1
|
Ulas E, Brodsky I, Burakov A. Small GTPase ARL4C Associated with Various Cancers Affects Microtubule Nucleation. Biomedicines 2024; 12:2872. [PMID: 39767779 PMCID: PMC11673753 DOI: 10.3390/biomedicines12122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The changes in the level of small GTPase ARL4C are associated with the initiation and progression of many different cancers. The content of ARL4C varies greatly between different tissues, and the induction of ARL4C expression leads to changes in cell morphology and proliferation. Although ARL4C can bind alpha-tubulin and affect intracellular transport, the role of ARL4C in the functioning of the tubulin cytoskeleton remained unclear. The aim of the present work is to study this role; Methods: The cells of the following lines were used for the experiments: HeLa (human cervical carcinoma), MCF7 (human breast cancer), U2OS (human osteosarcoma), Vero, BS-C-1, and COS7 (African green monkey kidney). The receptor activation by agonists followed by the preparation of cell lysates, electrophoresis, and immunoblotting, as well as cell fixation and immunofluorescent staining, were used to assess endogenous ARL4C/ABCA1 levels and the microtubule network morphology. The microtubule regrowth technique was performed to estimate the rate of microtubule nucleation, and the overexpression of different ARL4C constructs was used to affect ARL4C activity in the cells; Results: We showed that the changes in the endogenous ARL4C level or the ARL4C activity alter the microtubule nucleation process in the cells; Conclusions: small GTPase ARL4C may serve as one of the regulators of the microtubule nucleation process both in normal and cancer cells.
Collapse
Affiliation(s)
- Evgeniia Ulas
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (E.U.); (I.B.)
- Institute of Protein Research of Russian Academy of Sciences, Pushchino 142290, Russia
| | - Ilya Brodsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (E.U.); (I.B.)
| | - Anton Burakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (E.U.); (I.B.)
| |
Collapse
|
2
|
Tang N, Luo X, Ding Z, Shi Y, Cao X, Wu S. Single-Cell Multi-Dimensional data analysis reveals the role of ARL4C in driving rheumatoid arthritis progression and Macrophage polarization dynamics. Int Immunopharmacol 2024; 141:112987. [PMID: 39182267 DOI: 10.1016/j.intimp.2024.112987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis (RA) is an enduring autoimmune inflammatory condition distinguished by continual joint inflammation, hyperplasia of the synovium, erosion of bone, and deterioration of cartilage.Fibroblast-like synoviocytes (FLSs) exhibiting "tumor-like" traits are central to this mechanism.ADP-ribosylation factor-like 4c (ARL4C) functions as a Ras-like small GTP-binding protein, significantly impacting tumor migration, invasion, and proliferation.However, it remains uncertain if ARL4C participates in the stimulation of RA FLSs exhibiting "tumor-like" features, thereby fostering the advancement of RA. In our investigation, we unveiled, for the inaugural instance, via the amalgamated scrutiny of single-cell RNA sequencing (scRNA-seq) and Bulk RNA sequencing (Bulk-seq) datasets, that activated fibroblast-like synoviocytes (FLSs) showcase high expression of ARL4C, and the ARL4C protein expression in FLSs derived from RA patients significantly surpasses that observed in individuals with osteoarthritis (OA) and traumatic injury (trauma).Silencing of the ARL4C gene markedly impeded the proliferation of RA FLSs by hindered the transition of cells from the G0/G1 phase to the S phase, and intensified cell apoptosis and diminished the migratory and invasive capabilities. Co-culture of ARL4C gene-silenced RA FLSs with monocytes/macrophages significantly inhibited the polarization of monocytes/macrophages toward M1 and the repolarization of M2 to M1.Furthermore, intra-articular injection of shARL4C significantly alleviated synovial inflammation and cartilage erosion in collagen-induced arthritis (CIA) rats. In conclusion, our discoveries propose that ARL4C assumes a central role in the synovial inflammation, cartilage degradation, and bone erosion associated with RA by triggering the PI3K/AKT and MAPK signaling pathways within RA FLSs.ARL4C holds promise as a prospective target for the development of pharmaceutical agents targeting FLSs, with the aim of addressing RA.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin Luo
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyu Ding
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yanbin Shi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Song Wu
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Lin Q, Zeng R, Yang J, Xu Z, Jin S, Wei G. Prognostic stratification of sepsis through DNA damage response based RiskScore system: insights from single-cell RNA-sequencing and transcriptomic profiling. Front Immunol 2024; 15:1345321. [PMID: 38404591 PMCID: PMC10884272 DOI: 10.3389/fimmu.2024.1345321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Background A novel risk scoring system, predicated on DNA damage response (DDR), was developed to enhance prognostic predictions and potentially inform the creation of more effective therapeutic protocols for sepsis. Methods To thoroughly delineate the expression profiles of DDR markers within the context of sepsis, an analytical approach utilizing single-cell RNA-sequencing (scRNA-seq) was implemented. Our study utilized single-cell analysis techniques alongside weighted gene co-expression network analysis (WGCNA) to pinpoint the genes that exhibit the most substantial associations with DNA damage response (DDR). Through Cox proportional hazards LASSO regression, we distinguished DDR-associated genes and established a risk model, enabling the stratification of patients into high- and low-risk groups. Subsequently, we carried out an analysis to determine our model's predictive accuracy regarding patient survival. Moreover, we examined the distinct biological characteristics, various signal transduction routes, and immune system responses in sepsis patients, considering different risk categories and outcomes related to survival. Lastly, we conducted experimental validation of the identified genes through in vivo and in vitro assays, employing RT-PCR, ELISA, and flow cytometry. Results Both single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic analyses have demonstrated a strong correlation between DNA damage response (DDR) levels and sepsis prognosis. Specific cell subtypes, including monocytes, megakaryocytes, CD4+ T cells, and neutrophils, have shown elevated DDR activity. Cells with increased DDR scores exhibited more robust and numerous interactions with other cell populations. The weighted gene co-expression network analysis (WGCNA) and single-cell analyses revealed 71 DDR-associated genes. We developed a four-gene risk scoring system using ARL4C, CD247, RPL7, and RPL31, identified through univariate COX, LASSO COX regression, and log-rank (Mantel-Cox) tests. Nomograms, calibration plots, and decision curve analyses (DCA) regarding these specific genes have provided significant clinical benefits for individuals diagnosed with sepsis. The study suggested that individuals categorized as lower-risk demonstrated enhanced infiltration of immune cells, upregulated expression of immune regulators, and a more prolific presence of immune-associated functionalities and pathways. RT-qPCR analyses on a sepsis rat model revealed differential gene expression predominantly in the four targeted genes. Furthermore, ARL4C knockdown in sepsis model in vivo and vitro caused increased inflammatory response and a worse prognosis. Conclusion The delineated DDR expression landscape offers insights into sepsis pathogenesis, whilst our riskScore model, based on a robust four-gene signature, could underpin personalized sepsis treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Guan Wei
- Department of Emergency Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
4
|
Huang Y, Huo Y, Huang L, Zhang L, Zheng Y, Zhang N, Yang M. Super-enhancers: Implications in gastric cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108489. [PMID: 38355091 DOI: 10.1016/j.mrrev.2024.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Gastric cancer (GC) is the fifth most prevalent malignancy and the third leading cause of cancer-related mortality globally. Despite intensive efforts to enhance the efficiencies of various therapeutics (chemotherapy, surgical interventions, molecular-targeted therapies, immunotherapies), the prognosis for patients with GC remains poor. This might be predominantly due to the limited understanding of the complicated etiology of GC. Importantly, epigenetic modifications and alterations are crucial during GC development. Super-enhancers (SEs) are a large cluster of adjacent enhancers that greatly activate transcription. SEs sustain cell-specific identity by enhancing the transcription of specific oncogenes. In this review, we systematically summarize how SEs are involved in GC development, including the SE landscape in GC, the SE target genes in GC, and the interventions related to SE functions for treating GC.
Collapse
Affiliation(s)
- Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Zhao H, Yang K, Yue Z, Chen Z, Cheng Z, Sun H, Song C. The role of ARL4C in predicting prognosis and immunotherapy drug susceptibility in pan-cancer analysis. Front Pharmacol 2023; 14:1288492. [PMID: 38178862 PMCID: PMC10765536 DOI: 10.3389/fphar.2023.1288492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Background: ARLs, which are a class of small GTP-binding proteins, play a crucial role in facilitating tumor tumorigenesis and development. ARL4C, a vital member of the ARLs family, has been implicated in the progression of tumors, metastatic dissemination, and development of resistance to therapeutic drugs. Nevertheless, the precise functional mechanisms of ARL4C concerning tumor prognosis and immunotherapy drug susceptibility remain elusive. Methods: By combining the GTEx and TCGA databases, the presence of ARL4C was examined in 33 various types of cancer. Immunohistochemistry and immunofluorescence staining techniques were utilized to confirm the expression of ARL4C in particular tumor tissues. Furthermore, the ESTIMATE algorithm and TIMER2.0 database were utilized to analyze the tumor microenvironment and immune infiltration associated with ARL4C. The TISCH platform facilitated the utilization of single-cell RNA-seq datasets for further analysis. ARL4C-related immune escape was investigated using the TISMO tool. Lastly, drug sensitivity analysis was conducted to assess the sensitivity of different types of tumors to compounds based on the varying levels of ARL4C expression. Results: The study found that ARL4C was highly expressed in 23 different types of cancer. Moreover, the presence of high ARL4C expression was found to be associated with a poor prognosis in BLCA, COAD, KIRP, LGG, and UCEC. Notably, ARL4C was also expressed in immune cells, and its high expression was found to be correlated with cancer immune activation. Most importantly, the drug sensitivity analysis revealed a positive correlation between ARL4C expression and the heightened sensitivity of tumors to Staurosporine, Midostaurin, and Nelarabine. Conclusion: The findings from our study indicate that the expression level of ARL4C may exert an influence on cancer development, prognosis, and susceptibility to immunotherapy drugs. In addition, the involvement of ARL4C in the tumor immune microenvironment has expanded the concept of ARL4C-targeted immunotherapy.
Collapse
Affiliation(s)
- Hanshu Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Hongcheng Sun
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changze Song
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Alkhatib DZR, Thi Kim Truong T, Fujii S, Hasegawa K, Nagano R, Tajiri Y, Kiyoshima T. Stepwise activation of p63 and the MEK/ERK pathway induces the expression of ARL4C to promote oral squamous cell carcinoma cell proliferation. Pathol Res Pract 2023; 246:154493. [PMID: 37141698 DOI: 10.1016/j.prp.2023.154493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Carcinogenesis is a multistep process wherein cells accumulate multiple genetic alterations and progress to a more malignant phenotype. It has been proposed that sequential accumulation of gene abnormalities in specific genes drives the transition from non-tumorous epithelia through a preneoplastic lesion/benign tumor to cancer. Histologically, oral squamous cell carcinoma (OSCC) progresses in multiple ordered steps that begin with mucosal epithelial cell hyperplasia, which is followed by dysplasia, carcinoma in situ and invasive carcinoma. It is therefore hypothesized that genetic alteration-mediated multistep carcinogenesis would be involved in the development of OSCC; however, the detailed molecular mechanisms are unknown. We clarified the comprehensive gene expression patterns and carried out an enrichment analysis using DNA microarray data from a pathological specimen of OSCC (including a non-tumor region, carcinoma in situ lesion and invasive carcinoma lesion). The expression of numerous genes and signal activation were altered in the development of OSCC. Among these, the p63 expression was increased and the MEK/ERK-MAPK pathway was activated in carcinoma in situ lesion and in invasive carcinoma lesion. Immunohistochemical analyses revealed that p63 was initially upregulated in carcinoma in situ and ERK was sequentially activated in invasive carcinoma lesions in OSCC specimens. ADP-ribosylation factor (ARF)-like 4c (ARL4C), the expression of which is reportedly induced by p63 and/or the MEK/ERK-MAPK pathway in OSCC cells, has been shown to promote tumorigenesis. Immunohistochemically, in OSCC specimens, ARL4C was more frequently detected in tumor lesions, especially in invasive carcinoma lesions, than in carcinoma in situ lesions. Additionally, ARL4C and phosphorylated ERK were frequently merged in invasive carcinoma lesions. Loss-of-function experiments using inhibitors and siRNAs revealed that p63 and MEK/ERK-MAPK cooperatively induce the expression of ARL4C and cell growth in OSCC cells. These results suggest that the stepwise activation of p63 and MEK/ERK-MAPK contributes to OSCC tumor cell growth through regulation of ARL4C expression.
Collapse
Affiliation(s)
- Dania Zuhier Ragheb Alkhatib
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Thinh Thi Kim Truong
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryoko Nagano
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yudai Tajiri
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Dentistry and Oral Surgery, National Hospital Organization, Fukuokahigashi Medical Center, 1-1-1 Chidori, Koga, Fukuoka 811-3195, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
ARL11 correlates with the immunosuppression and poor prognosis in breast cancer: A comprehensive bioinformatics analysis of ARL family members. PLoS One 2022; 17:e0274757. [DOI: 10.1371/journal.pone.0274757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
ADP-ribosylation factor-like protein (ARL) family members (ARLs) may regulate the malignant phenotypes of cancer cells. However, relevant studies on ARLs in breast cancer (BC) are limited. In this research, the expression profiles, genetic variations, and prognostic values of ARLs in BC have been systematically analyzed for the first time using various databases. We find that ARLs are significantly dysregulated in BC according to the TCGA database, which may result from DNA methylation and copy number alteration. Prognostic analysis suggests that ARL11 is the most significant prognostic indicator for BC, and higher ARL11 predicts worse clinical outcomes for BC patients. Further functional enrichment analysis demonstrates that ARL11 enhances the immunosuppression in BC, and dysregulation of ARL11 is significantly associated with immune infiltration in various types of cancer. Our results demonstrate the potential of ARL11 as an immune therapeutic target for BC.
Collapse
|
9
|
Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane. Proc Natl Acad Sci U S A 2022; 119:e2207414119. [PMID: 35857868 PMCID: PMC9335210 DOI: 10.1073/pnas.2207414119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.
Collapse
|
10
|
Hasegawa K, Fujii S, Kurppa KJ, Maehara T, Oobu K, Nakamura S, Kiyoshima T. Clear Cell Squamous Cell Carcinoma of the Tongue Exhibits Characteristics as an Undifferentiated Squamous Cell Carcinoma. Pathol Res Pract 2022; 235:153909. [DOI: 10.1016/j.prp.2022.153909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022]
|
11
|
Chen X, Zhang Y, Qian W, Han L, Li W, Duan W, Wu Z, Wang Z, Ma Q. Arl4c promotes the growth and drug resistance of pancreatic cancer by regulating tumor-stromal interactions. iScience 2021; 24:103400. [PMID: 34849465 PMCID: PMC8609020 DOI: 10.1016/j.isci.2021.103400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence suggests that ADP-ribosylation factor like-4c (Arl4c) may be a potential choice for cancer treatment. However, its role in pancreatic cancer, especially in tumor-stroma interactions and drug resistance, is still unknown. In the current study, we examined the proliferation and drug resistance effect of Arl4c on pancreatic cancer cells. Furthermore, we explored the contribution of Arl4c high expression in pancreatic stellate cell (PSC) activation. We found that high Arl4c expression is associated with cell proliferation, drug resistance, and PSC activation. In detail, Arl4c regulates connective tissue growth factor (CTGF) paracrine, further induces autophagic flux in PSCs, resulting in PSC activation. TGFβ1 secreted by activated PSCs enhances cancer cell stem cell properties via smad2 signaling, further increasing cell drug resistance. YAP is an important mediator of the Arl4c-CTGF loop. Taken together, these results suggest that Arl4c is essential for pancreatic cancer progression and may be an effective therapeutic choice. High Arl4c expression is correlated with PSCs activation and drug resistance Yap-CTGF-mediated autophagy is required for Arl4c-related PSCs activation Paracrine TGFβ1 of PSCs plays pivotal role in drug resistance of pancreatic cancer cells
Collapse
Affiliation(s)
- Xin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanzhen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
12
|
Constructing nanocomplexes by multicomponent self-assembly for curing orthotopic glioblastoma with synergistic chemo-photothermal therapy. Biomaterials 2021; 279:121193. [PMID: 34700227 DOI: 10.1016/j.biomaterials.2021.121193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier (BBB) is one of the major limitations of glioblastoma therapy in the clinic. Nanodrugs have shown great potential for glioblastoma therapy. Herein, we purposefully developed a multicomponent self-assembly nanocomplex with very high drug loading content for curing orthotopic glioblastoma with synergistic chemo-photothermal therapy. The nanocomplex consisted of self-assembled pH-responsive nanodrugs derived from amino acid-conjugated camptothecin (CPT) and canine dyes (IR783) coated with peptide Angiopep-2-conjugated copolymer of Ang-PEG-g-PLL. Specifically, the carrier-free nanocomplex exhibited a high drug loading content (up to 62%), good biocompatibility, and effective glioma accumulation ability. Moreover, the nanocomplex displayed good stability and pH-responsive behavior ex vivo. Both in vitro and in vivo results revealed that the nanocomplex could effectively cross the BBB and target glioma cells. Furthermore, the combination of chemotherapy and photothermal therapy of the nanocomplex achieved a better therapeutic effect, longer survival time, and minimized toxic side effects in orthotopic glioblastoma tumor-bearing nude mice. Overall, we modified the chemotherapeutic drug CPT so that it could self-assemble with other molecules into nanoparticles, which providing an alternative for the preparation of the carrier-free nanodrugs. The results highlighted the potential of self-assembly nanodrugs as a novel platform for effective glioblastoma therapy.
Collapse
|
13
|
Fujii S, Ishibashi T, Kokura M, Fujimoto T, Matsumoto S, Shidara S, Kurppa KJ, Pape J, Caton J, Morgan PR, Heikinheimo K, Kikuchi A, Jimi E, Kiyoshima T. RAF1-MEK/ERK pathway-dependent ARL4C expression promotes ameloblastoma cell proliferation and osteoclast formation. J Pathol 2021; 256:119-133. [PMID: 34622442 DOI: 10.1002/path.5814] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Ameloblastoma is an odontogenic neoplasm characterized by slow intraosseous growth with progressive jaw resorption. Recent reports have revealed that ameloblastoma harbours an oncogenic BRAFV600E mutation with mitogen-activated protein kinase (MAPK) pathway activation and described cases of ameloblastoma harbouring a BRAFV600E mutation in which patients were successfully treated with a BRAF inhibitor. Therefore, the MAPK pathway may be involved in the development of ameloblastoma; however, the precise mechanism by which it induces ameloblastoma is unclear. The expression of ADP-ribosylation factor (ARF)-like 4c (ARL4C), induced by a combination of the EGF-MAPK pathway and Wnt/β-catenin signalling, has been shown to induce epithelial morphogenesis. It was also reported that the overexpression of ARL4C, due to alterations in the EGF/RAS-MAPK pathway and Wnt/β-catenin signalling, promotes tumourigenesis. However, the roles of ARL4C in ameloblastoma are unknown. We investigated the involvement of ARL4C in the development of ameloblastoma. In immunohistochemical analyses of tissue specimens obtained from 38 ameloblastoma patients, ARL4C was hardly detected in non-tumour regions but tumours frequently showed strong expression of ARL4C, along with the expression of both BRAFV600E and RAF1 (also known as C-RAF). Loss-of-function experiments using inhibitors or siRNAs revealed that ARL4C elevation depended on the RAF1-MEK/ERK pathway in ameloblastoma cells. It was also shown that the RAF1-ARL4C and BRAFV600E-MEK/ERK pathways promoted cell proliferation independently. ARL4C-depleted tumour cells (generated by knockdown or knockout) exhibited decreased proliferation and migration capabilities. Finally, when ameloblastoma cells were co-cultured with mouse bone marrow cells and primary osteoblasts, ameloblastoma cells induced osteoclast formation. ARL4C elevation in ameloblastoma further promoted its formation capabilities through the increased RANKL expression of mouse bone marrow cells and/or primary osteoblasts. These results suggest that the RAF1-MEK/ERK-ARL4C axis, which may function in cooperation with the BRAFV600E-MEK/ERK pathway, promotes ameloblastoma development. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takuma Ishibashi
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Megumi Kokura
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tatsufumi Fujimoto
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Satsuki Shidara
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kari J Kurppa
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, and Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Judith Pape
- Division of Surgery and Interventional Science, Department of Targeted Intervention, Centre for 3D Models of Health and Disease, University College London, London, UK
| | - Javier Caton
- Department of Anatomy and Embryology, Faculty of Medicine, University Complutense Madrid, Madrid, Spain
| | - Peter R Morgan
- Head & Neck Pathology, King's College London, Guy's Hospital, London, UK
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku and Turku University Hospital, Turku, Finland
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Ma Y, Chen SS, Jiang F, Ma RY, Wang HL. Bioinformatic analysis and validation of microRNA-508-3p as a protective predictor by targeting NR4A3/MEK axis in pulmonary arterial hypertension. J Cell Mol Med 2021; 25:5202-5219. [PMID: 33942991 PMCID: PMC8178270 DOI: 10.1111/jcmm.16523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) featured a debilitating progressive disorder. Here, we intend to determine diagnosis‐valuable biomarkers for PAH and decode the fundamental mechanisms of the biological function of these markers. Two mRNA microarray profiles (GSE70456 and GSE117261) and two microRNA microarray profiles (GSE55427 and GSE67597) were mined from the Gene Expression Omnibus platform. Then, we identified the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), respectively. Besides, we investigated online miRNA prediction tools to screen the target gene of DEMs. In this study, 185 DEGs and three common DEMs were screened as well as 1266 target genes of the three DEMs were identified. Next, 16 overlapping dysregulated genes from 185 DEGs and 1266 target gene were obtained. Meanwhile, we constructed the miRNA gene regulatory network and determined miRNA‐508‐3p‐NR4A3 pair for deeper exploring. Experiment methods verified the functional expression of miR‐508‐3p in PAH and its signalling cascade. We observed that ectopic miR‐508‐3p expression promotes proliferation and migration of pulmonary artery smooth muscle cell (PASMC). Bioinformatic, dual‐luciferase assay showed NR4A3 represents directly targeted gene of miR‐508‐3p. Mechanistically, we demonstrated that down‐regulation of miR‐508‐3p advances PASMC proliferation and migration via inducing NR4A3 to activate MAPK/ERK kinase signalling pathway. Altogether, our research provides a promising diagnosis of predictor and therapeutic avenues for patients in PAH.
Collapse
Affiliation(s)
- Yi Ma
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shu-Shu Chen
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Fen Jiang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ru-Yi Ma
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Huan-Liang Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.,Shenzhen Research Institute of Shandong University, Shenzhen, China
| |
Collapse
|
15
|
Chen Q, Fu WJ, Tang XP, Wang L, Niu Q, Wang S, Lin Y, Cao MF, Hu R, Wen HY, Wang Y, Zhang X, Yao XH. ADP-Ribosylation Factor Like GTPase 4C (ARL4C) augments stem-like traits of glioblastoma cells by upregulating ALDH1A3. J Cancer 2021; 12:818-826. [PMID: 33403039 PMCID: PMC7778538 DOI: 10.7150/jca.45052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022] Open
Abstract
Glioma cells with stem cell-like properties are crucial for tumor initiation, progression and therapeutic resistance. Therefore, identifying specific factors in regulating stem-like traits is critical for the design of novel glioma therapeutics. Herein, we reported that ADP-Ribosylation Factor Like GTPase 4C (ARL4C) was highly expressed in glioma stem-like cells (GSLCs). GSLCs, determined by the efficiency of sphere formation in vitro and tumor growth in vivo, was increased by overexpression of ARL4C. ARL4C induced the tumorigenesis through ALDH1A3. Analyses of 325 patient specimens showed that ARL4C was highly expressed in glioblastoma (GBM) as compared with lower grade gliomas. In addition, higher level ARL4C expression in glioma was correlated with poorer progression-free survival and overall survival of patients. Therefore, ARL4C may act as a novel prognostic marker and a therapeutic target for GBM.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Cancer Center of Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wen-Juan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Peng Tang
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yong Lin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Mian-Fu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai-Yan Wen
- Department of Pathology, the Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| |
Collapse
|
16
|
Shahcheraghi SH, Tchokonte-Nana V, Lotfi M, Lotfi M, Ghorbani A, Sadeghnia HR. Wnt/beta-catenin and PI3K/Akt/mTOR Signaling Pathways in Glioblastoma: Two Main Targets for Drug Design: A Review. Curr Pharm Des 2020; 26:1729-1741. [PMID: 32003685 DOI: 10.2174/1381612826666200131100630] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant astrocytic glioma, accounting for about 90% of all brain tumors with poor prognosis. Despite recent advances in understanding molecular mechanisms of oncogenesis and the improved neuroimaging technologies, surgery, and adjuvant treatments, the clinical prognosis of patients with GBM remains persistently unfavorable. The signaling pathways and the regulation of growth factors of glioblastoma cells are very abnormal. The various signaling pathways have been suggested to be involved in cellular proliferation, invasion, and glioma metastasis. The Wnt signaling pathway with its pleiotropic functions in neurogenesis and stem cell proliferation is implicated in various human cancers, including glioma. In addition, the PI3K/Akt/mTOR pathway is closely related to growth, metabolism, survival, angiogenesis, autophagy, and chemotherapy resistance of GBM. Understanding the mechanisms of GBM's invasion, represented by invasion and migration, is an important tool in designing effective therapeutic interventions. This review will investigate two main signaling pathways in GBM: PI3K/Akt/mTOR and Wnt/beta-catenin signaling pathways.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of medical sciences, Yazd, Iran
| | - Venant Tchokonte-Nana
- Comparative Anatomy, Experimental Anatomopathology and Surgery, Faculty of Medicine and Health Sciences, University des Montagnes, Bangangte, Cameroon
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of medical sciences, Yazd, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Kim HJ, Kim DY. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules 2020; 25:molecules25204641. [PMID: 33053763 PMCID: PMC7587213 DOI: 10.3390/molecules25204641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is aggressive malignant tumor residing within the central nervous system. Although the standard treatment options, consisting of surgical resection followed by combined radiochemotherapy, have long been established for patients with GBM, the prognosis is still poor. Despite recent advances in diagnosis, surgical techniques, and therapeutic approaches, the increased patient survival after such interventions is still sub-optimal. The unique characteristics of GBM, including highly infiltrative nature, hard-to-access location (mainly due to the existence of the blood brain barrier), frequent and rapid recurrence, and multiple drug resistance mechanisms, pose challenges to the development of an effective treatment. To overcome current limitations on GBM therapy and devise ideal therapeutic strategies, efforts should focus on an improved molecular understanding of GBM pathogenesis. In this review, we summarize the molecular basis for the development and progression of GBM as well as some emerging therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Ji Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6880
| |
Collapse
|
18
|
Zyxin (ZYX) promotes invasion and acts as a biomarker for aggressive phenotypes of human glioblastoma multiforme. J Transl Med 2020; 100:812-823. [PMID: 31949244 DOI: 10.1038/s41374-019-0368-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by highly invasive growth, which leads to extensive infiltration and makes complete tumor excision difficult. Since cytoskeleton proteins are related to leading processes and cell motility, and through analysis of public GBM databases, we determined that an actin-interacting protein, zyxin (ZYX), may involved in GBM invasion. Our own glioma cohort as well as the cancer genome atlas (TCGA), Rembrandt, and Gravendeel databases consistently showed that increased ZYX expression was related to tumor progression and poor prognosis of glioma patients. In vitro and in vivo experiments further confirmed the oncogenic roles of ZYX and demonstrated the role of ZYX in GBM invasive growth. Moreover, RNA-seq and mass-spectrum data from GBM cells with or without ZYX revealed that stathmin 1 (STMN1) was a potential target of ZYX. Subsequently, we found that both mRNA and protein levels of STMN1 were positively regulated by ZYX. Functionally, STMN1 not only promoted invasion of GBM cells but also rescued the invasion repression caused by ZYX loss. Taken together, our results indicate that high ZYX expression was associated with worse prognosis and highlighted that the ZYX-STMN1 axis might be a potential therapeutic target for GBM.
Collapse
|
19
|
Casalou C, Ferreira A, Barral DC. The Role of ARF Family Proteins and Their Regulators and Effectors in Cancer Progression: A Therapeutic Perspective. Front Cell Dev Biol 2020; 8:217. [PMID: 32426352 PMCID: PMC7212444 DOI: 10.3389/fcell.2020.00217] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The Adenosine diphosphate-Ribosylation Factor (ARF) family belongs to the RAS superfamily of small GTPases and is involved in a wide variety of physiological processes, such as cell proliferation, motility and differentiation by regulating membrane traffic and associating with the cytoskeleton. Like other members of the RAS superfamily, ARF family proteins are activated by Guanine nucleotide Exchange Factors (GEFs) and inactivated by GTPase-Activating Proteins (GAPs). When active, they bind effectors, which mediate downstream functions. Several studies have reported that cancer cells are able to subvert membrane traffic regulators to enhance migration and invasion. Indeed, members of the ARF family, including ARF-Like (ARL) proteins have been implicated in tumorigenesis and progression of several types of cancer. Here, we review the role of ARF family members, their GEFs/GAPs and effectors in tumorigenesis and cancer progression, highlighting the ones that can have a pro-oncogenic behavior or function as tumor suppressors. Moreover, we propose possible mechanisms and approaches to target these proteins, toward the development of novel therapeutic strategies to impair tumor progression.
Collapse
Affiliation(s)
- Cristina Casalou
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Andreia Ferreira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Qin J, Fu M, Wang J, Huang F, Liu H, Huangfu M, Yu D, Liu H, Li X, Guan X, Chen X. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin‑3‑gallate in ovarian cancer. Oncol Rep 2020; 43:1885-1896. [PMID: 32236585 PMCID: PMC7160558 DOI: 10.3892/or.2020.7571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG), a polyphenol present in green tea, exhibits anticancer effects in various types of cancer. A number of studies have focused on the effects of EGCG on lung cancer, but not ovarian cancer. Previous reports have implicated that EGCG suppressed ovarian cancer cell proliferation and induced apoptosis, but its potential anticancer mechanisms and signaling pathways remain unclear. Thus, it is necessary to determine the anti‑ovarian cancer effects of EGCG and explore the underlying mechanisms. In the present study, EGCG exerted stronger proliferation inhibition on SKOV3 cells compared with A549 cells and induced apoptosis in SKOV3 cells, as well as upregulated PTEN expression and downregulated the expression of phosphoinositide‑dependent kinase‑1 (PDK1), phosphor (p)‑AKT and p‑mTOR. These effects were reversed by the PTEN inhibitor VO‑Ohpic trihydrate. The results of the mouse xenograft experiment demonstrated that 50 mg/kg EGCG exhibited increased tumor growth inhibition compared with 5 mg/kg paclitaxel. In addition, PTEN expression was upregulated, whereas the expression levels of PDK1, p‑AKT and p‑mTOR were downregulated in the EGCG treatment group compared with those in untreated mice in vivo. In conclusion, the results of the present study provided a new underlying mechanism of the effect of EGCG on ovarian cancer and may lead to the development of EGCG as a candidate drug for ovarian cancer therapy.
Collapse
Affiliation(s)
- Jianli Qin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Minglei Fu
- Dispensary, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Juan Wang
- Research Center for Science, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Fengxiang Huang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Haiping Liu
- Science and Technology Department, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Mengjie Huangfu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Dan Yu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Haowei Liu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiao Guan
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
21
|
Zhang J, Zhang Q, Sun C, Huang Y, Zhang J, Wang Q. Clinical relevance of ARF/ARL family genes and oncogenic function of ARL4C in endometrial cancer. Biomed Pharmacother 2020; 125:110000. [PMID: 32070877 DOI: 10.1016/j.biopha.2020.110000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Members of ADP-ribosylation factor (ARF)/ARF-like protein (ARL) family regulate malignant phenotype of cancer cells. The present study aims to investigate the clinical relevance of ARF/ARL family members in endometrial cancer. We report that several ARF/ARL family genes serve as prognostic biomarkers for endometrial cancer. Through a combination of TCGA database and immunohistochemistry analysis, we revealed that ARL4C, a member of ARL family, was overexpressed in endometrial cancer and might function as an oncogene in endometrial carcinogenesis. Gene set enrichment analysis (GSEA) and functional studies demonstrated that cell cycle and cell adhesion pathways were the potential mechanism of ARL4C in promoting endometrial cancer cell proliferation, migration and invasion. Moreover, we also observed the involvement of ARL4C in metformin-inhibited cellular proliferation of endometrial cancer. Collectively, knowledge of the expression and function of ARF/ARL family genes could provide a potential therapeutic strategy for endometrial cancer.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinyi Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Cong Sun
- Department of Obstetrics and Gynecology, First Hospital of Zibo, Shandong, China
| | - Yanjuan Huang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
22
|
Kimura K, Matsumoto S, Harada T, Morii E, Nagatomo I, Shintani Y, Kikuchi A. ARL4C is associated with initiation and progression of lung adenocarcinoma and represents a therapeutic target. Cancer Sci 2020; 111:951-961. [PMID: 31925985 PMCID: PMC7060486 DOI: 10.1111/cas.14303] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma is the most common histological type of lung cancer and is classified into adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA). Atypical adenomatous hyperplasia (AAH) lesions are possible precursors to adenocarcinoma. However, the mechanism underlying the stepwise continuum of lung adenocarcinoma is unclear. In this study, the involvement of ADP‐ribosylation factor (ARF)‐like (ARL) 4C (ARL4C), a member of the small GTP‐binding protein family, in the progression of lung adenocarcinoma and the possibility of ARL4C as a molecular target for lung cancer therapy were explored. ARL4C was frequently expressed in AAH and ARL4C expression in immortalized human small airway epithelial cells promoted cell proliferation and suppressed cell death. In addition, ARL4C was expressed with increased frequency in AIS, MIA and IA in a stage‐dependent manner, and the expression was correlated with histologic grade, fluorine‐18 fluorodeoxyglucose uptake and poor prognosis. An anti–sense oligonucleotide (ASO) against ARL4C (ARL4C ASO‐1316) inhibited RAS‐related C3 botulinum toxin substrate activity and nuclear import of Yes‐associated protein and transcriptional coactivator with PDZ‐binding motif, and suppressed in vitro proliferation and migration of lung cancer cells with KRAS or epidermal growth factor receptor (EGFR) mutations. In addition, transbronchial administration of ARL4C ASO‐1316 suppressed orthotopic tumor formation induced by these cancer cells. Thus, ARL4C is involved in the initiation of the premalignant stage and is associated with the stepwise continuum of lung adenocarcinoma. ARL4C ASO‐1316 would be useful for lung adenocarcinoma patients expressing ARL4C regardless of the KRAS or EGFR mutation.
Collapse
Affiliation(s)
- Kenji Kimura
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takeshi Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
23
|
Liu Z, Zhao X, Zhang L, Pei B. Cytochrome C inhibits tumor growth and predicts favorable prognosis in clear cell renal cell carcinoma. Oncol Lett 2019; 18:6026-6032. [PMID: 31788077 PMCID: PMC6866253 DOI: 10.3892/ol.2019.10989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023] Open
Abstract
Cytochrome C (Cyto C), a multifunctional enzyme, has been demonstrated to be associated with cell apoptosis and respiration. Accumulating evidence has revealed that serum Cyto C is an effective indicator in evaluating the effect of chemotherapy. However, to the best of our knowledge, the clinical significance of Cyto C and its role in cell growth and apoptosis in clear cell renal cell carcinoma (CCRCC) remain unknown. In the present study, Cyto C expression was detected in 150 CCRCC and 30 normal tissues samples via immunohistochemistry. The results demonstrated that Cyto C protein expression levels in CCRCC tissues were downregulated compared with those in corresponding normal tissues. In addition, it was revealed that Cyto C expression was negatively associated with TNM stage. Further analyses revealed that patients with CCRCC and low Cyto C expression levels had a shorter survival time than those with high Cyto C expression. Multivariate analyses indicated that high Cyto C expression levels were an independent prognostic factor for survival. Functionally, overexpression of Cyto C effectively suppressed the growth of CCRCC cells and induced cell apoptosis, and knockdown of Cyto C reversed these effects. Finally, overexpression of Cyto C inhibited the tumor growth of CCRCC cells in vivo. Overall, the data of the present study indicated that Cyto C may be a novel prognostic biomarker and acted as a regulator of tumor growth in CCRCC.
Collapse
Affiliation(s)
- Zhiguo Liu
- Department of Hospital Pharmacy, Suqian First Hospital, Suqian Branch Jiangsu Province Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Xiancheng Zhao
- Department of Urinary Surgery, Suqian First Hospital, Suqian Branch Jiangsu Province Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Liang Zhang
- Department of Nephrology, Suqian First Hospital, Suqian Branch Jiangsu Province Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Bing Pei
- Department of Clinical Laboratory, Suqian First Hospital, Suqian Branch Jiangsu Province Hospital, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
24
|
Lu L, Zhao X, Fu T, Li K, He Y, Luo Z, Dai L, Zeng R, Cai K. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials 2019; 230:119666. [PMID: 31831222 DOI: 10.1016/j.biomaterials.2019.119666] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 11/27/2022]
Abstract
Various obstacles impede the chemotherapy efficiency of glioma in clinic, such as blood brain barrier (BBB) and blood brain tumor barrier (BBTB). Ligand-mediated polymeric micelles have shown great potential for improving the efficiency of glioma treatment. Herein, we developed a disulfide bond-conjugated prodrug polymer consisted of camptothecin (CPT) and polyethylene glycol (PEG) with further modification of iRGD peptide. The polymer of CPT-S-S-PEG-COOH could self-assemble into nanosized polymeric micelles with diameter around 100 nm, and loaded with photosensitizer IR780 for combination therapy. The micelles displayed good stability with controlled drug release under physiological environment. Importantly, the iRGD modified polymeric micelles demonstrated favorable ability to cross the BBB and target glioma cells via αv β integrin and neuropilin-1-mediated ligand transportation in vitro and in vivo. The whole synthesis process is simple and the drug loading content of CPT in the CPT-S-S-PEG-iRGD@IR780 micelles was higher than 10%. Moreover, CPT-S-S-PEG-iRGD@IR780 micelles combined chemotherapy with photodynamic therapy (PDT) displayed more excellent tumor-killing capability than the other groups. Thus, both in vitro and in vivo studies suggested that the targeting prodrug system could not only effectively cross various barriers to reach at glioma site, but also significantly enhance the antitumor effect with laser irradiation. Our findings consequently suggested that CPT-S-S-PEG-iRGD@IR780 micelles with laser irradiation are a promising drug delivery system for glioma therapy.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaojing Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tiwei Fu
- College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Liangliang Dai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Zeng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
25
|
Yuan Y, Yan Z, Miao J, Cai R, Zhang M, Wang Y, Wang L, Dang W, Wang D, Xiang D, Wang Y, Zhang P, Cui Y, Bian X, Ma Q. Autofluorescence of NADH is a new biomarker for sorting and characterizing cancer stem cells in human glioma. Stem Cell Res Ther 2019; 10:330. [PMID: 31747975 PMCID: PMC6865050 DOI: 10.1186/s13287-019-1467-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background The existing cell surface markers used for sorting glioma stem cells (GSCs) have obvious limitations, such as vulnerability to the enzymatic digestion and time-consuming labeling procedure. Reduced nicotinamide adenine dinucleotide (NADH) as a cellular metabolite with property of autofluorescence has the potential to be used as a new biomarker for sorting GSCs. Methods A method for sorting GSCs was established according to the properties of the autofluorescence of NADH. Then, the NADHhigh and NADHlow subpopulations were sorted. The stem-like properties of the subpopulations were evaluated by qRT-PCR, western blot analyses, limiting dilution assay, cell viability assay, bioluminescence imaging, and immunofluorescence analysis in vitro and in vivo. The relationship between CD133+/CD15+ cells and NADHhigh subpopulation was also assessed. Results NADHhigh cells expressed higher stem-related genes, formed more tumor spheres, and harbored stronger pluripotency in vitro and higher tumorigenicity in vivo, compared to NADHlow subpopulation. NADHhigh glioma cells had the similar stemness with CD133+ or CD15+ GSCs, but the three subpopulations less overlaid each other. Also, NADHhigh glioma cells were more invasive and more resistant to chemotherapeutic drug temozolomide (TMZ) than NADHlow cells. In addition, the autofluorescence of NADH might be an appropriate marker to sort cancer stem cells (CSCs) in other cancer types, such as breast and colon cancer. Conclusion Our findings demonstrate that intracellular autofluorescence of NADH is a non-labeling, sensitive maker for isolating GSCs, even for other CSCs.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Mengsi Zhang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yanxia Wang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lihong Wang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weiqi Dang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Di Wang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dongfang Xiang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Zhang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
26
|
Zou H, Chen Q, Zhang A, Wang S, Wu H, Yuan Y, Wang S, Yu J, Luo M, Wen X, Cui W, Fu W, Yu R, Chen L, Zhang M, Lan H, Zhang X, Xie Q, Jin G, Xu C. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis 2019; 10:148. [PMID: 30770798 PMCID: PMC6377639 DOI: 10.1038/s41419-019-1324-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial pyruvate carrier 1 (MPC1), a key factor that controls pyruvate transportation in the mitochondria, is known to be frequently dysregulated in tumor initiation and progression. However, the clinical relevance and potential molecular mechanisms of MPC1 in lung adenocarcinoma (LAC) progression remain to be illustrated. Herein, MPC1 was lowly expressed in LAC tissues and significantly associated with favorable survival of patients with LAC. Functionally, MPC1 markedly suppressed stemness, invasion, and migration in vitro and spreading growth of LAC cells in vivo. Further study revealed that MPC1 could interact with mitochondrial signal transducer and activator of transcription 3 (mito-STAT3), disrupting the distribution of STAT3 and reducing cytoplasmic signal transducer and activator of transcription 3 (cyto-STAT3) as well as its phosphorylation, while the activation of cyto-STAT3 by IL-6 reversed the attenuated malignant progression in MPC1-overexpression LAC cells. Collectively, we reveal that MPC1/STAT3 axis plays an important role in the progression of LAC, and our work may promote the development of new therapeutic strategies for LAC.
Collapse
Affiliation(s)
- Hongbo Zou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Anmei Zhang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Songtao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Chengdu Military General Hospital, Chengdu, China
| | - Hong Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuang Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mao Luo
- Department of Dermatology, Chongqing Yubei District People's Hospital, Chongqing, China
| | - Xianmei Wen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zhang
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haitao Lan
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qichao Xie
- Department of Oncology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoxiang Jin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Chuan Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China. .,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|