1
|
Fang H, Chi X, Wang M, Liu J, Sun M, Zhang J, Zhang W. M2 macrophage-derived exosomes promote cell proliferation, migration and EMT of non-small cell lung cancer by secreting miR-155-5p. Mol Cell Biochem 2025; 480:3019-3032. [PMID: 39612105 DOI: 10.1007/s11010-024-05161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Tumor-associated macrophages (TAMs) are a type of highly plastic immune cells in the tumor microenvironment (TME), which can be classified into two main phenotypes: classical activated M1 macrophages and alternatively activated M2 macrophages. As previously reported, M2-polarized TAMs play critical role in promoting the progression of non-small cell lung cancer (NSCLC) via secreting exosomes, but the detailed mechanisms are still largely unknown. In the present study, the THP-1 monocytes were sequentially induced into M0 and M2-polarized macrophages, and the exosomes were obtained from M0 (M0-exos) and M2 (M2-exos) polarized macrophages, respectively, and co-cultured with NSCLC cells (H1299 and A549) to establish the exosomes-cell co-culture system in vitro. As it was determined by MTT assay, RT-qPCR and Transwell assay, in contrast with the M0-exos, M2-exos significantly promoted cell proliferation, migration and epithelial-mesenchymal transition (EMT) process in NSCLC cells. Next, through screening the contents in the exosomes, it was verified that miR-155-5p was especially enriched in the M2-exos, and M2-exos enhanced cancer aggressiveness and tumorigenesis in in vitro NSCLC cells and in vivo xenograft tumor-bearing mice models via delivering miR-155-5p. The detailed molecular mechanisms were subsequently elucidated, and it was found that miR-155-5p bound with HuR to increase the stability and expression levels of VEGFR2, which further activated the tumor-promoting PI3K/Akt/mTOR signal pathway, and M2-exos-enhanced cancer progression in NSCLC cells were apparently suppressed by downregulating VEGFR2 and PI3K inhibitor LY294002 co-treatment. Taken together, M2-polarized TAMs secreted miR-155-5p-containing exosomes to enhanced cancer aggressiveness of NSCLC by activating the VEGFR2/PI3K/Akt/mTOR pathway in a HuR-dependent manner.
Collapse
Affiliation(s)
- Hua Fang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Xiaowen Chi
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Mengyao Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Jing Liu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Meiqi Sun
- Respiratory and Critical Care Medicine, The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Jiashu Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Wei Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
2
|
Xie Z, Dai Z, Liu Z, Chen Y, Huang S, Liu S, Li J, Shen J. The impact of an RNA-binding protein group on regulating the RSPO-LGR4/5-ZNRF3/RNF43 module and the immune microenvironment in hepatocellular carcinoma. BMC Cancer 2025; 25:751. [PMID: 40264052 PMCID: PMC12012940 DOI: 10.1186/s12885-025-13874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality. RNA-binding proteins (RBPs) are potential therapeutic targets because of their role in tumor progression. This study investigated the interactions between specific HCC progression-associated RBPs (HPARBPs), namely, ILF3, PTBP1, U2AF2, NCBP2, RPS3, and SSB, in HCC and their downstream targets, as well as their impact on the immune microenvironment and their clinical value. METHODS Tissue samples from human HCC, collected from 28 patients who experienced recurrence following postoperative adjuvant therapy were examined. The mRNA levels of RBPs and their prospective targets were quantified through RNA isolation and quantitative real-time PCR. Data from two public datasets were scrutinized for both expression and clinical relevance. Through Student's t test and logistic regression, HPARBPs were identified. Enhanced cross-linking immunoprecipitation (eCLIP) experiments revealed RBP-RNA interactions in HepG2 cells. For functional enrichment, Metascape was used, whereas CIBERSORT was used to characterize the immune microenvironment. RESULTS Public database analysis confirmed widespread RBP expression abnormalities in HCC (false discovery rate < 0.00001 and fold change ≥ 1.15 or ≤ 0.85), leading to the identification of 42 HPARBPs and core modules. eCLIP data analysis revealed the specificity of downstream target genes and binding site features for core HPARBPs (signal value > 3, P value < 0.01). Four core HPARBPs may bind to RNAs of genes in the RSPO-LGR4/5-ZNRF3/RNF43 module, affecting the Wnt pathway and HCC progression. Immunoinfiltration analysis revealed changes in the HCC immune microenvironment due to altered expression of relevant genes. CONCLUSION In our study, we identified core HPARBPs that might contribute to HCC progression by binding to RNAs in the RSPO-LGR4/5-ZNRF3/RNF43 module. Changes in the expression of HPARBPs affect the HCC immune microenvironment. Our findings offer novel insights into the regulatory network of Wnt pathway-related RBPs and their potential clinical value in HCC.
Collapse
Affiliation(s)
- Zhengyao Xie
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Zhiyan Dai
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziyao Liu
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yiqiang Chen
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Shuting Huang
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Siyuan Liu
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| | - Jingjing Li
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| | - Jie Shen
- Department of Precision Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Comprehensive Cancer Centre, Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Shan H, Gao L, Zhao S, Dou Z, Pan Y. Bone marrow mesenchymal stem cells with PTBP1 knockdown protect against cerebral ischemia-reperfusion injury by inhibiting ferroptosis via the JNK/P38 pathway in rats. Neuroscience 2024; 560:130-142. [PMID: 39306318 DOI: 10.1016/j.neuroscience.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Over the years, the neuroprotective potential of bone marrow mesenchymal stem cells (BMSCs) in acute ischemic stroke has attracted significant attention. However, BMSCs face challenges like short metabolic cycles and low survival rates post-transplant. Polypyrimidine tract-binding protein 1 (PTBP1) is an immunomodulatory RNA-binding protein that regulates the cell cycle and increases cell viability. This study investigated the protective effects and underlying mechanism of PTBP1 knockdown in BMSCs (PTBP1KD-BMSCs) following ischemia-reperfusion injury (IRI) in neurons. BMSCs were isolated from Sprague-Dawley rat femurs and characterized through flow cytometry and differentiation induction. PTBP1 knockdown inhibited BMSCs proliferation. Co-culture with PTBP1KD-BMSCs decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, while increasing glutathione (GSH) production in oxygen and glucose deprivation/reperfusion-induced PC12 cells. Transcriptome sequencing analysis of PC12 cells suggested that the protective effect of PTBP1KD-BMSCs against injury may involve ferroptosis. Furthermore, western blotting showed upregulation of glutathione synthetase (GSS), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in PTBP1KD-BMSCs, known negative regulators of ferroptosis. Moreover, PTBP1KD-BMSCs inhibited p38MAPK and JNK activation. In addition, PTBP1KD-BMSCs transplantation into middle cerebral artery occlusion/reperfusion (MCAO/R) rats reduced cerebral infarction volume and improved neurological function. Immunofluorescence analysis confirmed the upregulation of GSS expression in neurons of the ischemic cortex, while immunohistochemistry indicated a downregulation of p-P38. These result suggest that PTBP1KD-BMSCs can alleviate neuronal IRI by reducing oxidative stress, inhibiting ferroptosis, and modulating the MAPK pathway, providing a theoretical basis for potential treatment strategies for cerebral IRI.
Collapse
Affiliation(s)
- Hailei Shan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China; Hebei Key Laboratory of Panvascular Diseases, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Limin Gao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Shuang Zhao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Zhijie Dou
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, China.
| | - Yujun Pan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
4
|
Yu Q, Wu T, Xu W, Wei J, Zhao A, Wang M, Li M, Chi G. PTBP1 as a potential regulator of disease. Mol Cell Biochem 2024; 479:2875-2894. [PMID: 38129625 DOI: 10.1007/s11010-023-04905-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These regulatory systems are inseparable from the development and treatment of diseases. Here, we review the latest knowledge regarding the structure and molecular functions of PTBP1 and summarize its functions and mechanisms of PTBP1 in various diseases, including controversial studies. Furthermore, we recommend future studies on PTBP1 and discuss the prospects of targeting PTBP1 in new clinical therapeutic approaches.
Collapse
Affiliation(s)
- Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tongtong Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
5
|
Li T, Gao R, Xu K, Pan P, Chen C, Wang D, Zhang K, Qiao J, Gu Y. BCL7A inhibits the progression and drug-resistance in acute myeloid leukemia. Drug Resist Updat 2024; 76:101120. [PMID: 39053383 DOI: 10.1016/j.drup.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
AIMS This study aimed to elucidate the biological roles and regulatory mechanisms of B-cell lymphoma 7 protein family member A (BCL7A) in acute myeloid leukemia (AML), particularly its interaction with polypyrimidine tract binding protein 1 (PTBP1) and the effects on cancer progression and drug resistance. METHODS BCL7A expression levels were analyzed in AML tissues and cell lines, focusing on associations with promoter hypermethylation. Interaction with PTBP1 and effects of differential expression of BCL7A were examined in vitro and in vivo. The impacts on cell proliferation, cycle progression, apoptosis, and differentiation were studied. Additionally, the regulatory roles of BCL7A on interferon regulatory factor 7 (IRF7) and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) were assessed. RESULTS BCL7A was downregulated in AML due to promoter hypermethylation and negatively regulated by PTBP1. Upregulation of BCL7A impeded AML cell growth, induced apoptosis, promoted cell differentiation, and decreased cell infiltration into lymph nodes, enhancing survival in mouse models. Overexpression of BCL7A upregulated IRF7 and downregulated HMGCS1, linking to reduced AML cell malignancy and decreased resistance to cytarabine. CONCLUSIONS BCL7A acts as a tumor suppressor in AML, inhibiting malignant progression and enhancing drug sensitivity through the IRF7/HMGCS1 pathway. These findings suggest potential therapeutic targets for improving AML treatment outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Drug Resistance, Neoplasm/drug effects
- Animals
- Mice
- Polypyrimidine Tract-Binding Protein/metabolism
- Polypyrimidine Tract-Binding Protein/genetics
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Cell Line, Tumor
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- DNA Methylation
- Promoter Regions, Genetic
- Disease Progression
- Xenograft Model Antitumor Assays
- Male
- Female
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Cell Differentiation/drug effects
- Gene Expression Regulation, Leukemic/drug effects
Collapse
Affiliation(s)
- Tushuai Li
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China; School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Renjie Gao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China; Graduate Department, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Kaiwen Xu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Pengpeng Pan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Congcong Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Daokuan Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China; The First Clinical School of Anhui Medical University, Hefei 230032, PR China
| | - Keyi Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Jilei Qiao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China; The First Clinical School of Anhui Medical University, Hefei 230032, PR China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
6
|
Gonzalez E, Flatt TG, Farooqi M, Johnson L, Ahmed AA. Polypyrimidine Tract Binding Protein: A Universal Player in Cancer Development. Curr Mol Med 2024; 24:1450-1460. [PMID: 37877563 DOI: 10.2174/0115665240251370231017053236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES Polypyrimidine tract binding protein is a 57-Kda protein located in the perinucleolar compartment where it binds RNA and regulates several biological functions through the regulation of RNA splicing. Numerous research articles have been published that address the cellular network and functions of PTB and its isoforms in various disease states. METHODOLOGY Through an extensive PubMed search, we attempt to summarize the relevant research into this biomolecule. RESULTS Besides its roles in embryonic development, neuronal cell growth, RNA metabolism, apoptosis, and hematopoiesis, PTB can affect cancer growth via several metabolic, proliferative, and structural mechanisms. PTB overexpression has been documented in several cancers where it plays a role as a novel prognostic factor. CONCLUSION The diverse carcinogenic effect opens an argument into its potential role in inhibitory targeted therapy.
Collapse
Affiliation(s)
- Elizabeth Gonzalez
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Terrie G Flatt
- Pediatric Hematology Oncology, Children Mercy Hospital, Kansas City, Missouri, USA
| | - Midhat Farooqi
- Departments of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Lisa Johnson
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| | - Atif A Ahmed
- Pathology and Laboratory Medicine, Seattle Children's Hospital/University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Zhu Q, Hu Y, Jiang W, Ou ZL, Yao YB, Zai HY. Circ-CCT2 Activates Wnt/β-catenin Signaling to Facilitate Hepatoblastoma Development by Stabilizing PTBP1 mRNA. Cell Mol Gastroenterol Hepatol 2023; 17:175-197. [PMID: 37866478 PMCID: PMC10758885 DOI: 10.1016/j.jcmgh.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND & AIMS Circ-CCT2 (hsa_circ_0000418) is a novel circular RNA that stems from the CCT2 gene. However, the expression of circ-CCT2 and its roles in hepatoblastoma are unknown. Our study aims to study the circ-CCT2 roles in hepatoblastoma development. METHODS Hepatoblastoma specimens were collected for examining the expression of circ-CCT2, TAF15, and PTBP1. CCK-8 and colony formation assays were applied for cell proliferation analysis. Migratory and invasive capacities were evaluated through wound healing and Transwell assays. The interaction between circ-CCT2, TAF15, and PTBP1 was validated by fluorescence in situ hybridization, RNA pull-down, and RNA immunoprecipitation. SKL2001 was used as an agonist of the Wnt/β-catenin pathway. A subcutaneous mouse model of hepatoblastoma was established for examining the function of circ-CCT2 in hepatoblastoma in vivo. RESULTS Circ-CCT2 was significantly up-regulated in hepatoblastoma. Overexpression of circ-CCT2 activated Wnt/β-catenin signaling and promoted hepatoblastoma progression, whereas knockdown of circ-CCT2 exerted opposite effects. Moreover, both TAF15 and PTBP1 were up-regulated in hepatoblastoma tissues and cells. TAF15 was positively correlated with the expression of circ-CCT2 and PTBP1 in hepatoblastoma. Furthermore, circ-CCT2 recruited and up-regulated TAF15 protein to stabilize PTBP1 mRNA and trigger Wnt/β-catenin signaling in hepatoblastoma. Overexpression of TAF15 or PTBP1 reversed knockdown of circ-CCT2-mediated suppression of hepatoblastoma progression. SKL2001-mediated activation of Wnt/β-catenin signaling reversed the anti-tumor effects of silencing of circ-CCT2, TAF15, or PTBP1. CONCLUSIONS Circ-CCT2 stabilizes PTBP1 mRNA and activates Wnt/β-catenin signaling through recruiting and up-regulating TAF15 protein, thus promoting hepatoblastoma progression. Our findings deepen the understanding of hepatoblastoma pathogenesis and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Wei Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Zheng-Lin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yuan-Bing Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Hong-Yan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China.
| |
Collapse
|
8
|
Feng Y, Xia S, Hui J, Xu Y. Circular RNA circBNC2 facilitates glycolysis and stemness of hepatocellular carcinoma through the miR-217/high mobility group AT-hook 2 (HMGA2) axis. Heliyon 2023; 9:e17120. [PMID: 37360090 PMCID: PMC10285170 DOI: 10.1016/j.heliyon.2023.e17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Hepatocellular cancer (HCC) accounts for approximately 90% of primary liver carcinoma and is a significant health threat worldwide. Circular RNA basonuclin 2 (circBNC2) is implicated with the progression of several cancers. However, its roles in carcinogenesis and glycolysis are still unclear in HCC. In this study, the levels of circBNC2 and high mobility group AT-hook 2 (HMGA2) were highly expressed, while these of miR-217 were poorly expressed in HCC tissues and cells. Upregulation of circBNC2 was related to poor prognosis and tumor node metastasis (TNM) stage. Knockdown of circBNC2 inhibited the HCC progression. Moreover, knockdown of circBNC2 suppressed the levels of Ras, ERK1/2, PCNA, HK2, and OCT4. Notably, circBNC2 functioned as a molecular sponge of microRNA 217 (miR-217) to upregulate the HMGA2 expression. The inhibitory effects of the circBNC2 silence on the growth and stemness of HCC cells, and levels of PCNA, HK2 and OCT4 were aggravated by the miR-217 overexpression, but neutralized by the HMGA2 overexpression. Besides, silencing of circBNC2 blocked the tumor growth through upregulating the expression of miR-217 and downregulating the levels of HMGA2, PCNA2, HK2 and OCT4 in vivo. Thus, the current data confirmed that circBNC2 sponged miR-217 to upregulate the HMGA2 level, thereby contributing to the HCC glycolysis and progression. These findings might present novel insight into the pathogenesis and treatment of HCC.
Collapse
Affiliation(s)
- Yan Feng
- Department of Integrated, Chongqing University Cancer Hospital & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Shufeng Xia
- Department of Integrated, Chongqing University Cancer Hospital & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Junlan Hui
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400030, China
| | - Yan Xu
- Department of Integrated, Chongqing University Cancer Hospital & Chongqing Cancer Hospital, Chongqing, 400030, China
| |
Collapse
|
9
|
Cai Y, Tian J, Su Y, Shi X. MiR-506 targets polypyrimidine tract-binding protein 1 to inhibit airway inflammatory response and remodeling via mediating Wnt/β-catenin signaling pathway. Allergol Immunopathol (Madr) 2023; 51:15-24. [PMID: 37169555 DOI: 10.15586/aei.v51i3.676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/12/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Airway remodeling, which contributes to the clinical course of childhood asthma, occurs due to airway inflammation and is featured by anomalous biological behaviors of airway smooth muscle cells (ASMCs). microRNA (miRNA) plays an essential role in the etiopathogenesis of asthma. OBJECTIVE This research was aimed to characterize miR-506 in asthma and uncover potential regulatory machinery. MATERIAL AND METHODS The asthmatic cell model was established by treating ASMCs with transforming growth factor-beta1 (TGF-β1) and assessed by the levels of interleukin (IL)-1β and interferon gamma (IFN-γ). Using real-time quantitative polymerase chain reaction, mRNA expression of miR-506 and polypyrimidine tract-binding protein 1 (PTBP1) was measured. Cell counting kit-8 and Transwell migration tests were used for estimating the capacity of ASMCs to proliferate and migrate. Luciferase reporter assay was used to corroborate whether miR-506 was directly bound to PTBP1. Expression of PTBP1, collagen I and III, and essential proteins of the wingless-related integration (Wnt)/β-catenin pathway (β-catenin, c-MYC and cyclin D1) was accomplished by Western blot analysis. The involvement of Wnt/β-catenin signaling in asthma was confirmed by Wnt signaling pathway inhibitor (IWR-1). RESULTS miR-506 was poorly expressed in asthmatic tissues and cell model. Functionally, overexpression of miR-506 reduced aberrant proliferation, migration, inflammation and collagen deposition of ASMCs triggered by TGF-β1. Mechanically, miR-506 directly targeted the 3' untranslated region (3-UTR) of PTBP1 and had a negative regulation on PTBP1 expression. Moreover, overexpression of miR-506 suppressed the induction of Wnt/β-catenin pathway. The administration of IWR-1 further validated negative correlation between miR-506 and the Wnt/β-catenin pathway in asthma. CONCLUSION Our data indicated that targeting miR-506/PTBP1/Wnt/β-catenin axis might point in a helpful direction for treating asthma in children.
Collapse
Affiliation(s)
- Yuxiang Cai
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jifeng Tian
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Yufei Su
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Xiaolan Shi
- Department of Respiratory Asthma Center, Xi'an Children's Hospital, Xi'an, Shaanxi, China;
| |
Collapse
|
10
|
Huang Q, Gu S, Fang J, Li X, Lin L. A pan-cancer analysis of the oncogenic role of polypyrimidine tract binding protein 1 (PTBP1) in human tumors. Medicine (Baltimore) 2022; 101:e32428. [PMID: 36595978 PMCID: PMC9803410 DOI: 10.1097/md.0000000000032428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polypyrimidine tract-binding protein 1 (PTBP1) is an RNA-binding protein that regulates several posttranscriptional events and is closely related to the development of multiple tumors. However, little is known about PTBP1. Thus, we carried out a systematic pan-cancer analysis to explore the relationship between PTBP1 and cancer. METHODS We used The Cancer Genome Atlas, Gene Expression Omnibus, and Human Protein Atlas datasets, as well as several bioinformatics tools, to explore the role of PTBP1 in 33 tumor types. RESULTS The expression of PTBP1 in most tumor tissues was higher than that in normal tissues. Survival analysis indicated that overexpression of PTBP1 generally predicted poor overall survival in patients with tumors such as adrenocortical carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, and skin cutaneous melanoma. In addition, we compared the phosphorylation and immune infiltration of PTBP1 in cancer-associated fibroblasts between normal and primary tumor tissues and explored the putative functional mechanism of tumorigenesis mediated by PTBP1. CONCLUSION These results provide clues to better understand PTBP1 from the perspective of bioinformatics and highlight its importance in various human cancers.
Collapse
Affiliation(s)
- Qing Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, P.R. China
| | - Shinong Gu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, P.R. China
| | - Jianqi Fang
- Department of Women’s Health Care, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, P.R. China
| | - Xuanwen Li
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Lili Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, P.R. China
- * Correspondence: Lili Lin, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361000, P.R. China (e-mail: )
| |
Collapse
|
11
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
12
|
PTBP1 as a Promising Predictor of Poor Prognosis by Regulating Cell Proliferation, Immunosuppression, and Drug Sensitivity in SARC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5687238. [PMID: 35651729 PMCID: PMC9151003 DOI: 10.1155/2022/5687238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Background. Sarcomas (SARC) have been found as rare and heterogeneous malignancies with poor prognosis. PTBP1, belonging to the hnRNPs family, plays an essential role in some biological functions (e.g., pre-mRNA splicing, cell growth, and nervous system development). However, the role of PTBP1 in SARC remains unclear. In this study, the aim was to investigate the potential role of PTBP1 with a focus on SARC. Methods. The expression, prognostic value, possible biological pathways of PTBP1, and its relationship with immune infiltration and drug sensitivity were comprehensively analyzed based on multiple databases. PTBP1 was further validated in osteosarcoma as the most prominent bone SARC. The expression of PTBP1 was investigated through IHC. The prognostic value of PTBP1 was verified in TARGET-OS databases. CRISPR/Cas9-mediated PTBP1 knockout HOS human osteosarcoma cell lines were used to assess the effect of PTBP1 on cell proliferation, migration, metastasis and cell cycle by CCK-8, Transwell migration, invasion, and FACS experiment. Result. PTBP1 was highly expressed and significantly correlated with poor prognosis in several cancers, especially in SARC, which was validated in the clinical cohort and osteosarcoma cell lines. The genetic alteration of PTBP1 was found most frequently in SARC. Besides, PTBP1 played a role in oncogenesis and immunity through cell cycle, TGFB, autophagy, and WNT pathways at a pan-cancer level. Knockout of PTBP1 was observed to negatively affect proliferation, migration, metastasis, and cell cycle of osteosarcoma in vitro. Furthermore, PTBP1 was significantly correlated with tumor immune infiltration, DNA methylation, TMB, and MSI in a wide variety of cancers. Moreover, the potential of the expression level of PTBP1 in predicting drug sensitivity was assessed. Conclusions. PTBP1 is highly expressed and correlated with prognosis and plays a vital pathogenic role in oncogenesis and immune infiltration of various cancers, especially for SARC, which suggests that it may be a promising prognostic marker and therapeutic target in the future.
Collapse
|
13
|
Dai S, Wang C, Zhang C, Feng L, Zhang W, Zhou X, He Y, Xia X, Chen B, Song W. PTB: Not just a polypyrimidine tract-binding protein. J Cell Physiol 2022; 237:2357-2373. [PMID: 35288937 DOI: 10.1002/jcp.30716] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Polypyrimidine tract-binding protein (PTB), as a member of the heterogeneous nuclear ribonucleoprotein family, functions by rapidly shuttling between the nucleus and the cytoplasm. PTB is involved in the alternative splicing of pre-messenger RNA (mRNA) and almost all steps of mRNA metabolism. PTB regulation is organ-specific; brain- or muscle-specific microRNAs and long noncoding RNAs partially contribute to regulating PTB, thereby modulating many physiological and pathological processes, such as embryonic development, cell development, spermatogenesis, and neuron growth and differentiation. Previous studies have shown that PTB knockout can inhibit tumorigenesis and development. The knockout of PTB in glial cells can be reprogrammed into functional neurons, which shows great promise in the field of nerve regeneration but is controversial.
Collapse
Affiliation(s)
- Shirui Dai
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xuezhi Zhou
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Ye He
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xiaobo Xia
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| |
Collapse
|
14
|
Zhao X, Ji Z, Xuan R, Wang A, Li Q, Zhao Y, Chao T, Wang J. Characterization of the microRNA Expression Profiles in the Goat Kid Liver. Front Genet 2022; 12:794157. [PMID: 35082837 PMCID: PMC8784682 DOI: 10.3389/fgene.2021.794157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is the largest digestive gland in goats with an important role in early metabolic function development. MicroRNAs (miRNA) are crucial for regulating the development and metabolism in the goat liver. In the study, we sequenced the miRNAs in the liver tissues of the goat kid to further research their regulation roles in early liver development. The liver tissues were procured at 5-time points from the Laiwu black goats of 1 day (D1), 2 weeks (W2), 4 weeks (W4), 8 weeks (W8), and 12 weeks (W12) after birth, respectively with five goats per time point, for a total of 25 goats. Our study identified 214 differential expression miRNAs, and the expression patterns of 15 randomly selected miRNAs were examined among all five age groups. The Gene ontology annotation results showed that differential expression miRNA (DE miRNA) target genes were significantly enriched in the fatty acid synthase activity, toxin metabolic process, cell surface, and antibiotic metabolic process. The KEGG analysis result was significantly enriched in steroid hormone synthesis and retinol metabolism pathways. Further miRNA-mRNA regulation network analysis reveals 9 differently expressed miRNA with important regulation roles. Overall, the DE miRNAs were mainly involved in liver development, lipid metabolism, toxin related metabolism-related biological process, and pathways. Our results provide new information about the molecular mechanisms and pathways in the goat kid liver development.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Aili Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yilin Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
15
|
Li JJ, Xiong MY, Sun TY, Ji CB, Guo RT, Li YW, Guo HY. CircFAM120B knockdown inhibits osteosarcoma tumorigenesis via the miR-1205/PTBP1 axis. Aging (Albany NY) 2021; 13:23831-23841. [PMID: 34716285 PMCID: PMC8580345 DOI: 10.18632/aging.203657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Background: Osteosarcoma (OS) is a highly prevalent bone malignancy with poor clinical outcomes. Expression of the circular RNA, hsa_circ_0078767 (circFAM120B) is elevated in OS, however, its mechanisms in OS are unclear. Methods: CircFAM120B levels were detected in OS tissue and cell lines. Silenced circFAM120B experiments were performed to assess its effects on OS in vitro cancer phenotypes and in vivo tumor growth. Then, bioinformatics analyses were used to predict circFAM120B target microRNAs (miRNAs) and associated genes. Results: CircFAM120B and the transcription factor, PTBP1 were elevated in OS tissue and cell lines, while miR-1205 was poorly expressed. Silenced circFAM120B significantly suppressed in vitro OS cell proliferation and invasion, and inhibited in vivo tumor growth. CircFAM120B also appeared to function as an miR-1205 sponge, as miR-1205 bound to PTBP1. Interestingly, overexpressed PTBP1 (or miR-1205 inhibition) reversed the inhibitory effects mediated by circFAM120B downregulation in OS cells. Conclusion: We hypothesize circFAM120B functions as a miR-1205 sponge to elevate PTBP1 levels, enhancing OS progression and associated malignant phenotypes. Thus, circFAM120B may function as a crucial mediator during OS progression.
Collapse
Affiliation(s)
- Jia-Ju Li
- Department of Traumatology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Ming-Yue Xiong
- Department of Traumatology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Tian-Yu Sun
- Department of Traumatology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Chang-Bin Ji
- Department of Traumatology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Run-Tao Guo
- Department of Traumatology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Ya-Wei Li
- Department of Ophthalmology, XiPing County People's Hospital, Zhumadian 463900, Henan, China
| | - Hong-Yu Guo
- Department of Traumatology, The First Affiliated Hospital, And College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
16
|
Cheng Y, Wang N, Zhao L, Liu C, Wang J, Ma C, Shi X. Knockdown of NOVA1 inhibits inflammation and migration of asthmatic airway smooth muscle cells to regulate PTEN/Akt pathway by targeting PTBP1. Mol Immunol 2021; 138:31-37. [PMID: 34332183 DOI: 10.1016/j.molimm.2021.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
NOVA1 (neuro-oncological ventral antigen 1) is a neuron specific RNA binding protein, belonging to the Nova family, which plays an important role in various diseases. However, the role of NOVA1 in childhood asthma remains unclear. This study was aimed to investigate the role of NOVA1 in TGF-β1-induced ASMCs proliferation and migration as well as the potential mechanisms. In our study, the NOVA1 expression was significantly increased in asthmatic tissues and TGF-β1-induced ASMCs. Inhibition of NOVA1 significantly inhibited TGF-β1-induced ASMCs cell proliferation and migration, and alleviates TGF-β1-induced inflammation. NOVA1 positively regulated the PTBP1 expression and si-NOVA1 inhibited the activation of PTEN/AKT signal pathway. Importantly, the overexpression of PTBP1 partially reversed the effect of NOVA1 on cell viability, migration, inflammation and the activation of PTEN/AKT signal pathway. Generally, our study demonstrated that si-NOVA1 inhibited TGF-β1-induced inflammation and migration in ASMCs through PTBP1/PTEN/AKT pathway. Therefore, inhibition of NOVA1 may be useful for the prevention or treatment of asthma airway remodeling.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Pediatrics, Weinan Maternal and Child Health Hospital, Weinan City, Shaanxi Province, 714000, China
| | - Ning Wang
- Respiratory Asthma Center of Xi'an Children's Hospital, Xi'an City, Shaanxi Province, 710043, China
| | - Long Zhao
- Respiratory Asthma Center of Xi'an Children's Hospital, Xi'an City, Shaanxi Province, 710043, China
| | - Cuicui Liu
- Respiratory Asthma Center of Xi'an Children's Hospital, Xi'an City, Shaanxi Province, 710043, China
| | - Jing Wang
- Respiratory Asthma Center of Xi'an Children's Hospital, Xi'an City, Shaanxi Province, 710043, China
| | - Cailing Ma
- Respiratory Asthma Center of Xi'an Children's Hospital, Xi'an City, Shaanxi Province, 710043, China
| | - Xiaolan Shi
- Respiratory Asthma Center of Xi'an Children's Hospital, Xi'an City, Shaanxi Province, 710043, China.
| |
Collapse
|
17
|
Liu P, Xia P, Fu Q, Liu C, Luo Q, Cheng L, Yu P, Qin T, Zhang H. miR-199a-5p inhibits the proliferation of hepatocellular carcinoma cells by regulating CDC25A to induce cell cycle arrest. Biochem Biophys Res Commun 2021; 571:96-103. [PMID: 34314996 DOI: 10.1016/j.bbrc.2021.07.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has been verified as a really common cancer worldwide. Several studies have suggested that the suppression of malignancy growth can be traced to miR-199a-5p. Even though CDC25A could activate the tumorigenesis of various cancer by modulating cell cycle, the modulation of the miR-199a-5p/CDC25A axis is still not clear in HCC. Our aim is to identify the modulation of the miR-199a-5p/CDC25A axis in HCC. METHODS The expression of CDC25A and miR-199a-5p in HCC cells and tissues was assessed using qRT-PCR. After using western blot assay to confirm the protein level, luciferase reporter and RNA pull-down assays were performed to explore the relation between CDC25A and miR-199a-5p. Functional assays such as CCK8 assay, BrdU proliferation assay and flow cytometry analysis identified the cell progression. RESULTS Experimental findings indicated the downregulation of miR-199a-5p in HCC samples. It was also found that miR-199a-5p overexpression declined the development of the cells with HCC and that it could bind to CDC25A to suppress the progression of HCC. CONCLUSION Research suggested that miR-199a-5p could restrain the proliferation ability of HCC cells by regulating CDC25A, thus inducing cell-cycle arrest.
Collapse
Affiliation(s)
- Pan Liu
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Peng Xia
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Qiang Fu
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Chuanjiang Liu
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Qiankun Luo
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Liyou Cheng
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Pengfei Yu
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Tao Qin
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China
| | - Hongwei Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
18
|
Konishi H, Kashima S, Goto T, Ando K, Sakatani A, Tanaka H, Ueno N, Moriichi K, Okumura T, Fujiya M. The Identification of RNA-Binding Proteins Functionally Associated with Tumor Progression in Gastrointestinal Cancer. Cancers (Basel) 2021; 13:cancers13133165. [PMID: 34202873 PMCID: PMC8269357 DOI: 10.3390/cancers13133165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Previous investigations described bioinformatic analyses based on the mRNA expression and somatic mutation as useful strategies for identifying cancer-associated molecules that were potential candidates of therapeutic targets. However, these data included secondary changes and non-functional alterations that do not influence tumor progression. Investigations, including our own studies, have shown that some RBPs shuttle cytoplasm and nuclei, and their affinity to RNAs is regulated by posttranslational modifications, such as phosphorylation. Therefore, the functional assessment of individual molecules is the most suitable strategy for identifying cancer-associated genes with or without expressional changes and mutations. This report showed for the first time that a functional assessment using an siRNA library was useful for identifying therapeutic targets from molecular groups, including RBPs, that had not been identified by expressional and mutational analyses. Abstract Previous investigations have indicated that RNA-binding proteins (RBPs) are key molecules for the development of organs, differentiation, cell growth and apoptosis in cancer cells as well as normal cells. A bioinformatics analysis based on the mRNA expression and a somatic mutational database revealed the association between aberrant expression/mutations of RBPs and cancer progression. However, this method failed to detect functional alterations in RBPs without changes in the expression, thus leading to false negatives. To identify major tumor-associated RBPs, we constructed an siRNA library based on the database of RBPs and assessed the influence on the growth of colorectal, pancreatic and esophageal cancer cells. A comprehensive analysis of siRNA functional screening findings using 1198 siRNAs targeting 416 RBPs identified 41 RBPs in which 50% inhibition of cell growth was observed in cancer cells. Among these RBPs, 12 showed no change in the mRNA expression and no growth suppression in non-cancerous cells when downregulated by specific siRNAs. We herein report for the first time cancer-promotive RBPs identified by a novel functional assessment using an siRNA library of RBPs combined with expressional and mutational analyses.
Collapse
Affiliation(s)
- Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka, Asahikawa 078-8510, Japan;
| | - Shin Kashima
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Takuma Goto
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Katsuyoshi Ando
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Aki Sakatani
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078-8510, Japan;
| | - Nobuhiro Ueno
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Kentaro Moriichi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Mikihiro Fujiya
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka, Asahikawa 078-8510, Japan;
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
- Correspondence: ; Tel.: +81-166-68-2462
| |
Collapse
|
19
|
Ghafouri-Fard S, Honarmand Tamizkar K, Hussen BM, Taheri M. MicroRNA signature in liver cancer. Pathol Res Pract 2021; 219:153369. [PMID: 33626406 DOI: 10.1016/j.prp.2021.153369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Liver cancer is the 7th utmost frequent neoplasm and the 4th principal source of cancer deaths. This malignancy is linked with several environmental and lifestyle-related factors emphasizing the role of epigenetics in its pathogenesis. MicroRNAs (miRNAs) have been regarded as potent epigenetic mechanisms partaking in the pathogenesis of liver cancer. Dysregulation of miRNAs has been related with poor outcome of patients with liver cancer. In the current manuscript, we provide a concise review of the results of recent studies about the role of miRNAs in the progression of liver cancer and their diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zhang Q, Xu L, Wang J, Zhu X, Ma Z, Yang J, Li J, Jia X, Wei L. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a. Onco Targets Ther 2021; 14:1187-1204. [PMID: 33654410 PMCID: PMC7910089 DOI: 10.2147/ott.s288799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background KDM5C, a histone H3K4-specific demethylase, possess various biological functions in development of cancers. However, its relation to the microRNA (miRNA) regulation in lung cancer remains unknown. This study aims to study the regulatory role of KDM5C on modification of miR-133a in the progression of lung cancer. Methods Differentially expressed miRNAs were filtered from 34 paired lung cancer and paracancerous tissues. The correlation between miR-133a expression and the prognosis of lung cancer patients was determined by a bioinformatics website. Furthermore, malignant aggressiveness of lung cancer cells was detected after miR-133a upregulation by CCK-8, flow cytometry, and Transwell assays and in vivo tumorigenesis and metastasis experiments. Subsequently, we analyzed mRNA downregulated in cells overexpressing miR-133a using m microarray analysis and expounded the upstream regulatory mechanism of miR-133a using bioinformatics website prediction and functional validation. Results miR-133a was reduced in lung cancer tissues, and patients with low expression of miR-133a have worse survival rates. miR-133a restoration curtailed growth and metastasis of lung cancer cells in vitro and in vivo. Moreover, miR-133a downregulated PTBP1 expression, whereas overexpression of PTBP1 attenuated the suppressive effect of miR-133a on lung cancer cell aggressiveness. The level of methylation modification of miR-133a was reduced in lung cancer cells. KDM5C inhibited the expression of miR-133a by promoting the demethylation modification of its promoter histone. Conclusion Histone demethylase KDM5C inhibits the expression of miR-133a by elevating the demethylation modification of the promoter histone of miR-133a, thereby promoting the expression of PTBP1, which finally accelerates lung cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lei Xu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jianjun Wang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiaoming Zhu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Zeheng Ma
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Junfeng Yang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jiwei Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiangbo Jia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
21
|
Zhang RY, Liu ZK, Wei D, Yong YL, Lin P, Li H, Liu M, Zheng NS, Liu K, Hu CX, Yang XZ, Chen ZN, Bian H. UBE2S interacting with TRIM28 in the nucleus accelerates cell cycle by ubiquitination of p27 to promote hepatocellular carcinoma development. Signal Transduct Target Ther 2021; 6:64. [PMID: 33589597 PMCID: PMC7884418 DOI: 10.1038/s41392-020-00432-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
Genomic sequencing analysis of tumors provides potential molecular therapeutic targets for precision medicine. However, identifying a key driver gene or mutation that can be used for hepatocellular carcinoma (HCC) treatment remains difficult. Here, we performed whole-exome sequencing on genomic DNA obtained from six pairs of HCC and adjacent tissues and identified two novel somatic mutations of UBE2S (p. Gly57Ala and p. Lys63Asn). Predictions of the functional effects of the mutations showed that two amino-acid substitutions were potentially deleterious. Further, we observed that wild-type UBE2S, especially in the nucleus, was significantly higher in HCC tissues than that in adjacent tissues and closely related to the clinicopathological features of patients with HCC. Functional assays revealed that overexpression of UBE2S promoted the proliferation, invasion, metastasis, and G1/S phase transition of HCC cells in vitro, and promoted the tumor growth significantly in vivo. Mechanistically, UBE2S interacted with TRIM28 in the nucleus, both together enhanced the ubiquitination of p27 to facilitate its degradation and cell cycle progression. Most importantly, the small-molecule cephalomannine was found by a luciferase-based sensitive high-throughput screen (HTS) to inhibit UBE2S expression and significantly attenuate HCC progression in vitro and in vivo, which may represent a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Ren-Yu Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ze-Kun Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Man Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Nai-Shan Zheng
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ke Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Cai-Xia Hu
- Oncology and Hepatobiliary Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiao-Zhen Yang
- Oncology and Hepatobiliary Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
22
|
Taniguchi K, Uchiyama K, Akao Y. PTBP1-targeting microRNAs regulate cancer-specific energy metabolism through the modulation of PKM1/M2 splicing. Cancer Sci 2021; 112:41-50. [PMID: 33070451 PMCID: PMC7780020 DOI: 10.1111/cas.14694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/03/2023] Open
Abstract
Understanding of the microRNAs (miRNAs) regulatory system has become indispensable for physiological/oncological research. Tissue and organ specificities are key features of miRNAs that should be accounted for in cancer research. Further, cancer-specific energy metabolism, referred to as the Warburg effect, has been positioned as a key cancer feature. Enhancement of the glycolysis pathway in cancer cells is what primarily characterizes the Warburg effect. Pyruvate kinase M1/2 (PKM1/2) are key molecules of the complex glycolytic system; their distribution is organ-specific. In fact, PKM2 overexpression has been detected in various cancer cells. PKM isoforms are generated by alternative splicing by heterogeneous nuclear ribonucleoproteins. In addition, polypyrimidine tract-binding protein 1 (PTBP1) is essential for the production of PKM2 in cancer cells. Recently, several studies focusing on non-coding RNA elucidated PTBP1 or PKM2 regulatory mechanisms, including control by miRNAs, and their association with cancer. In this review, we discuss the strong relationship between the organ-specific distribution of miRNAs and the expression of PKM in the context of PTBP1 gene regulation. Moreover, we focus on the impact of PTBP1-targeting miRNA dysregulation on the Warburg effect.
Collapse
Affiliation(s)
- Kohei Taniguchi
- Department of General and Gastroenterological SurgeryOsaka Medical CollegeOsakaJapan
- Translational Research ProgramOsaka Medical CollegeOsakaJapan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological SurgeryOsaka Medical CollegeOsakaJapan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
| |
Collapse
|
23
|
Wang M, Huang S, Chen Z, Han Z, Li K, Chen C, Wu G, Zhao Y. Development and validation of an RNA binding protein-associated prognostic model for hepatocellular carcinoma. BMC Cancer 2020; 20:1136. [PMID: 33228611 PMCID: PMC7684760 DOI: 10.1186/s12885-020-07625-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the deadliest forms of cancer. While RNA-binding proteins (RBPs) have been shown to be key regulators of oncogenesis and tumor progression, their dysregulation in the context of HCC remains to be fully characterized. METHODS Data from the Cancer Genome Atlas - liver HCC (TCGA-LIHC) database were downloaded and analyzed in order to identify RBPs that were differentially expressed in HCC tumors relative to healthy normal tissues. Functional enrichment analyses of these RBPs were then conducted using the GO and KEGG databases to understand their mechanistic roles. Central hub RBPs associated with HCC patient prognosis were then detected through Cox regression analyses, and were incorporated into a prognostic model. The prognostic value of this model was then assessed through the use of Kaplan-Meier curves, time-related ROC analyses, univariate and multivariate Cox regression analyses, and nomograms. Lastly, the relationship between individual hub RBPs and HCC patient overall survival (OS) was evaluated using Kaplan-Meier curves. Finally, find protein-coding genes (PCGs) related to hub RBPs were used to construct a hub RBP-PCG co-expression network. RESULTS In total, we identified 81 RBPs that were differentially expressed in HCC tumors relative to healthy tissues (54 upregulated, 27 downregulated). Seven prognostically-relevant hub RBPs (SMG5, BOP1, LIN28B, RNF17, ANG, LARP1B, and NR0B1) were then used to generate a prognostic model, after which HCC patients were separated into high- and low-risk groups based upon resultant risk score values. In both the training and test datasets, we found that high-risk HCC patients exhibited decreased OS relative to low-risk patients, with time-dependent area under the ROC curve values of 0.801 and 0.676, respectively. This model thus exhibited good prognostic performance. We additionally generated a prognostic nomogram based upon these seven hub RBPs and found that four other genes were significantly correlated with OS. CONCLUSION We herein identified a seven RBP signature that can reliably be used to predict HCC patient OS, underscoring the prognostic relevance of these genes.
Collapse
Affiliation(s)
- Min Wang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shan Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zefeng Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhiwei Han
- Department of Chinese Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kezhi Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chuang Chen
- Department of Chinese Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yinnong Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
24
|
Zhang J, Liu B, Zhang P, Wang L, Zhu Y. Knockdown of SNHG1 inhibits cervical cancer growth through sponging miR-194 to regulate HCCR. Gynecol Endocrinol 2020; 36:1028-1034. [PMID: 32456490 DOI: 10.1080/09513590.2020.1770722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
To investigate the mechanism of small nucleolar RNA host gene 1 (SNHG1) in cervical cancer (CC). Methods: The expression of SNHG1, miR-194 and human cervical cancer oncogene (HCCR) in CC tissues and cells was detected using qRT-PCR and western blot. The interaction among the three molecules was measured using dual-luciferase reporter assay and RNA immunoprecipitation assay. The function of SNHG1 in CC cells was detected by CKK-8 assay and flow cytometry analysis. Results: SNHG1 was highly expressed in CC tissues and CC cell lines. Knockdown of SNHG1 inhibited CC cell proliferation and enhanced the ability of cell apoptosis. Mechanism investigation revealed that SNHG1 modulated HCCR expression via acting as a competing endogenous RNA of miR-194. Moreover, miR-194 inhibitor changed the effects of si-SNHG1 on CC cells growth. In vivo experiment, silencing of SNHG1 suppressed CC tumor growth by modulating miR-194/HCCR axis. Conclusion: Knockdown of SNHG1 inhibited CC progression by targeting HCCR via sponging with miR-194.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gynecology Oncology, Xuzhou Cancer Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Beibei Liu
- Department of Gynecology Oncology, Xuzhou Cancer Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Ping Zhang
- Department of Gynecology Oncology, Xuzhou Cancer Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Lan Wang
- Department of Gynecology Oncology, Xuzhou Cancer Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Yanling Zhu
- Department of Gynecology Oncology, Xuzhou Cancer Hospital, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| |
Collapse
|
25
|
Kang D, Lee Y, Lee JS. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12092699. [PMID: 32967226 PMCID: PMC7563379 DOI: 10.3390/cancers12092699] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional expression of genes. Many of them are known to be deregulated in a wide variety of cancers. Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus, understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead to improved therapeutic strategies. Abstract RNA-binding proteins (RBPs) crucially regulate gene expression through post-transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer. Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes, tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs, their roles in cancer-related cellular phenotypes, and various approaches that may be used to target RBPs for cancer treatment.
Collapse
Affiliation(s)
- Donghee Kang
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
| | - Yerim Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jae-Seon Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9832
| |
Collapse
|
26
|
mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int J Mol Sci 2020; 21:ijms21186648. [PMID: 32932781 PMCID: PMC7554771 DOI: 10.3390/ijms21186648] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3'-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.
Collapse
|
27
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
28
|
The Effect of Methylselenocysteine and Sodium Selenite Treatment on microRNA Expression in Liver Cancer Cell Lines. Pathol Oncol Res 2020; 26:2669-2681. [PMID: 32656599 PMCID: PMC7471166 DOI: 10.1007/s12253-020-00870-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The unique character of selenium compounds, including sodium selenite and Se-methylselenocysteine (MSC), is that they exert cytotoxic effects on neoplastic cells, providing a great potential for treating cancer cells being highly resistant to cytostatic drugs. However, selenium treatment may affect microRNA (miRNA) expression as the pattern of circulating miRNAs changed in a placebo-controlled selenium supplement study. This necessitates exploring possible changes in the expression profiles of miRNAs. For this, miRNAs being critical for liver function were selected and their expression was measured in hepatocellular carcinoma (HLE and HLF) and cholangiocarcinoma cell lines (TFK-1 and HuH-28) using individual TaqMan MicroRNA Assays following selenite or MSC treatments. For establishing tolerable concentrations, IC50 values were determined by performing SRB proliferation assays. The results revealed much lower IC50 values for selenite (from 2.7 to 11.3 μM) compared to MSC (from 79.5 to 322.6 μM). The treatments resulted in cell line-dependent miRNA expression patterns, with all miRNAs found to show fold change differences; however, only a few of these changes were statistically different in treated cells compared to untreated cells below IC50. Namely, miR-199a in HLF, miR-143 in TFK-1 upon MSC treatment, miR-210 in HLF and TFK-1, miR-22, -24, -122, -143 in HLF upon selenite treatment. Fold change differences revealed that miR-122 with both selenium compounds, miR-199a with MSC and miR-22 with selenite were affected. The miRNAs showing minimal alterations included miR-125b and miR-194. In conclusion, our results revealed moderately altered miRNA expression in the cell lines (less alterations following MSC treatment), being miR-122, -199a the most affected and miR-125b, -194 the least altered miRNAs upon selenium treatment.
Collapse
|
29
|
Lowly expressed lncRNA PVT1 suppresses proliferation and advances apoptosis of glioma cells through up-regulating microRNA-128-1-5p and inhibiting PTBP1. Brain Res Bull 2020; 163:1-13. [PMID: 32562719 DOI: 10.1016/j.brainresbull.2020.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/07/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glioma is a primary intracranial malignancy with poor prognosis, of which the pathogenesis remains to be elucidated. Therein, the aim of this study is to discuss the impacts of lncRNA plasmacytoma variant translocation 1 (PVT1)/microRNA-128-1-5p (miR-128-1-5p)/polypyrimidine tract-binding protein 1 (PTBP1) axis on the biological characteristics of glioma cells. METHODS Glioma tissue samples (72 cases) and normal brain tissue samples (35 cases) were harvested. The expression of PVT1, miR-128-1-5p and PTBP1 in glioma tissues and cells was detected. Glioma cells were transfected with sh-PVT1, miR-128-1-5p mimics or miR-128-1-5p inhibitors to verify the impacts of PVT1 and miR-128-1-5p on DNA damage, cell colony formation, invasion, proliferation, migration and apoptosis of glioma U87 and U251 cells. The growth of transplanted tumor was tested by tumor xenograft in nude mice. The combination of PVT1 and miR-128-1-5p and the targeting relationship between miR-128-1-5p and PTBP1 were verified. RESULTS PVT1 and PTBP1 expression was enhanced and miR-128-1-5p expression was degraded in glioma tissues and cells. Overexpressed miR-128-1-5p and lowly-expressed PVT1 promoted DNA damage, suppressed colony formation, invasion, proliferation and migration as well as boosted apoptosis of U251 and U87 cells. Up-regulating miR-128-1-5p and down-regulating PVT1 reduced transplanted tumor volume and weight of glioma in mice. Low expression miR-128-1-5p reversed the effect of low expression PVT1 on the biological characteristics of glioma cells. PVT1 specifically bound to miR-128-1-5p and PTBP1 was the target gene of miR-128-1-5p. CONCLUSION This study suggests that down-regulated PVT1 or up-regulated miR-128-1-5p boosts apoptosis and attenuates proliferation of glioma cells by inhibiting PTBP1 expression. This study is essential for finding new therapeutic targets for glioma.
Collapse
|
30
|
Hou C, Guo D, Yu X, Wang S, Liu T. TMT-based proteomics analysis of the anti-hepatocellular carcinoma effect of combined dihydroartemisinin and sorafenib. Biomed Pharmacother 2020; 126:109862. [PMID: 32120157 DOI: 10.1016/j.biopha.2020.109862] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as the major primary liver cancer, is one of the most prevalent malignant diseases with a high mortality rate worldwide. Prior studies have demonstrated that dihydroartemisinin (DHA), the semisynthetic derivative of artemisinin, possesses anti-HCC activity. The multikinase inhibitor sorafenib has been approved for the treatment of HCC. However, the anti-HCC efficacy of DHA combined with sorafenib has not been reported. In this study, we confirmed the significantly enhanced anti-HCC efficacy of DHA in combination with sorafenib compared with that of each agent alone. Tandem Mass Tag (TMT) peptide labeling coupled with LC-MS/MS was used to quantify the proteins from the control, DHA, sorafenib, and DHA + sorafenib groups. In total, 532, 426, 628 differentially expressed proteins (fold change >1.20 or <0.83 and P-value <0.05) were determined by comparing DHA versus control, sorafenib versus control and DHA + sorafenib versus control groups, respectively. Moreover, optimized screening was performed, and 101 optimized differentially expressed proteins were identified. The results of functional analysis of the optimized differentially expressed proteins suggested that they were enriched in cell components such as membrane-bound vesicles, extracellular vesicles, and organelle lumens, and they were mainly involved in biological processes such as cellular component organization, response to stress, and response to chemicals; in addition, they were related to various molecular functions such as protein binding, chromatin binding and enzyme binding. KEGG pathway analysis showed that the optimized differentially expressed proteins were enriched in pyrimidine metabolism, RNA polymerase, base excision repair, and osteoclast differentiation. Protein-protein interaction (PPI) networks of some of the optimized upregulated proteins suggested that they might not only affect vitamin and fat digestion and absorption but may also be involved in tight junctions. In the PPI network, some of the optimized downregulated proteins were enriched in base excision repair, RNA polymerase, purine metabolism, pyrimidine metabolism and mucin type O-glycan biosynthesis. Overall, this research explored the anti-HCC efficacy of DHA combined with sorafenib by using the TMT-based quantitative proteomics technique and might facilitate the understanding of the related anti-HCC molecular mechanism.
Collapse
Affiliation(s)
- Chunying Hou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|