1
|
Wang X, Liu X, Gao Q, Gu X, Zhang G, Sheng Z, Wu T, Su Z, Wang W, Ye M. Gegen Qinlian Decoction treatment of asymptomatic hyperuricemia by targeting circadian immune function. Chin Med 2023; 18:77. [PMID: 37370132 DOI: 10.1186/s13020-023-00775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The Gegen Qinlian Decoction (GGQLD) is a renowned traditional Chinese medicinal formula that has been used for centuries to effectively treat asymptomatic Hyperuricemia (HUA). This study aims to investigate the underlying mechanism of GGQLD's therapeutic effects on HUA. METHODS The study enrolled a total of 25 healthy participants and 32 middle-aged and elderly individuals with asymptomatic HUA. All asymptomatic HUA participants were treated with GGQLD. Venous blood samples were collected from all participants to isolate peripheral blood mononuclear cells (PBMCs), which were then analyzed for biological profiles using flow cytometry. Network pharmacology analysis was utilized to identify the potential pathways involved in the therapeutic effects of GGQLD. Transcriptomic patterns of cultured proximal tubule epithelial cells (PTECs) were evaluated via bulk RNA-seq, and critical differentially expressed genes (DEGs) were identified and verified through ELISA. Molecular docking and molecular dynamics (MD) simulation were employed to investigate the potential compounds in GGQLD that may be involved in treating HUA. RESULTS Network pharmacology analysis revealed that immune-related pathways might be involved in the therapeutic mechanism of GGQLD. RNA-seq analysis confirmed the involvement of innate lymphoid cell (ILC) development-related genes and clock genes. Polychromatic flow cytometric analysis demonstrated that GGQLD treatment reduced the proportion of ILC3s in total ILCs in asymptomatic HUA patients. ELISA results showed that GGQLD treatment reduced the levels of activating factors, such as ILC3-IL-18 and IL-1β, in the plasma of HUA patients. GGQLD was also found to regulate circadian clock gene expression in PBMCs to treat asymptomatic HUA. Furthermore, the interaction between 40 compounds in GGQLD and HDAC3 (Histone Deacetylase 3), NLRP3 (NOD-like receptor protein 3), RORA (RAR-related orphan receptor A), and REV-ERBα (nuclear receptor subfamily 1) revealed that GGQLD may regulate ILCs and clock genes to treat asymptomatic HUA. CONCLUSIONS The regulation of circadian clock gene expression and the proportion of ILC cells may be involved in the therapeutic effects of GGQLD on asymptomatic HUA patients.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221West Yan-An Road, Shanghai, 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China
| | - Xuanqi Liu
- Department of Respiratory and Critical Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Qiushuang Gao
- China Pharmaceutical University, Nanjing, 210009, China
| | - Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221West Yan-An Road, Shanghai, 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China
| | - Guannan Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhiyuan Sheng
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221West Yan-An Road, Shanghai, 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China
| | - Zheling Su
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221West Yan-An Road, Shanghai, 200040, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China.
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China.
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Cao C, Yao Y, Zeng R. Lymphocytes: Versatile Participants in Acute Kidney Injury and Progression to Chronic Kidney Disease. Front Physiol 2021; 12:729084. [PMID: 34616308 PMCID: PMC8488268 DOI: 10.3389/fphys.2021.729084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Acute kidney injury (AKI) remains a major global public health concern due to its high morbidity and mortality. The progression from AKI to chronic kidney disease (CKD) makes it a scientific problem to be solved. However, it is with lack of effective treatments. Summary: Both innate and adaptive immune systems participate in the inflammatory process during AKI, and excessive or dysregulated immune responses play a pathogenic role in renal fibrosis, which is an important hallmark of CKD. Studies on the pathogenesis of AKI and CKD have clarified that renal injury induces the production of various chemokines by renal parenchyma cells or resident immune cells, which recruits multiple-subtype lymphocytes in circulation. Some infiltrated lymphocytes exacerbate injury by proinflammatory cytokine production, cytotoxicity, and interaction with renal resident cells, which constructs the inflammatory environment and induces further injury, even death of renal parenchyma cells. Others promote tissue repair by producing protective cytokines. In this review, we outline the diversity of these lymphocytes and their mechanisms to regulate the whole pathogenic stages of AKI and CKD; discuss the chronological responses and the plasticity of lymphocytes related to AKI and CKD progression; and introduce the potential therapies targeting lymphocytes of AKI and CKD, including the interventions of chemokines, cytokines, and lymphocyte frequency regulation in vivo, adaptive transfer of ex-expanded lymphocytes, and the treatments of gut microbiota or metabolite regulations based on gut-kidney axis. Key Message: In the process of AKI and CKD, T helper (Th) cells, innate, and innate-like lymphocytes exert mainly pathogenic roles, while double-negative T (DNT) cells and regulatory T cells (Tregs) are confirmed to be protective. Understanding the mechanisms by which lymphocytes mediate renal injury and renal fibrosis is necessary to promote the development of specific therapeutic strategies to protect from AKI and prevent the progression of CKD.
Collapse
Affiliation(s)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Nagashima R, Iyoda M. The Roles of Kidney-Resident ILC2 in Renal Inflammation and Fibrosis. Front Immunol 2021; 12:688647. [PMID: 34381446 PMCID: PMC8350317 DOI: 10.3389/fimmu.2021.688647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently discovered lymphocyte population with high cytokine productive capacity. Type-2 ILCs (ILC2s) are the most studied, and they exert a rapid type-2 immune response to eliminate helminth infections. Massive and sustainable ILC2 activation induces allergic tissue inflammation, so it is important to maintain correct ILC2 activity for immune homeostasis. The ILC2-activating cytokine IL-33 is released from epithelial cells upon tissue damage, and it is upregulated in various kidney disease mouse models and in kidney disease patients. Various kidney diseases eventually lead to renal fibrosis, which is a common pathway leading to end-stage renal disease and is a chronic kidney disease symptom. The progression of renal fibrosis is affected by the innate immune system, including renal-resident ILC2s; however, the roles of ILC2s in renal fibrosis are not well understood. In this review, we summarize renal ILC2 function and characterization in various kidney diseases and highlight the known and potential contributions of ILC2s to kidney fibrosis.
Collapse
Affiliation(s)
- Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Jones-Freeman B, Chonwerawong M, Marcelino VR, Deshpande AV, Forster SC, Starkey MR. The microbiome and host mucosal interactions in urinary tract diseases. Mucosal Immunol 2021; 14:779-792. [PMID: 33542492 DOI: 10.1038/s41385-020-00372-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The urinary tract consists of the bladder, ureters, and kidneys, and is an essential organ system for filtration and excretion of waste products and maintaining systemic homeostasis. In this capacity, the urinary tract is impacted by its interactions with other mucosal sites, including the genitourinary and gastrointestinal systems. Each of these sites harbors diverse ecosystems of microbes termed the microbiota, that regulates complex interactions with the local and systemic immune system. It remains unclear whether changes in the microbiota and associated metabolites may be a consequence or a driver of urinary tract diseases. Here, we review the current literature, investigating the impact of the microbiota on the urinary tract in homeostasis and disease including urinary stones, acute kidney injury, chronic kidney disease, and urinary tract infection. We propose new avenues for exploration of the urinary microbiome using emerging technology and discuss the potential of microbiome-based medicine for urinary tract conditions.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Aniruddh V Deshpande
- Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Department of Pediatric Urology and Surgery, John Hunter Children's Hospital, New Lambton Heights, NSW, Australia.,Urology Unit, Department of Pediatric Surgery, Children's Hospital at Westmead, Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
5
|
Abstract
Physical trauma can affect any individual and is globally accountable for more than one in every ten deaths. Although direct severe kidney trauma is relatively infrequent, extrarenal tissue trauma frequently results in the development of acute kidney injury (AKI). Various causes, including haemorrhagic shock, rhabdomyolysis, use of nephrotoxic drugs and infectious complications, can trigger and exacerbate trauma-related AKI (TRAKI), particularly in the presence of pre-existing or trauma-specific risk factors. Injured, hypoxic and ischaemic tissues expose the organism to damage-associated and pathogen-associated molecular patterns, and oxidative stress, all of which initiate a complex immunopathophysiological response that results in macrocirculatory and microcirculatory disturbances in the kidney, and functional impairment. The simultaneous activation of components of innate immunity, including leukocytes, coagulation factors and complement proteins, drives kidney inflammation, glomerular and tubular damage, and breakdown of the blood-urine barrier. This immune response is also an integral part of the intense post-trauma crosstalk between the kidneys, the nervous system and other organs, which aggravates multi-organ dysfunction. Necessary lifesaving procedures used in trauma management might have ambivalent effects as they stabilize injured tissue and organs while simultaneously exacerbating kidney injury. Consequently, only a small number of pathophysiological and immunomodulatory therapeutic targets for TRAKI prevention have been proposed and evaluated.
Collapse
|
6
|
Irisin Pretreatment Protects Kidneys against Acute Kidney Injury Induced by Ischemia/Reperfusion via Upregulating the Expression of Uncoupling Protein 2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6537371. [PMID: 32934963 PMCID: PMC7479469 DOI: 10.1155/2020/6537371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
As a common disorder, acute kidney injury (AKI) is characterized by high mortality and morbidity, and current therapeutic options for AKI remain limited. Irisin, a muscle factor, plays an important role in metabolic disorders. However, the role of irisin in AKI is still unclear. To assess the effect of irisin on the course of AKI, we used an ischemia/reperfusion (I/R) C57BL/6 mouse model. Supplementation with irisin attenuated kidney injury induced by I/R, as shown by decreases in the levels of serum creatinine and blood urea nitrogen. Animal model studies also showed that irisin pretreatment upregulates the expression of uncoupling protein 2 (UCP2) and protects against the renal cell apoptosis and oxidative stress caused by I/R. In vitro, hypoxia/recovery (H/R) treatment was applied to induce tubular cell apoptosis. Irisin pretreatment ameliorated the cell apoptosis induced by H/R, while transfection of UCP2 siRNA significantly reduced the protective effect of irisin in cells after H/R. In addition, AMPK signaling may be involved in irisin-mediated upregulation of UCP2 in a renal proximal tubular epithelial cell (PTEC) model. Thus, the renoprotective effect of irisin on AKI may be mediated through increasing the expression of UCP2 in kidneys after I/R.
Collapse
|
7
|
Cantoni C, Granata S, Bruschi M, Spaggiari GM, Candiano G, Zaza G. Recent Advances in the Role of Natural Killer Cells in Acute Kidney Injury. Front Immunol 2020; 11:1484. [PMID: 32903887 PMCID: PMC7438947 DOI: 10.3389/fimmu.2020.01484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Growing evidence is revealing a central role for natural killer (NK) cells, cytotoxic cells belonging to the broad family of innate lymphoid cells (ILCs), in acute and chronic forms of renal disease. NK cell effector functions include both the recognition and elimination of virus-infected and tumor cells and the capability of sensing pathogens through Toll-like receptor (TLR) engagement. Notably, they also display immune regulatory properties, exerted thanks to their ability to secrete cytokines/chemokines and to establish interactions with different innate and adaptive immune cells. Therefore, because of their multiple functions, NK cells may have a major pathogenic role in acute kidney injury (AKI), and a better understanding of the molecular mechanisms driving NK cell activation in AKI and their downstream interactions with intrinsic renal cells and infiltrating immune cells could help to identify new potential biomarkers and to select clinically valuable novel therapeutic targets. In this review, we discuss the current literature regarding the potential involvement of NK cells in AKI.
Collapse
Affiliation(s)
- Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Grazia Maria Spaggiari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
8
|
Zhou Z, Yan F, Liu O. Interleukin (IL)-33: an orchestrator of immunity from host defence to tissue homeostasis. Clin Transl Immunology 2020; 9:e1146. [PMID: 32566227 PMCID: PMC7299676 DOI: 10.1002/cti2.1146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-33, a member of the IL-1 superfamily, functions as an alarm signal, which is released upon cell injury or tissue damage to alert the immune system. It has emerged as a chief orchestrator in immunity and has a broad pleiotropic action that influences differentiation, maintenance and function of various immune cell types via the ST2 receptor. Although it has been strongly associated with immunopathology, critically, IL-33 is involved in host defence, tissue repair and homeostasis. In this review, we provide an overview of the signalling pathway of IL-33 and highlight its regulatory functions in immune cells. Furthermore, we attempt a broader discussion of the emerging functions of IL-33 in host defence, tissue repair, metabolism, inflammatory disease and cancer, suggesting potential avenues to manoeuvre IL-33/ST2 signalling as treatment options.
Collapse
Affiliation(s)
- Zekun Zhou
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology Central South University Changsha Hunan China
| | - Fei Yan
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology Central South University Changsha Hunan China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology Central South University Changsha Hunan China
| |
Collapse
|
9
|
Regulation of Innate Lymphoid Cells in Acute Kidney Injury: Crosstalk between Cannabidiol and GILZ. J Immunol Res 2020; 2020:6056373. [PMID: 32185239 PMCID: PMC7060850 DOI: 10.1155/2020/6056373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Innate lymphoid cells (ILCs) have emerged as largely tissue-resident archetypal cells of the immune system. We tested the hypotheses that renal ischemia-reperfusion injury (IRI) is a contributing factor to polarization of ILCs and that glucocorticoid-induced leucine zipper (GILZ) and cannabidiol regulate them in this condition. Mice subjected to unilateral renal IRI were treated with the following agents before restoration of renal blood flow: cannabidiol, DMSO, transactivator of transcription- (TAT-) GILZ, or the TAT peptide. Thereafter, kidney cells were prepared for flow cytometry analyses. Sham kidneys treated with either cannabidiol or TAT-GILZ displayed similar frequencies of each subset of ILCs compared to DMSO or TAT, respectively. Renal IRI increased ILC1s and ILC3s but reduced ILC2s compared to the sham group. Cannabidiol or TAT-GILZ treatment of IRI kidneys reversed this pattern as evidenced by reduced ILC1s and ILC3s but increased ILC2s compared to their DMSO- or TAT-treated counterparts. While TAT-GILZ treatment did not significantly affect cells positive for cannabinoid receptors subtype 2 (CB2+), cannabidiol treatment increased frequency of both CB2+ and GILZ-positive (GILZ+) cells of IRI kidneys. Subsequent studies showed that IRI reduced GILZ+ subsets of ILCs, an effect less marked for ILC2s. Treatment with cannabidiol increased frequencies of each subset of GILZ+ ILCs, but the effect was more marked for ILC2s. Indeed, cannabidiol treatment increased CB2+ GILZ+ ILC2s. Collectively, the results indicate that both cannabidiol and GILZ regulate ILC frequency and phenotype, in acute kidney injury, and that the effects of cannabidiol likely relate to modulation of endogenous GILZ.
Collapse
|
10
|
Emerging Roles of Interleukin-33-responsive Kidney Group 2 Innate Lymphoid Cells in Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21041544. [PMID: 32102434 PMCID: PMC7073188 DOI: 10.3390/ijms21041544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in innate and adaptive immune responses. IL-33 triggers pleiotropic immune functions in multiple types of immune cells, which express the IL-33 receptor, ST2. Recent studies have revealed the potential applications of IL-33 for treating acute kidney injury in preclinical animal models. However, IL-33 and IL-33-responding immune cells are reported to exhibit both detrimental and beneficial roles. The IL-33-mediated immunomodulatory functions have been investigated using loss-of-function approaches, such as IL33-deficient mice, IL-33 antagonists, or administration of exogenous IL-33 recombinant protein. This review will discuss the key findings on IL-33-mediated activation of kidney resident group 2 innate lymphoid cells (ILC2s) and summarize the current understanding of the differential functions of endogenous IL-33 and exogenous IL-33 and their potential implications in treating acute kidney injury.
Collapse
|
11
|
Mao R, Wang C, Zhang F, Zhao M, Liu S, Liao G, Li L, Chen Y, Cheng J, Liu J, Lu Y. Peritoneal M2 macrophage transplantation as a potential cell therapy for enhancing renal repair in acute kidney injury. J Cell Mol Med 2020; 24:3314-3327. [PMID: 32004417 PMCID: PMC7131941 DOI: 10.1111/jcmm.15005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical condition that is associated with high morbidity and mortality. Inflammation is reported to play a key role in AKI. Although the M2 macrophages exhibit antimicrobial and anti‐inflammatory activities, their therapeutic potential has not been evaluated for AKI. This study aimed to investigate the protective effect of peritoneal M2 macrophage transplantation on AKI in mice. The macrophages were isolated from peritoneal dialysates of mice. The macrophages were induced to undergo M2 polarization using interleukin (IL)‐4/IL‐13. AKI was induced in mice by restoring the blood supply after bilateral renal artery occlusion for 30 minutes. The macrophages were injected into the renal cortex of mice. The changes in renal function, inflammation and tubular proliferation were measured. The M2 macrophages were co‐cultured with the mouse primary proximal tubular epithelial cells (PTECs) under hypoxia/reoxygenation conditions in vitro. The PTEC apoptosis and proliferation were analysed. The peritoneal M2 macrophages effectively alleviated the renal injury and inflammatory response in mice with ischaemia‐reperfusion injury (IRI) and promoted the PTEC proliferation in vivo and in vitro. These results indicated that the peritoneal M2 macrophages ameliorated AKI by decreasing inflammatory response and promoting PTEC proliferation. Hence, the peritoneal M2 macrophage transplantation can serve as a potential cell therapy for renal diseases.
Collapse
Affiliation(s)
- Ruiwen Mao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fuping Zhang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Becker M, Gnirck AC, Turner JE. Innate Lymphoid Cells in Renal Inflammation. Front Immunol 2020; 11:72. [PMID: 32063905 PMCID: PMC7000421 DOI: 10.3389/fimmu.2020.00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Since their identification as a separate family of leukocytes, Innate lymphoid cells (ILCs) have been shown to play crucial roles in immune-mediated diseases and repair mechanisms that restore tissue integrity after injury. ILCs mainly populate non-lymphoid tissues where they form intricate circuits with parenchymal cells to regulate tissue immunity and organ homeostasis. However, the specific phenotype and function of ILC populations that reside in specific anatomical locations, such as the kidney, still remains poorly understood. In this review, we discuss tissue-specific properties of kidney-residing ILCs and summarize recent advances in the understanding of ILC biology in kidney diseases that might pave the way for development of novel treatment strategies in humans.
Collapse
Affiliation(s)
- Martina Becker
- III Department of Medicine and Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Gnirck
- III Department of Medicine and Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III Department of Medicine and Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Cameron GJM, Cautivo KM, Loering S, Jiang SH, Deshpande AV, Foster PS, McKenzie ANJ, Molofsky AB, Hansbro PM, Starkey MR. Group 2 Innate Lymphoid Cells Are Redundant in Experimental Renal Ischemia-Reperfusion Injury. Front Immunol 2019; 10:826. [PMID: 31057549 PMCID: PMC6477147 DOI: 10.3389/fimmu.2019.00826] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) can be fatal and is a well-defined risk factor for the development of chronic kidney disease. Group 2 innate lymphoid cells (ILC2s) are innate producers of type-2 cytokines and are critical regulators of homeostasis in peripheral organs. However, our knowledge of their function in the kidney is relatively limited. Recent evidence suggests that increasing ILC2 numbers by systemic administration of recombinant interleukin (IL)-25 or IL-33 protects against renal injury. Whilst ILC2s can be induced to protect against ischemic- or chemical-induced AKI, the impact of ILC2 deficiency or depletion on the severity of renal injury is unknown. Firstly, the phenotype and location of ILC2s in the kidney was assessed under homeostatic conditions. Kidney ILC2s constitutively expressed high levels of IL-5 and were located in close proximity to the renal vasculature. To test the functional role of ILC2s in the kidney, an experimental model of renal ischemia-reperfusion injury (IRI) was used and the severity of injury was assessed in wild-type, ILC2-reduced, ILC2-deficient, and ILC2-depleted mice. Surprisingly, there were no differences in histopathology, collagen deposition or mRNA expression of injury-associated (Lcn2), inflammatory (Cxcl1, Cxcl2, and Tnf) or extracellular matrix (Col1a1, Fn1) factors following IRI in the absence of ILC2s. These data suggest the absence of ILC2s does not alter the severity of renal injury, suggesting possible redundancy. Therefore, other mechanisms of type 2-mediated immune cell activation likely compensate in the absence of ILC2s. Hence, a loss of ILC2s is unlikely to increase susceptibility to, or severity of AKI.
Collapse
Affiliation(s)
- Guy J M Cameron
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Svenja Loering
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon H Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australia National University, Canberra, ACT, Australia.,Department of Renal Medicine, The Canberra Hospital, Canberra, ACT, Australia
| | - Aniruddh V Deshpande
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,The John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Paul S Foster
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Philip M Hansbro
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Centre for inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology, Ultimo, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|