assay. Whole-mount staining of mammary gland and histology was performed to determine mammary gland growth. Tumour-initiating analysis combining a series of in vitro experiments were carried out to evaluate miR-9 roles in tumour-initiating ability. RNA-sequencing of human breast cancer cells, and mammary glands at hyperplastic stages and established tumours in PyMT and PyMT-miR-9-/- mice, ChIP and luciferase report assays were conducted to reveal the underlying mechanisms. KEY RESULTS MiR-9 is ectopically expressed in breast cancer and its level is negatively correlated with the prognosis, especially in basal-like breast cancer patients. Additionally, miR-9 is essential for breast cancer progression by promoting the expansion and activity of tumour-initiating cells (TICs) in preneoplastic glands, established tumours and xenograft modes. Mechanistically, the activity of TICs hinges on a positive TGF-β/miR-9 regulatory loop mediated by the STARD13/YAP axis. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that miR-9 is an oncogenic miRNA rather than a tumour-suppressor in breast cancer, calling for rectification of the model for this conserved and highly abundant miRNA.
Collapse
Affiliation(s)
- Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Qiong Zhao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Chenxi Xiang
- Department of Pathology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yuxin Zhang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Lundberg A, Zhang M, Aggarwal R, Li H, Zhang L, Foye A, Sjöström M, Chou J, Chang K, Moreno-Rodriguez T, Shrestha R, Baskin A, Zhu X, Weinstein AS, Younger N, Alumkal JJ, Beer TM, Chi KN, Evans CP, Gleave M, Lara PN, Reiter RE, Rettig MB, Witte ON, Wyatt AW, Feng FY, Small EJ, Quigley DA. The Genomic and Epigenomic Landscape of Double-Negative Metastatic Prostate Cancer. Cancer Res 2023; 83:2763-2774. [PMID: 37289025 PMCID: PMC10425725 DOI: 10.1158/0008-5472.can-23-0593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy selectively favor the development of treatment-resistant subtypes of metastatic castration-resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we comprehensively characterized treatment-emergent mCRPC by integrating matched RNA sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ tumors. Genome-wide methylation analysis nominated Krüppel-like factor 5 (KLF5) as a driver of the AR-/NE- phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in this highly aggressive disease. SIGNIFICANCE Comprehensive characterization of the five subtypes of metastatic castration-resistant prostate cancer identified transcription factors that drive each subtype and showed that the double-negative subtype has the worst prognosis.
Collapse
Affiliation(s)
- Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Kevin Chang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Avi Baskin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Alana S. Weinstein
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Noah Younger
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Joshi J. Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Tomasz M. Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher P. Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Department of Urologic Surgery, University of California Davis, Sacramento, California
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Primo N. Lara
- Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Rob E. Reiter
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Matthew B. Rettig
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Owen N. Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
9
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
10
|
Liu P, Wang Z, Ou X, Wu P, Zhang Y, Wu S, Xiao X, Li Y, Ye F, Tang H. The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition. Mol Cancer 2022; 21:198. [PMID: 36224562 PMCID: PMC9555172 DOI: 10.1186/s12943-022-01653-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background Metastasis of breast cancer have caused the majority of cancer-related death worldwide. The circRNAs are associated with tumorigenesis and metastasis in breast cancer according to recent research. However, the biological mechanism of circRNAs in liver metastatic breast cancer remains ambiguous yet. Methods Microarray analysis of three pairs of primary BC tissues and matched hepatic metastatic specimens identified circEZH2. We used RT-qPCR and FISH assays to confirm circEZH2 existence, characteristics, and expression. Both in vivo and in vitro, circEZH2 played an oncogenic role which promoted metastasis as well. A range of bioinformatic analysis, Western blot, RNA pull-down, RIP, ChIP, and animal experiments were used to define the feedback loop involving FUS, circEZH2, miR-217-5p, KLF5, FUS, CXCR4 as well as epithelial and mesenchymal transition. Results In our research, circEZH2 was proved to be upregulated in liver metastases in BC and predicted the worse prognosis in breast cancer patients. Overexpression of circEZH2 notably accentuated the vitality and invasion of BC cells, whereas knockdown of circEZH2 elicited the literally opposite effects. Besides, overexpressed circEZH2 promoted tumorigenesis and liver metastasis in vivo. Moreover, circEZH2 could adsorb miR-217-5p to upregulate KLF5 thus leading to activate FUS transcription which would facilitate the back-splicing program of circEZH2. Meanwhile, KLF5 could upregulated CXCR4 transcriptionally to accelerate epithelial and mesenchymal transition of breast cancer. Conclusions Consequently, a novel feedback loop FUS/circEZH2/KLF5/CXCR4 was established while circEZH2 could be novel biomarker and potential target for BC patients’ therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01653-2.
Collapse
Affiliation(s)
- Peng Liu
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zehao Wang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xueqi Ou
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Peng Wu
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yue Zhang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Song Wu
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiangsheng Xiao
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Feng Ye
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hailin Tang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Advances in Biomarkers and Endogenous Regulation of Breast Cancer Stem Cells. Cells 2022; 11:cells11192941. [PMID: 36230903 PMCID: PMC9562239 DOI: 10.3390/cells11192941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the most common cancers. Even if breast cancer patients initially respond to treatment, developed resistance can lead to a poor prognosis. Cancer stem cells (CSCs) are a group of undifferentiated cells with self-renewal and multipotent differentiation characteristics. Existing evidence has shown that CSCs are one of the determinants that contribute to the heterogeneity of primary tumors. The emergence of CSCs causes tumor recurrence, metastasis, and therapeutic resistance. Previous studies indicated that different stemness-associated surface markers can identify other breast cancer stem cell (BCSC) subpopulations. Deciphering the critical signaling networks that are involved in the induction and maintenance of stemness is essential to develop novel BCSC-targeting strategies. In this review, we reviewed the biomarkers of BCSCs, critical regulators of BCSCs, and the signaling networks that regulate the stemness of BCSCs.
Collapse
|
12
|
Lee GH, Cheon J, Kim D, Jun HS. Lysophosphatidic Acid Promotes Epithelial-Mesenchymal Transition in Kidney Epithelial Cells via the LPAR1/MAPK-AKT/KLF5 Signaling Pathway in Diabetic Nephropathy. Int J Mol Sci 2022; 23:ijms231810497. [PMID: 36142408 PMCID: PMC9500642 DOI: 10.3390/ijms231810497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is a differentiation process associated with fibrogenesis in diabetic nephropathy (DN). Lysophosphatidic acid (LPA) is a small, naturally occurring glycerophospholipid implicated in the pathogenesis of DN. In this study, we investigated the role of LPA/LPAR1 signaling in the EMT of tubular cells as well as the underlying mechanisms. We observed a decrease in E-cadherin and an increase in vimentin expression levels in the kidney tubules of diabetic db/db mice, and treatment with ki16425 (LPAR1/3 inhibitor) inhibited the expression of these EMT markers. Ki16425 treatment also decreased the expression levels of the fibrotic factors fibronectin and alpha-smooth muscle actin (α-SMA) in db/db mice. Similarly, we found that LPA decreased E-cadherin expression and increased vimentin expression in HK-2 cells, which was reversed by treatment with ki16425 or AM095 (LPAR1 inhibitor). In addition, the expression levels of fibronectin and α-SMA were increased by LPA, and this effect was reversed by treatment with ki16425 and AM095 or by LPAR1 knockdown. Moreover, LPA induced the expression of the transcription factor, Krüppel-like factor 5 (KLF5), which was decreased by AM095 treatment or LPAR1 knockdown. The expression levels of EMT markers and fibrotic factors induced by LPA were decreased upon KLF5 knockdown in HK-2 cells. Inhibition of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and serine-threonine kinase (AKT) pathways decreased LPA-induced expression of KLF5 and EMT markers. In conclusion, these data suggest that LPA contributes to the pathogenesis of diabetic nephropathy by inducing EMT and renal tubular fibrosis via regulation of KLF5 through the LPAR1.
Collapse
Affiliation(s)
- Geon-Ho Lee
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Jayeon Cheon
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Hee-Sook Jun
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-899-6056; Fax: +82-32-899-6057
| |
Collapse
|
13
|
Dai X, Wang X, Yang C, Huang M, Zhou Z, Qu Y, Cui X, Liu R, Chen C. Human fibroblasts facilitate the generation of iPSCs-derived mammary-like organoids. Stem Cell Res Ther 2022; 13:377. [PMID: 35902878 PMCID: PMC9330643 DOI: 10.1186/s13287-022-03023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background Breast cancer is the most common malignancy in women worldwide, and its treatment largely depends on mastectomy. Patients after mastectomy suffer from crippled body image, self-esteem, and quality of life. Post-mastectomy breast reconstruction can improve patients’ psychosocial health. Although silicone and fat have been widely used for breast reconstruction, they have remarkable limitations. Our study aimed to establish an improved method for breast reconstruction from human-induced pluripotent stem cells (iPSCs). Methods We used a two-step procedure to induce mammary-like organoids (MLOs) from iPSCs and applied transcriptome sequencing to analyze the gene expression profiles during the development process from embryoid bodies (mEBs) to MLOs. Moreover, we evaluated the in vitro effect of fibroblasts cell line HFF (human foreskin fibroblasts) on the size and morphology of MLOs and explored the in vivo effect of HFF on regeneration rate of MLOs. Results MLOs had a similar gene expression profile and morphogenesis as the normal mammary glands. Furthermore, the addition of HFF increases the branching ratio and organoid diameters and facilitates the formation of multiple cell layers duct-like structures in MLOs in vitro. Finally, orthotopical transplantation of the MLOs to cleared mammary gland fad pad of NSG mice showed that HFF increases the formation of mammary gland-like structures. Conclusions Fibroblasts facilitate iPSC-derived MLOs to generate mammary gland-like structures in both in vitro and in vivo conditions. Our findings lay a foundation for breast reconstruction by using iPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03023-7.
Collapse
Affiliation(s)
- Xueqin Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Maobo Huang
- Biomedical Research Center, The First Hospital of Kunming (The Affiliated Calmette Hospital of Kunming Medical University), Kunming, 650224, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Boulevard, Davis Building 2065, Los Angeles, CA, 90048, USA
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
14
|
Liberti DC, Liberti Iii WA, Kremp MM, Penkala IJ, Cardenas-Diaz FL, Morley MP, Babu A, Zhou S, Fernandez Iii RJ, Morrisey EE. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Dev Cell 2022; 57:1742-1757.e5. [PMID: 35803279 DOI: 10.1016/j.devcel.2022.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified the transcription factor Klf5 as an essential determinant of alveolar epithelial cell fate across the lifespan. We show that although dispensable for both adult alveolar epithelial type 1 (AT1) and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 enforces AT1 cell lineage fidelity during development. Using infectious and non-infectious models of acute respiratory distress syndrome, we demonstrate that Klf5 represses AT2 cell proliferation and enhances AT2-AT1 cell differentiation in a spatially restricted manner during lung regeneration. Moreover, ex vivo organoid assays identify that Klf5 reduces AT2 cell sensitivity to inflammatory signaling to drive AT2-AT1 cell differentiation. These data define the roll of a major transcriptional regulator of AT1 cell lineage commitment and of the AT2 cell response to inflammatory crosstalk during lung regeneration.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - William A Liberti Iii
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720, USA
| | - Madison M Kremp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian J Penkala
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez Iii
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Jiang D, Qiu T, Peng J, Li S, Tala, Ren W, Yang C, Wen Y, Chen CH, Sun J, Wu Y, Liu R, Zhou J, Wu K, Liu W, Mao X, Zhou Z, Chen C. YB-1 is a positive regulator of KLF5 transcription factor in basal-like breast cancer. Cell Death Differ 2022; 29:1283-1295. [PMID: 35022570 PMCID: PMC9177637 DOI: 10.1038/s41418-021-00920-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Y-box binding protein 1 (YB-1) is a well-known oncogene highly expressed in various cancers, including basal-like breast cancer (BLBC). Beyond its role as a transcription factor, YB-1 is newly defined as an epigenetic regulator involving RNA 5-methylcytosine. However, its specific targets and pro-cancer functions are poorly defined. Here, based on clinical database, we demonstrate a positive correlation between Kruppel-like factor 5 (KLF5) and YB-1 expression in breast cancer patients, but a negative correlation with that of Dachshund homolog 1 (DACH1). Mechanistically, YB-1 enhances KLF5 expression not only through transcriptional activation that can be inhibited by DACH1, but also by stabilizing KLF5 mRNA in a RNA 5-methylcytosine modification-dependent manner. Additionally, ribosomal S6 kinase 2 (RSK2) mediated YB-1 phosphorylation at Ser102 promotes YB-1/KLF5 transcriptional complex formation, which co-regulates the expression of BLBC specific genes, Keratin 16 (KRT16) and lymphocyte antigen 6 family member D (Ly6D), to promote cancer cell proliferation. The RSK inhibitor, LJH685, suppressed BLBC cell tumourigenesis in vivo by disturbing YB-1-KLF5 axis. Our data suggest that YB-1 positively regulates KLF5 at multiple levels to promote BLBC progression. The novel RSK2-YB-1-KLF5-KRT16/Ly6D axis provides candidate diagnostic markers and therapeutic targets for BLBC.
Collapse
Affiliation(s)
- Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Lifesciences, University of Chinese Academy Sciences, Kunming, China
| | - Ting Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Lifesciences, University of Chinese Academy Sciences, Kunming, China
| | - Junjiang Peng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Siyuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tala
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenlong Ren
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, China University of Science and Technology, Hefei, Anhui, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chuan-Huizi Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Lifesciences, University of Chinese Academy Sciences, Kunming, China
| | - Yingying Wu
- The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Rong Liu
- The First Affiliated Hospital, Peking University, Beijing, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Kunming College of Lifesciences, University of Chinese Academy Sciences, Kunming, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
16
|
Wang X, Qiu T, Wu Y, Yang C, Li Y, Du G, He Y, Liu W, Liu R, Chen CH, Shi Y, Pan J, Zhou J, Jiang D, Chen C. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Cell Death Differ 2021; 28:2931-2945. [PMID: 33972717 PMCID: PMC8481478 DOI: 10.1038/s41418-021-00793-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Krüppel-like factor 5 (KLF5) is an oncogenic factor that is highly expressed in basal-like breast cancer (BLBC) and promotes cell proliferation, survival, migration, stemness, and tumor growth; however, its posttranslational modifications are poorly defined. Protein arginine methyltransferase 5 (PRMT5) is also an oncogene implicated in various carcinomas, including breast cancer. In this study, we found that PRMT5 interacts with KLF5 and catalyzes the di-methylation of KLF5 at Arginine 57 (R57) in a methyltransferase activity-dependent manner in BLBC cells. Depletion or pharmaceutical inhibition (using PJ-68) of PRMT5 decreased the expression of KLF5 and its downstream target genes in vitro and in vivo. PRMT5-induced KLF5R57me2 antagonizes GSK3β-mediated KLF5 phosphorylation and subsequently Fbw7-mediated KLF5 ubiquitination and coupled degradation. Functionally, PRMT5 promotes breast cancer stem cell maintenance and proliferation, at least partially, by stabilizing KLF5. PRMT5 and KLF5 protein levels were positively correlated in clinical BLBCs. Taken together, PRMT5 methylates KLF5 to prevent its phosphorylation, ubiquitination, and degradation, and thus promotes breast cancer stem cell maintenance and proliferation. These findings suggest that PRMT5 is a potential therapeutic target for BLBC.
Collapse
Affiliation(s)
- Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Ting Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yi Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Yaohui He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Rong Liu
- The First Affiliated Hospital, Peking University, Beijing, China
| | - Chuan-Huizi Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yujie Shi
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China.
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Wei W, Chen W, He N. HDAC4 induces the development of asthma by increasing Slug-upregulated CXCL12 expression through KLF5 deacetylation. J Transl Med 2021; 19:258. [PMID: 34118928 PMCID: PMC8199843 DOI: 10.1186/s12967-021-02812-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Asthma is a frequently occurring respiratory disease with an increasing incidence around the world. Airway inflammation and remodeling are important contributors to the occurrence of asthma. We conducted this study aiming at exploring the effect of Histone deacetylase 4 (HDAC4)-mediated Kruppel-like factor 5 (KLF5)/Slug/CXC chemokine ligand-12 (CXCL12) axis on the development of asthma in regulation of airway inflammation and remodeling. Methods An asthmatic rat model was induced by ovalbumin (OVA) irrigation, and determined HDAC4, KLF5, Slug, and CXCL12 expression in the lung tissues by RT-qPCR and Western blot assay. OVA was also used to induce a cell model of asthma in human BEAS-2B and HBE135-E6E7bronchial epithelial cells. The airway hyperresponsiveness (AHR), and expression of inflammatory cytokines in model mice were examined using methacholine challenge test and ELISA. The biological behaviors were measured in asthma model bronchial smooth muscle cells (BSMCs) following loss- and gain- function approaches. The interactions between HDAC4, KLF5, Slug, and CXCL12 were also detected by IP assay, dual luciferase gene reporter assay, and ChIP. Results HDAC4 was upregulated in lung tissues of OVA-induced asthmatic mice, and inhibition of HDAC4 alleviated the airway inflammation and remodeling. HDAC4 increased KLF5 transcriptional activity through deacetylation; deacetylated KLF5 bound to the promoter of Slug and transcriptionally upregulated Slug expression, which in turn increased the expression of CXCL12 to promote the inflammation in bronchial epithelial cells and thus induce the proliferation and migration of BSMCs. Conclusion Collectively, HDAC4 deacetylates KLF5 to upregulate Slug and CXCL12, thereby causing airway remodeling and facilitating progression of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02812-7.
Collapse
Affiliation(s)
- Wendi Wei
- Department of Hepatology, Taian Hospital of Traditional Chinese Medicine, Taian, 271000, People's Republic of China
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China
| | - Naifeng He
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Wang H, Shi Y, Chen CH, Wen Y, Zhou Z, Yang C, Sun J, Du G, Wu J, Mao X, Liu R, Chen C. KLF5-induced lncRNA IGFL2-AS1 promotes basal-like breast cancer cell growth and survival by upregulating the expression of IGFL1. Cancer Lett 2021; 515:49-62. [PMID: 34052325 DOI: 10.1016/j.canlet.2021.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Basal-like breast cancer (BLBC) is the most malignant subtype of breast cancer and has a poor prognosis. Kruppel-like factor 5 (KLF5) is an oncogenic transcription factor in BLBCs. The mechanism by which KLF5 promotes BLBC by regulating the transcription of lncRNAs has not been fully elucidated. In this study, we discovered that lncRNA IGFL2-AS1 is a downstream target gene of KLF5 and that IGFL2-AS1 mediates the pro-proliferation and pro-survival functions of KLF5. Additionally, we demonstrated that IGFL2-AS1 functions by upregulating the transcription of its neighboring gene IGFL1 via two independent mechanisms. On the one hand, nuclear IGFL2-AS1 promotes the formation of a KLF5/TEAD4 transcriptional complex at the IGFL1 gene enhancer. On the other hand, cytoplasmic IGFL2-AS1 inhibits the expression of miR4795-3p, which targets the IGFL1 gene. TNFα induces the expression of IGFL2-AS1 and IGFL1 through KLF5. Taken together, the results of this study indicate that IGFL2-AS1 and IGFL1 may serve as new therapeutic targets for BLBCs.
Collapse
Affiliation(s)
- Haixia Wang
- School of Life Science, University of Science & Technology of China, Hefei, 230027, Anhui, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Chuan-Huizi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jian Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
19
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
20
|
Liu C, Han Y, Tong P, Kuang D, Li N, Lu C, Sun X, Wang W, Dai J. Genome-wide DNA methylome and whole-transcriptome landscapes of spontaneous intraductal papilloma in tree shrews. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:688. [PMID: 33987386 PMCID: PMC8106051 DOI: 10.21037/atm-21-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Breast intraductal papilloma (IP) is mainly caused by the abnormal proliferation of ductal epithelial cells. Tree shrews have potential as an animal model for the study of breast tumours; however, little is known regarding the transcriptome and DNA methylome landscapes of breast IP in tree shrews. In this research, we conducted whole-genome DNA methylation and transcriptome analyses of breast IP and normal mammary glands in tree shrews. Methods DNA methylation profiles were generated from the whole-genome bisulfite sequencing and whole-transcriptome landscapes of IP and control groups of tree shrews through strand-specific library construction and RNA sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses and gene set enrichment analysis were performed. Spearman’s correlation analysis was used to identify statistical relationships between gene expression and DNA methylation. Results A genome-wide perspective of the epigenetic regulation of protein-coding genes in breast IP in tree shrews was obtained. The methylation levels at CG sites were considerably higher than those at CHG or CHH sites, and were highest in gene body regions. In total, 3,486, 82 and 361 differentially methylated regions (DMRs) were identified in the context of CG, CHG, and CHH, respectively, and 701 differentially methylated genes (DMGs) were found. Further, through transcriptomic analysis, 62 differentially expressed genes, 50 long noncoding RNAs, and 32 circular RNAs were identified in breast IP compared to normal mammary glands. Correlation analysis between the DNA methylation and transcriptome data revealed that 25 DMGs were also differentially expressed genes, among which the expression levels of 9 genes were negatively correlated with methylation levels in gene body regions. Importantly, integrated analysis identified 3 genes (PDZ domain-containing 1, ATPase plasma membrane Ca2+ transporting 4 and Lymphocyte cytosolic protein 1) that could serve as candidates for further study of breast IP in tree shrews. Conclusions This research has unearthed the comprehensive landscape of the transcriptome and DNA methylome of spontaneous IP in tree shrews, as well as candidate tumorigenesis related genes in IP. These results will contribute to the use of tree shrews in animal models of breast tumours.
Collapse
Affiliation(s)
- Chengxiu Liu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuanyuan Han
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Pinfen Tong
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Dexuan Kuang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Na Li
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Caixia Lu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenguang Wang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jiejie Dai
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
21
|
Abstract
Breast cancer is the most common malignancy in women. Basic and translational breast cancer research relies heavily on experimental animal models. Ideally, such models for breast cancer should have commonality with human breast cancer in terms of tumor etiology, biological behavior, pathology, and response to therapeutics. This review introduces current progress in different breast cancer experimental animal models and analyzes their characteristics, advantages, disadvantages, and potential applications. Finally, we propose future research directions for breast cancer animal models.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ce-Shi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
22
|
Ma L, Liu Z, Fan Z. Potential Mechanisms of miR-143/Krupple Like Factor 5 Axis in Impeding the Proliferation of Michigan Cancer Foundation-7 Breast Cancer Cell Line. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer is one of the most prevailing cancers in females, while the cancerous heterogeneity hinders its early diagnosis and subsequent therapy. miR-143-3p is a critical mediator in malignancy development and tumorigenesis as a tumor suppressor. Its role in various tumor entities
has been investigated, such as colon cancer and breast cancer. Using MCF-7 breast cancer cell model, we planned to explore the underlying mechanisms of miR-143/KLF-5 axis in retarding breast cancer cells growth. Bioinformatics analysis searched the target KLF5 of miR-143, and the miR-143-targeted
mimic and inhibitor were employed to detect the changes of KLF5. After transfection of mimic miR-143, the CCK-8 reagent assessed cell proliferation. Based on optimal stimulation time, miR-143 stimulation model was established, followed by determining expression of KLF5, EGFR and PCNA via western
blot and qPCR. Eventually, siRNA-KLF5 was applied to silencing KLF5 level to evaluate its role in MCF-7 cells. The transcription and translation levels of KLF5 were diminished in miR-143-mimic transfected MCF-7 cells, while enhanced in miR-143-inhibitor transfected MCF-7 cells. When MCF-7
cells were transfected with miR-143-mimic at different time points, 48 hours was found to be the optimal transfection time, with reduced transcription and translation levels of KLF5, EGFR and PCNA. The transcription and translation levels of PNCA and EGFR were declined after silencing KLF5
by siRNA. miR-143/KLF5 axis could retard the proliferation of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Le Ma
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhenyu Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
23
|
Zhang J, Li G, Feng L, Lu H, Wang X. Krüppel-like factors in breast cancer: Function, regulation and clinical relevance. Biomed Pharmacother 2019; 123:109778. [PMID: 31855735 DOI: 10.1016/j.biopha.2019.109778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has accounted for the leading cause of cancer-related mortality among women worldwide. Although the progress in its diagnosis and treatment has come at a remarkable pace during the past several decades, there are still a wide array of problems regarding its progression, metastasis and treatment resistance that have not yet been fully clarified. Recently, an increasing number of studies have revealed that some members of Krüppel-like factors(KLFs) are significantly associated with cell proliferation, apoptosis, metastasis, cancer stem cell regulation and prognostic and predictive value for patients in breast cancer, indicating their promising prognostic and predictive potential for breast cancer survival and outcome. In this review, we will summarize our current knowledge of the functions, regulations and clinical relevance of KLFs in breast cancer.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Wu Y, Qin J, Li F, Yang C, Li Z, Zhou Z, Zhang H, Li Y, Wang X, Liu R, Tao Q, Chen W, Chen C. USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem 2019; 294:17837-17847. [PMID: 31624151 DOI: 10.1074/jbc.ra119.009102] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factor 5 (KLF5) transcription factor is highly expressed in basal type breast cancer and promotes breast cancer cell proliferation, survival, migration, and tumorigenesis. KLF5 protein stability is regulated by ubiquitination. In this study, ubiquitin-specific protease 3 (USP3) was identified as a new KLF5 deubiquitinase by genome-wide siRNA library screening. We demonstrated that USP3 interacts with KLF5 and stabilizes KLF5 via deubiquitination. USP3 knockdown inhibits breast cancer cell proliferation in vitro and tumorigenesis in vivo, which can be partially rescued by ectopic expression of KLF5. Furthermore, we observed a positive correlation between USP3 and KLF5 protein expression levels in human breast cancer samples. These findings suggest that USP3 is a new KLF5 deubiquitinase and that USP3 may represent a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yingying Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of the Chinese Academy of Sciences, Beijing 101407, China.,First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhen Li
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunxi Li
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong 518172, China
| | - Wenlin Chen
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China .,Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|