1
|
Wang D, Zhang M, Wang WS, Chu W, Zhai J, Sun Y, Chen ZJ, Du Y. Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome. Front Med 2025; 19:149-169. [PMID: 39648233 DOI: 10.1007/s11684-024-1089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 12/10/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Collapse
Affiliation(s)
- Dongshuang Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Meiling Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Weiwei Chu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, China.
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
2
|
Bertrand N, Mougel R, Riley G, Bruand M, Gauchotte G, Agopiantz M. Neurotensin and Its Involvement in Female Hormone-Sensitive Cancers. Int J Mol Sci 2024; 25:11648. [PMID: 39519199 PMCID: PMC11546766 DOI: 10.3390/ijms252111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Neurotensin (NT) is a peptide involved in digestion, neuromodulation, and cancer progression. NT and its receptors (NTR1 and SORT1 mainly) have been widely studied in oncology. Data show that NT expression is under the control of sex steroid hormones, in particular estradiol. We focused on its involvement in three main female hormone-sensitive cancers, breast, ovarian, and endometrial cancer, in a narrative review. NT, NTR1, and SORT1 are mostly expressed in these three cancers, and their involvement in oncologic processes such as proliferation and invasion seems to match, as does their impact on prognosis for most. The development of NT receptor-targeted therapies, including theranostics and radioligand treatments, presents a promising avenue for personalized cancer treatment.
Collapse
Affiliation(s)
- Ninon Bertrand
- Department of Gynecology and Obstetrics, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France;
| | - Romane Mougel
- Department of Fertility Medicine, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France;
| | - George Riley
- Department of Endocrinology, Diabetes and Nutrition, CHRU de Nancy, Université de Lorraine, F-54500 Vandœuvre-lès-Nancy, France;
| | - Marie Bruand
- Department of Radiation Therapy, Institut de Cancérologie de Lorraine, F-54500 Vandoeuvre-lès-Nancy, France;
| | - Guillaume Gauchotte
- Department of Pathology, CHRU de Nancy, Université de Lorraine, F-54500 Vandœuvre-lès-Nancy, France;
- INSERM UMRS 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Université de Lorraine, F-54500 Vandœuvre-lès-Nancy, France
| | - Mikaël Agopiantz
- Department of Fertility Medicine, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France;
- INSERM UMRS 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Université de Lorraine, F-54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
3
|
Rashid H, Ullah A, Ahmad S, Aljahdali SM, Waheed Y, Shaker B, Al-Harbi AI, Alabbas AB, Alqahtani SM, Akiel MA, Irfan M. Identification of Novel Genes and Pathways of Ovarian Cancer Using a Comprehensive Bioinformatic Framework. Appl Biochem Biotechnol 2024; 196:3056-3075. [PMID: 37615851 DOI: 10.1007/s12010-023-04702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Ovarian cancer (OC) is a significant contributor to gynecological cancer-related deaths worldwide, with a high mortality rate. Despite several advances in understanding the pathogenesis of OC, the molecular mechanisms underlying its development and prognosis remain poorly understood. Therefore, the current research study aimed to identify hub genes involved in the pathogenesis of OC that could serve as selective diagnostic and therapeutic targets. To achieve this, the dataset GEO2R was used to retrieve differentially expressed genes. The study identified a total of five genes (CDKN1A, DKK1, CYP1B1, NTS, and GDF15) that were differentially expressed in OC. Subsequently, a network analysis was performed using the STRING database, followed by the construction of a network using Cytoscape. The network analyzer tool in Cytoscape predicted 276 upregulated and 269 downregulated genes. Furthermore, KEGG analysis was conducted to identify different pathways related to OC. Subsequently, survival analysis was performed to validate gene expression alterations and predict hub genes, using a p-value of 0.05 as a threshold. Four genes (CDKN1A, DKK1, CYP1B1, and NTS) were predicted as significant hub genes, while one gene (GDF15) was predicted as non-significant. The adjusted P values of said predicted genes are 2.85E - 07, 5.49E - 06, 4.28E - 07, 1.43E - 07, and 3.70E - 07 for CDKN1A, DKK1, NTS, GDF15, and CYP1B1 respectively; additionally 6.08, 5.76, 5.74, 5.01, and 4.9 LogFc values of the said genes were predicted in GEO data set. In a boxplot analysis, the expression of these genes was analyzed in normal and tumor cells. The study found that three genes were highly expressed in tumor cells, while two genes (CDKN1A and DKK1) were more elevated in normal cells. According to the boxplot analysis for CDKN1A, 50% of tumor cells ranged between approx 3.8 and 5, while 50% of normal cells ranged between approx 6.9 and 7.9, which is greater than tumor cells. This shows that in normal cells, the CYP1B1 has a high expression level according to the GEPIA boxplot; addtionally the boxplot for DKK1 indicated that 50% of tumor cells ranged between approx 0 and 0.5, which was less than that of normal cells which ranged between approx 0.3 and 0.9. It shows that DKK1 is highly expressed in normal genes. Overall, the current study provides novel insights into the molecular mechanisms underlying OC. The identified hub genes and drug candidate targets could potentially serve as alternative diagnostic and therapeutic options for OC patients. Further research is needed to investigate the clinical significance of these findings and develop effective interventions that can improve the prognosis of patients with OC.
Collapse
Affiliation(s)
- Hibba Rashid
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon.
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon, Beirut, Lebanon.
| | - Salma Mohammed Aljahdali
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Alhumaidi B Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safar M Alqahtani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Maaged A Akiel
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Sarker B, Matiur Rahaman M, Alamin MH, Ariful Islam M, Nurul Haque Mollah M. Boosting edgeR (Robust) by dealing with missing observations and gene-specific outliers in RNA-Seq profiles and its application to explore biomarker genes for diagnosis and therapies of ovarian cancer. Genomics 2024; 116:110834. [PMID: 38527595 DOI: 10.1016/j.ygeno.2024.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The edgeR (Robust) is a popular approach for identifying differentially expressed genes (DEGs) from RNA-Seq profiles. However, it shows weak performance against gene-specific outliers and is unable to handle missing observations. To address these issues, we proposed a pre-processing approach of RNA-Seq count data by combining the iLOO-based outlier detection and random forest-based missing imputation approach for boosting the performance of edgeR (Robust). Both simulation and real RNA-Seq count data analysis results showed that the proposed edgeR (Robust) outperformed than the conventional edgeR (Robust). To investigate the effectiveness of identified DEGs for diagnosis, and therapies of ovarian cancer (OC), we selected top-ranked 12 DEGs (IL6, XCL1, CXCL8, C1QC, C1QB, SNAI2, TYROBP, COL1A2, SNAP25, NTS, CXCL2, and AGT) and suggested hub-DEGs guided top-ranked 10 candidate drug-molecules for the treatment against OC. Hence, our proposed procedure might be an effective computational tool for exploring potential DEGs from RNA-Seq profiles for diagnosis and therapies of any disease.
Collapse
Affiliation(s)
- Bandhan Sarker
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Matiur Rahaman
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China.
| | - Muhammad Habibulla Alamin
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Ariful Islam
- Bioinformatics Laboratory (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Laboratory (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
5
|
Okamoto A, Nakanishi T, Tonai S, Shimada M, Yamashita Y. Neurotensin induces sustainable activation of the ErbB-ERK1/2 pathway, which is required for developmental competence of oocytes in mice. Reprod Med Biol 2024; 23:e12571. [PMID: 38510925 PMCID: PMC10951886 DOI: 10.1002/rmb2.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose LH induces the expression of EGF-like factors and their shedding enzyme (ADAM17) in granulosa cells (GCs), which is essential for ovulation via activation of the ErbB-ERK1/2 pathway in cumulus cells (CCs). Neurotensin (NTS) is reported as a novel regulator of ovulation, whereas the NTS-induced maturation mechanism in oocytes remains unclear. In this study, we focused on the role of NTS in the expression of EGF-like factors and ErbBs, and ADAM17 activity, during oocyte maturation and ovulation in mice. Methods The expression and localization in GC and CC were examined. Next, hCG and NTS receptor 1 antagonist (SR) were injected into eCG-primed mice, and the effects of SR on ERK1/2 phosphorylation were investigated. Finally, we explored the effects of SR on the expression of EGF-like factors and ErbBs, and ADAM17 activity in GC and CC. Results NTS was significantly upregulated in GC and CC following hCG injection. SR injection suppressed oocyte maturation and ERK1/2 phosphorylation. SR also downregulated part of the expression of EGF-like factors and their receptors, and ADAM17 activity. Conclusions NTS induces oocyte maturation through the sustainable activation of the ERK1/2 signaling pathway by upregulating part of the EGF-like factor-induced pathway during oocyte maturation in mice.
Collapse
Affiliation(s)
- Asako Okamoto
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Tomoya Nakanishi
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific ResearchPrefectural University of HiroshimaShobaraJapan
| |
Collapse
|
6
|
Shrestha K, Al-Alem L, Garcia P, Wynn MAA, Hannon PR, Jo M, Drnevich J, Duffy DM, Curry Jr TE. Neurotensin expression, regulation, and function during the ovulatory period in the mouse ovary†. Biol Reprod 2023; 108:107-120. [PMID: 36345168 PMCID: PMC9843676 DOI: 10.1093/biolre/ioac191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
The luteinizing hormone (LH) surge induces paracrine mediators within the ovarian follicle that promote ovulation. The present study explores neurotensin (NTS), a neuropeptide, as a potential ovulatory mediator in the mouse ovary. Ovaries and granulosa cells (GCs) were collected from immature 23-day-old pregnant mare serum gonadotropin primed mice before (0 h) and after administration of human chorionic gonadotropin (hCG; an LH analog) across the periovulatory period (4, 8, 12, and 24 h). In response to hCG, Nts expression rapidly increased 250-fold at 4 h, remained elevated until 8 h, and decreased until 24 h. Expression of Nts receptors for Ntsr1 remained unchanged across the periovulatory period, Ntsr2 was undetectable, whereas Sort1 expression (also called Ntsr3) gradually decreased in both the ovary and GCs after hCG administration. To better understand Nts regulation, inhibitors of the LH/CG signaling pathways were utilized. Our data revealed that hCG regulated Nts expression through the protein kinase A (PKA) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Additionally, epidermal-like-growth factor (EGF) receptor signaling also mediated Nts induction in GCs. To elucidate the role of NTS in the ovulatory process, we used a Nts silencing approach (si-Nts) followed by RNA-sequencing (RNA-seq). RNA-seq analysis of GCs collected after hCG with or without si-Nts identified and qPCR confirmed Ell2, Rsad2, Vps37a, and Smtnl2 as genes downstream of Nts. In summary, these findings demonstrate that hCG induces Nts and that Nts expression is mediated by PKA, p38MAPK, and EGF receptor signaling pathways. Additionally, NTS regulates several novel genes that could potentially impact the ovulatory process.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Linah Al-Alem
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Priscilla Garcia
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Michelle A A Wynn
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick R Hannon
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Misung Jo
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jenny Drnevich
- Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Thomas E Curry Jr
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Al-Alem L, Puttabyatappa M, Shrestha K, Choi Y, Rosewell K, Brännström M, Akin J, Jo M, Duffy DM, Curry TE. Neurotensin: a neuropeptide induced by hCG in the human and rat ovary during the periovulatory period†. Biol Reprod 2021; 104:1337-1346. [PMID: 33682882 PMCID: PMC8485077 DOI: 10.1093/biolre/ioab036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
Neurotensin (NTS) is a tridecapeptide that was first characterized as a neurotransmitter in neuronal cells. The present study examined ovarian NTS expression across the periovulatory period in the human and the rat. Women were recruited into this study and monitored by transvaginal ultrasound. The dominant follicle was surgically excised prior to the luteinizing hormone (LH) surge (preovulatory phase) or women were given 250 μg human chorionic gonadotropin (hCG) and dominant follicles collected 12-18 h after hCG (early ovulatory), 18-34 h (late ovulatory), and 44-70 h (postovulatory). NTS mRNA was massively induced during the early and late ovulatory stage in granulosa cells (GCs) (15 000 fold) and theca cells (700 fold). In the rat, hCG also induced Nts mRNA expression in intact ovaries and isolated GCs. In cultured granulosa-luteal cells (GLCs) from IVF patients, NTS expression was induced 6 h after hCG treatment, whereas in cultured rat GCs, NTS increased 4 h after hCG treatment. Cells treated with hCG signaling pathway inhibitors revealed that NTS expression is partially regulated in the human and rat GC by the epidermal-like growth factor pathway. Human GLC, and rat GCs also showed that Nts was regulated by the protein kinase A (PKA) pathway along with input from the phosphotidylinositol 3- kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. The predominat NTS receptor present in human and rat GCs was SORT1, whereas NTSR1 and NTSR2 expression was very low. Based on NTS actions in other systems, we speculate that NTS may regulate crucial aspects of ovulation such as vascular permeability, inflammation, and cell migration.
Collapse
Affiliation(s)
- Linah Al-Alem
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ketan Shrestha
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yohan Choi
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kathy Rosewell
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden,Stockholm IVF, Stockholm, Sweden
| | - James Akin
- Bluegrass Fertility Center, Lexington, KY, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA,Correspondence: Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, 800 Rose Street,Room MS 331, Lexington, KY 40536-0298, USA. E-mail:
| |
Collapse
|
8
|
Ghaemimanesh F, Mehravar M, Milani S, Poursani EM, Saliminejad K. The multifaceted role of sortilin/neurotensin receptor 3 in human cancer development. J Cell Physiol 2021; 236:6271-6281. [PMID: 33634506 DOI: 10.1002/jcp.30344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sortilin (also known as neurotensin receptor 3) is a multitasking protein implicated in numerous pathophysiological processes, including cancer development, cardiovascular impairment, Alzheimer-type dementia, and depression. Although the definitive role of sortilin in human solid and hematological malignancies has been evidenced, few articles reviewed the task. The aim of the current review is to unravel the mechanisms by which sortilin controls oncogenicity and cancer progression; and also to summarize and discuss the original data obtained from international research laboratories on this topic. Questions on how sortilin is involving in the impairment of cell junctions, in exosomes composition and release, as well as in the regulation of epidermal growth factor receptor trafficking are also responded. In addition, we provide a special focus on the regulatory role of sortilin in signal transduction by either neurotrophins or neurotensin in normal and malignant cells. The relevance of sortilin with normal and cancer stem cells is also discussed. The last section provides a general overview of sortilin applications as a diagnostic and prognostic biomarker in the context of cancer detection. Finally, we comment on the future research aspects in which the field of cancer diagnosis, prognosis, and therapy might be developed.
Collapse
Affiliation(s)
- Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Saeideh Milani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Narayan V, Thompson EW, Demissei B, Ho JE, Januzzi JL, Ky B. Mechanistic Biomarkers Informative of Both Cancer and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 75:2726-2737. [PMID: 32466889 DOI: 10.1016/j.jacc.2020.03.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of morbidity and mortality worldwide. Although conventionally managed as separate disease processes, recent research has lent insight into compelling commonalities between CVD and cancer, including shared mechanisms for disease development and progression. In this review, the authors discuss several pathophysiological processes common to both CVD and cancer, such as inflammation, resistance to cell death, cellular proliferation, neurohormonal stress, angiogenesis, and genomic instability, in an effort to understand common mechanisms of both disease states. In particular, the authors highlight key circulating and genomic biomarkers associated with each of these processes, as well as their associations with risk and prognosis in both cancer and CVD. The purpose of this state-of-the-art review is to further our understanding of the potential mechanisms underlying cancer and CVD by contextualizing pathways and biomarkers common to both diseases.
Collapse
Affiliation(s)
- Vivek Narayan
- Division of Hematology/Medical Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth W Thompson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Biniyam Demissei
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer E Ho
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, Massachusetts
| | - Bonnie Ky
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Takahashi K, Ehata S, Miyauchi K, Morishita Y, Miyazawa K, Miyazono K. Neurotensin receptor 1 signaling promotes pancreatic cancer progression. Mol Oncol 2021; 15:151-166. [PMID: 33034134 PMCID: PMC7782081 DOI: 10.1002/1878-0261.12815] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the cancers with the poorest prognosis, with a 5-year survival rate of approximately 5-10%. Thus, it is urgent to identify molecular targets for the treatment of pancreatic cancer. Using serial transplantations in a mouse pancreatic orthotopic inoculation model, we previously produced highly malignant pancreatic cancer sublines with increased tumor-forming abilities in vivo. Here, we used these sublines to screen molecular targets for the treatment of pancreatic cancer. Among the genes with increased expression levels in the sublines, we focused on those encoding cell surface receptors that may be involved in the interactions between cancer cells and the tumor microenvironment. Based on our previous RNA-sequence analysis, we found increased expression levels of neurotensin (NTS) receptor 1 (NTSR1) in highly malignant pancreatic cancer sublines. Furthermore, re-analysis of clinical databases revealed that the expression level of NTSR1 was increased in advanced pancreatic cancer and that high NTSR1 levels were correlated with a poor prognosis. Overexpression of NTSR1 in human pancreatic cancer cells Panc-1 and SUIT-2 accelerated their tumorigenic and metastatic abilities in vivo. In addition, RNA-sequence analysis showed that MAPK and NF-κB signaling pathways were activated upon NTS stimulation in highly malignant cancer sublines and also revealed many new target genes for NTS in pancreatic cancer cells. NTS stimulation increased the expression of MMP-9 and other pro-inflammatory cytokines and chemokines in pancreatic cancer cells. Moreover, the treatment with SR48692, a selective NTSR1 antagonist, suppressed the activation of the MAPK and NF-κB signaling pathways and induction of target genes in pancreatic cancer cells in vitro, while the administration of SR48692 attenuated the tumorigenicity of pancreatic cancer cells in vivo. These findings suggest that NTSR1 may be a prognostic marker and a molecular target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Shogo Ehata
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
- Environmental Science CenterThe University of TokyoBunkyo‐kuJapan
| | - Kensuke Miyauchi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Yasuyuki Morishita
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Keiji Miyazawa
- Department of BiochemistryGraduate School of MedicineUniversity of YamanashiChuoJapan
| | - Kohei Miyazono
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
11
|
Ma S, Zheng Y, Fei C. Identification of key factors associated with early- and late-onset ovarian serous cystadenocarcinoma. Future Oncol 2020; 16:2821-2833. [PMID: 32885674 DOI: 10.2217/fon-2020-0668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To uncover the molecular mechanisms of early-onset ovarian serous cystadenocarcinoma (EOOSC; patients <50 years old) and late-onset ovarian serous cystadenocarcinoma (LOOSC; patients ≥50 years old). Materials & methods: Bioinformatics was utilized to identify the key factors. Results: 478 EOOSC and 899 LOOSC individual differentially expressed genes were identified and enriched in different pathways. The expression of key genes LAG3, LRRC63 and MT1B significantly influenced the overall survival of EOOSC patients. The expression of key genes RDH12, NTSR1, ZSCAN16, CT45A3 and EPPIN_WFDC6 significantly affected the overall survival of LOOSC patients. Conclusions: The molecular mechanisms of EOOSC and LOOSC appear to be different, so that patients might be treated individually in respect of age.
Collapse
Affiliation(s)
- Shuang Ma
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yang Zheng
- Genenexus Technology Corporation, Shanghai, 200438, PR China
| | - Chengwei Fei
- Department of Aeronautics & Astronautics, Fudan University, Shanghai, 200433, PR China
| |
Collapse
|
12
|
Fanelli R, Chastel A, Previti S, Hindié E, Vimont D, Zanotti-Fregonara P, Fernandez P, Garrigue P, Lamare F, Schollhammer R, Balasse L, Guillet B, Rémond E, Morgat C, Cavelier F. Silicon-Containing Neurotensin Analogues as Radiopharmaceuticals for NTS1-Positive Tumors Imaging. Bioconjug Chem 2020; 31:2339-2349. [DOI: 10.1021/acs.bioconjchem.0c00419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roberto Fanelli
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Adrien Chastel
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Santo Previti
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Elif Hindié
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Delphine Vimont
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | | | - Philippe Fernandez
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Philippe Garrigue
- Aix-Marseille University, INSERM, Institut National de la Recherche Agronomique, Centre de Recherche en Cardiovasculaire et Nutrition, Marseille 13385, France
- Aix-Marseille University, Centre Européen de Recherche en Imagerie Médicale, Marseille 13005, France
| | - Frédéric Lamare
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Romain Schollhammer
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Laure Balasse
- Aix-Marseille University, INSERM, Institut National de la Recherche Agronomique, Centre de Recherche en Cardiovasculaire et Nutrition, Marseille 13385, France
| | - Benjamin Guillet
- Aix-Marseille University, INSERM, Institut National de la Recherche Agronomique, Centre de Recherche en Cardiovasculaire et Nutrition, Marseille 13385, France
- Aix-Marseille University, Centre Européen de Recherche en Imagerie Médicale, Marseille 13005, France
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Clément Morgat
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| |
Collapse
|
13
|
Characterisation of the Expression of Neurotensin and Its Receptors in Human Colorectal Cancer and Its Clinical Implications. Biomolecules 2020; 10:biom10081145. [PMID: 32764278 PMCID: PMC7464404 DOI: 10.3390/biom10081145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Colorectal Cancer (CRC) accounts for 9% of cancer deaths globally. Hormonal pathways play important roles in some cancers. This study investigated the association of CRC expression of neurotensin (NTS), NTS receptors 1 and 3 (NTSR1 and NTSR3) and clinical outcomes. Methods: A prospective cohort study which quantifies the protein expression of NTS, NTSR1 and NTSR3 in human CRCs using immunohistochemistry. Expression levels were then compared with clinico-pathological outcome including histological grade, overall survival (OS) and disease-free survival (DFS). Results: Sixty-four patients were enrolled with median follow-up of 44.0 months. There was significantly higher expression of NTS in cancer tissue in CRC with higher T stages (p < 0.01), N stages (p = 0.03), and AJCC clinical stages (p = 0.04). There was significantly higher expression of NTS, NTSR1 and NTSR3 in cancer tissue compared to surrounding normal epithelium (median H-score 163.5 vs 97.3, p < 0.01). There was significantly shorter DFS in individuals with CRC with high levels of NTS compared to lower levels of NTS (35.8 months 95% CI 28.7–42.8 months vs 46.4 months 95% CI 42.2–50.5 months, respectively, p = 0.02). Above median NTS expression in cancer tissue was a significant risk factor for disease recurrence (HR 4.10, 95% CI 1.14–14.7, p = 0.03). Discussion: The expression of NTS and its receptors has the potential to be utilised as a predictive and prognostic marker in colorectal cancer for postoperative selection for adjuvant therapy and identify individuals for novel therapies targeting the neurotensinergic pathways. Conclusions: High NTS expression appears to be associated with more advanced CRC and worse DFS.
Collapse
|