1
|
Nakai T, Sakurada A, Endo T, Kobayashi H, Masuda S, Makishima M, Esumi M. Caution for simple sequence repeat number variation in the mitochondrial DNA D-loop to determine cancer-specific variants. Oncol Lett 2018; 17:1883-1888. [PMID: 30675251 DOI: 10.3892/ol.2018.9809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial DNA (mtDNA) displacement loop (D-loop) is often altered in various cancer types, including with regard to simple sequence repeat number variation (SSRNV), which includes the C-tract and CA-tract. However, because of mitochondrial heteroplasmy and slippage errors by the Taq DNA polymerase used in polymerase chain reaction (PCR) analysis, it is difficult to precisely evaluate mtDNA D-loop SSRNV experimentally. In this study, to precisely determine cancer-specific variants in mtDNA SSRNV, various microscopic portions of cancerous tissues and normal control tissues were obtained from a patient with breast cancer, followed by laser-capture microdissection of formalin-fixed paraffin-embedded specimens. Regions containing (CA)7 repeats (positions 514-523) and (C)8 repeats (positions 303-315) of the mitochondria DNA D-loop were amplified and sequenced. Variant signals of mtDNA SSRs of (CA)7 and (C)8 were observed in normal and cancerous tissues, with the content of minor alleles (CA)6 and (C)7/(C)9 differing among samples. These results were confirmed by PCR using various primers and proofreading DNA polymerases. PCR of genomic SSRs of (CA)7 in the NAALD2 gene and (C)8 in the BMP6 gene showed a simple repeat in all samples that was different from the observed mtDNA SSRNV. The present study suggests a reliable procedure for determining cancer-specific variants in mtDNA SSRNV: Using a proofreading DNA polymerase for PCR, the background of slippage by PCR is determined by PCR of the same genomic sequence as the target. Due to the varied heteroplasmy level of mtDNA SSRNV among normal tissues, the second background of polymorphic variations should be determined by several normal tissue DNA as PCR templates. Finally, the cancer-specific variant, including its variation frequency, is determined by subtracting the two background signals from the variant signals in cancer. However, care must be taken, as normal heteroplasmy drifts observed in mtDNA SSRNV may complicate such estimations.
Collapse
Affiliation(s)
- Tokiko Nakai
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Akihisa Sakurada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Toshihide Endo
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroko Kobayashi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Mariko Esumi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
2
|
Casper M, Weber SN, Kloor M, Müllenbach R, Grobholz R, Lammert F, Zimmer V. Hepatocellular carcinoma as extracolonic manifestation of Lynch syndrome indicates SEC63 as potential target gene in hepatocarcinogenesis. Scand J Gastroenterol 2013; 48:344-51. [PMID: 23537056 DOI: 10.3109/00365521.2012.752030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Lynch syndrome is a cancer predisposition syndrome caused by germline mutations in DNA mismatch repair (MMR) genes with microsatellite instability (MSI) as its molecular hallmark. Hepatocellular carcinoma (HCC) has not been considered part of the tumor spectrum. The aim was to provide a detailed molecular characterization of an HCC associated with Lynch Syndrome (Muir-Torre variant). MATERIALS AND METHODS HCC samples were analyzed for MSI, MMR protein expression and coding microsatellite instability (cMSI). Since cMSI also affected SEC63 coding for an endoplasmic reticulum membrane protein with implications for intracellular protein translocation, its impact on hepatocyte growth control was assessed in an established short-term model. Recombinant inbred mouse lines (BXD) showing different basal SEC63 expression levels were treated with the chemocarcinogen diethylnitrosamine (DEN) intraperitoneally. Proliferation and apoptosis of hepatocytes were determined after 48 h using Ki67 and TUNEL assays. RESULTS The HCC was high-grade microsatellite unstable with loss of MSH2 expression. cMSI was detected in four genes (ASTE1, SEC63, TAF1B, TGFBR2). However, only TGFBR2 is known to be involved in hepatocarcinogenesis. When investigating the impact of SEC63 expression on hepatocyte growth control in the murine model, low hepatic expression correlated significantly (p < 0.05) with a decrease in apoptosis and increased proliferative activity. CONCLUSIONS For the first time, an HCC with characteristic molecular features of association with Lynch syndrome is described. The pro-carcinogenic growth behavior of hepatocytes with low SEC63 expression in the murine model indicates a potential role for SEC63 in hepatocarcinogenesis in general, but this needs further functional validation.
Collapse
Affiliation(s)
- Markus Casper
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
3
|
Breuhahn K, Schirmacher P. Reactivation of the insulin-like growth factor-II signaling pathway in human hepatocellular carcinoma. World J Gastroenterol 2008; 14:1690-8. [PMID: 18350600 PMCID: PMC2695909 DOI: 10.3748/wjg.14.1690] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Constitutive activation of the insulin-like growth factor (IGF)-signaling axis is frequently observed in human hepatocellular carcinoma (HCC). Especially the overexpression of the fetal growth factor IGF-II, IGF-Ireceptor (IGF-IR), and cytoplasmic downstream effectors such as insulin-receptor substrates (IRS) contribute to proliferation, anti-apoptosis, and invasive behavior. This review focuses on the relevant alterations in this signaling pathway and independent in vivo models that support the central role IGF-II signaling during HCC development and progression. Since this pathway has become the center of interest as a target for potential anti-cancer therapy in many types of malignancies, various experimental strategies have been developed, including neutralizing antibodies and selective receptor kinase inhibitors, with respect to the specific and efficient reduction of oncogenic IGF-II/IGF-IR-signaling.
Collapse
|
4
|
Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 2006; 25:3787-800. [PMID: 16799620 DOI: 10.1038/sj.onc.1209556] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dysregulation of pleiotropic growth factors, receptors and their downstream signaling pathway components represent a central protumorigenic principle in human hepatocarcinogenesis. Especially the Insulin-like Growth Factor/IGF-1 receptor (IGF/IGF-1R), Hepatocyte Growth Factor (HGF/MET), Wingless (Wnt/beta-catenin/FZD), Transforming Growth Factor alpha/Epidermal Growth Factor receptor (TGFalpha/EGFR) and Transforming Growth Factor beta (TGFbeta/TbetaR) pathways contribute to proliferation, antiapoptosis and invasive behavior of tumor cells. This review focuses on the relevant alterations in these pathways identified in human human hepatocellular carcinomas (HCCs). Resultant functional effects are modulated by multiple cross-talks between the different signaling pathways and additional tumor-relevant factors, such as cyclooxygenase-2 and p53. Several specific strategies are currently under development such as receptor kinase inhibitors, neutralizing antibodies and antagonistic proteins, which may improve the systemic treatment of human HCCs.
Collapse
Affiliation(s)
- K Breuhahn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
5
|
Lin Z, Thomas N, Wang Y, Guo X, Seifart C, Shakoor H, Floros J. Deletions within a CA-repeat-rich region of intron 4 of the human SP-B gene affect mRNA splicing. Biochem J 2005; 389:403-12. [PMID: 15790313 PMCID: PMC1175118 DOI: 10.1042/bj20042032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Length variants within a CA-repeat-rich region of intron 4 of the human SP-B (pulmonary surfactant protein-B) gene are associated with several lung diseases. The hypothesis that SP-B intron 4 affects mRNA splicing was studied. SP-B minigenes containing exons 1-6 with a normal-sized intron 4 (pBi4normal) or intron 4 containing deletions (pBi4del) of 193, 211, 264 or 340 bp were expressed in CHO (Chinese hamster ovary) cells by transient transfection. Two forms of SP-B transcripts, normal and incompletely spliced, were detected. With pBi4normal, normal-sized SP-B mRNA was the predominant form and a very low amount of incompletely spliced mRNA was present, whereas with the pBi4del variants the amount of normal SP-B mRNAs was lower and the amount of incompletely spliced mRNA was relatively high. Reverse transcription-PCR results and sequencing data indicated that the incompletely spliced SP-B RNA contained intron 4 sequence, and this incompletely spliced RNA was also observed in normal lung. Lung cancer tissues with intron 4 deletions exhibited a larger amount of abnormally spliced RNAs compared with normal lung tissue or cancerous tissue with normal-sized intron 4. The results indicate that intron 4 length variants affect SP-B mRNA splicing, and that this may contribute to lung disease.
Collapse
Affiliation(s)
- Zhenwu Lin
- *Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Neal J. Thomas
- †Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
- ‡Department of Health Evaluation Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Yunhua Wang
- *Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Xiaoxuan Guo
- *Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Carola Seifart
- §Department of Clinical and Experimental Pathology, Research Center Borstel, Parkallee, 23845 Borstel, Germany
| | - Hasan Shakoor
- ∥Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Joanna Floros
- *Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
- †Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
- ¶Department of Obstetric and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
- To whom correspondence should be addressed, at Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, U.S.A. (email )
| |
Collapse
|
6
|
Kremer-Tal S, Reeves HL, Narla G, Thung SN, Schwartz M, Difeo A, Katz A, Bruix J, Bioulac-Sage P, Martignetti JA, Friedman SL. Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma. Hepatology 2004; 40:1047-52. [PMID: 15486921 DOI: 10.1002/hep.20460] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, reflecting incomplete characterization of underlying mechanisms and lack of early detection. Kruppel-like factor 6 (KLF6) is a ubiquitously expressed zinc finger transcription factor that is deregulated in multiple cancers through loss of heterozygosity (LOH) and/or inactivating somatic mutation. We analyzed the potential role of the KLF6 tumor suppressor gene in 41 patients who had HCC associated with hepatitis C virus (16 patients), hepatitis B virus (12 patients, one of whom was coinfected with hepatitis C virus), and other etiologies (14 patients) by determining the presence of LOH and mutations. Overall, LOH and/or mutations were present in 20 (49%) of 41 tumors. LOH of the KLF6 gene locus was present in 39% of primary HCCs, and the mutational frequency was 15%. LOH and/or mutations were distributed across all etiologies of HCC evaluated, including patients who did not have cirrhosis. Functionally, wild-type KLF6 decreased cellular proliferation of HepG2 cells, while patient-derived mutants did not. In conclusion, we propose that KLF6 is deregulated by loss and/or mutation in HCC, and its inactivation may contribute to pathogenesis in a significant number of these tumors.
Collapse
Affiliation(s)
- Sigal Kremer-Tal
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhu JS, Shen B, Chen JL, Chen GQ, Yu XH, Yu HF, Zhu ZM. Molecule action mechanisms of NM-3 on human gastric cancer SGC-7901 cells in vivo or in vitro. World J Gastroenterol 2003; 9:2366-9. [PMID: 14562415 PMCID: PMC4656500 DOI: 10.3748/wjg.v9.i10.2366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the molecule action mechanisms of NM-3 on the growth of human gastric cancer SGC-7901 cells in vivo or in vitro.
METHODS: SGC-7901 from human non-differentiated gastric cancer cell line was cultured with NM-3 at 100 mg/mL for 24 h. We observed its inhibitory rate and the density of micro-vascular growth in grafted mice with human gastric cancer SGC-7901. The apoptosis of human gastric cancer SGC-7901 was revealed in NM-3 treatment group by using terminal deoxynucleotidyl transferase-mediated deoxy-uridine triphosphate-fluorescene nick end labeling (TUNEL) method and flow cytometry analysis.
RESULTS: The growth of SGC-7901 cells was markedly inhibited compared with control growp, which was smaller than that in normal saline control group (4.17 g ± 0.22 g vs 9.45 g ± 1.38 g, P < 0.01). The level of apoptosis of human gastric cell line SGC-7901 was obviously increased in NM-3 treatment group at 1 mg.L-1 for 24 h. NM-3 inducing apoptotic index in NM-3 plus carboplatin group was 3.5 times that of carboplatin control group (TUNEL: 27.98% ± 6.12% vs 12.94% ± 2.12%, FACScan: 26.86% ± 5.69% vs 11.86% ± 1.09%, P < 0.01). Western blot analysis showed that the apoptotic index of human gastric cancer was elevated for 12, 24 and 36 h with an evident time-effect relationship in groups at 100 mg.L-1. NM-3 enhanced the inhibitive effects and sensitivity of chemotherapy for human gastric cancer in nude mice. These results suggested that NM-3 played a key inhibitive role in the growth of grafted human gastric cancer in nude mice.
CONCLUSION: NM-3 can inhibit the growth of human gastric cancer cell line SGC-7901, and enhance the sensitivity of carboplatin on SGC-7901 and induced its apoptosis.
Collapse
Affiliation(s)
- Jin-Shui Zhu
- Department of Gastroenterology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Zanetti D, Poli G, Vizio B, Zingaro B, Chiarpotto E, Biasi F. 4-hydroxynonenal and transforming growth factor-beta1 expression in colon cancer. Mol Aspects Med 2003; 24:273-80. [PMID: 12893005 DOI: 10.1016/s0098-2997(03)00022-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vivo studies on human colon adenocarcinoma showed decreased transforming growth factor-beta1 (TGF-beta1) antiproliferative cytokine content in tumour tissue related to malignancy progression, with a corresponding decrease in lipid peroxidation aldehydic end-product, 4-hydroxynonenal (HNE). The tumour mechanism to escape TGF-beta1-mediated growth inhibition may be due to an altered TGF-beta1 receptor system. Subsequent in vitro analyses showed a differential distribution of TGF-beta1 receptors depending on the human colon cancer cell line considered (CaCo-2 or HT-29): compared to HT-29 cells, CaCo-2 cells showed a decrease of the two main TGF-beta1 receptors, RI and RII. Notwithstanding their partial TGF-beta1 RI and RII deficiency, treatment of CaCo-2 cells with adequate doses of the cytokine (10 ng/ml) was able to induce apoptosis. Of note, co-treatment of these cells with 1 microM HNE increased the apoptotic effect. The constant low concentration of TGF-beta1 in the tumour mass may be related to the low content of antiproliferative HNE observed in colon cancer: the latter phenomenon, which reduces TGF-beta1 production in the tumour area, may represent a favourable condition for neoplastic progression. The enhancement of TGF-beta1-induced apoptosis by HNE in CaCo-2 cells supports this hypothesis. The different transcriptional components regulated by the distinct signaling pathways of these two molecules might be proposed; in particular, crosstalk between the MAPK and the Smad pathway could modulate and co-operate in the transcription of target genes involved in regulation of cell proliferation.
Collapse
Affiliation(s)
- D Zanetti
- Department of Clinical and Biological Sciences of the University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | | | | | | | | | | |
Collapse
|