1
|
Veluvolu SM, Grohar PJ. Importance of pharmacologic considerations in the development of targeted anticancer agents for children. Curr Opin Pediatr 2023; 35:91-96. [PMID: 36562272 DOI: 10.1097/mop.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe key pharmacologic considerations to inform strategies in drug development for pediatric cancer. RECENT FINDINGS Main themes that will be discussed include considering patient specific factors, epigenetic/genetic tumor context, and drug schedule when optimizing protocols to treat pediatric cancers. SUMMARY Considering these factors will allow us to more effectively translate novel targeted therapies to benefit pediatric patients.
Collapse
Affiliation(s)
- Sridhar M Veluvolu
- Division of Oncology, Center of Childhood Cancer Research, Children's Hospital of Philadelphia
| | - Patrick J Grohar
- Division of Oncology, Center of Childhood Cancer Research, Children's Hospital of Philadelphia
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
TPMT*3C as a Predictor of 6-Mercaptopurine-Induced Myelotoxicity in Thai Children with Acute Lymphoblastic Leukemia. J Pers Med 2021; 11:jpm11080783. [PMID: 34442427 PMCID: PMC8400562 DOI: 10.3390/jpm11080783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023] Open
Abstract
The response to 6-mercaptopurine (6-MP) can be altered by genetic polymorphisms in genes encoding drug-metabolizing enzymes and drug transporters. The purpose of this study was to investigate the association between genetic polymorphisms of drug-metabolizing enzymes (TPMT 719A > G (*3C), ITPA 94C > A and ITPA 123G > A) and drug transporters (MRP4 912C > A and MRP4 2269G > A) with 6-MP-related myelotoxicity and hepatotoxicity in Thai children with acute lymphoblastic leukemia (ALL). The prescribed dosage of 6-MP and its adverse effects were assessed from medical records during the first 8 weeks and 9–24 weeks of maintenance therapy. Children with the TPMT*1/*3C genotype had a higher risk of leukopenia with an odds ratio (OR) of 4.10 (95% confidence interval (CI) of 1.06–15.94; p = 0.033) compared to wild type (TPMT*1/*1) patients. Heterozygous TPMT*3C was significantly associated with severe neutropenia with an increased risk (OR, 4.17; 95% CI, 1.25–13.90); p = 0.014) during the first 8 weeks. No association was found among ITPA94C > A, ITPA123G > A, MRP4 912C > A, and MRP4 2269G > A with myelotoxicity and hepatotoxicity. The evidence that TPMT heterozygotes confer risks of 6-MP-induced myelotoxicity also supports the convincing need to genotype this pharmacogenetic marker before the initiation of 6-MP therapy.
Collapse
|
3
|
Genetic Polymorphisms of Drug-Metabolizing Enzymes Involved in 6-Mercaptopurine-Induced Myelosuppression in Thai Pediatric Acute Lymphoblastic Leukemia Patients. J Pediatr Genet 2021; 10:29-34. [PMID: 33552635 DOI: 10.1055/s-0040-1715818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Genetic polymorphisms of thiopurine S-methyltransferase (TPMT) and nucleoside diphosphate-linked moiety X-type motif 15 ( NUDT15 ) genes have been proposed as key determinants of 6-mercaptopurine (6-MP)-induced myelosuppression in pediatric acute lymphoblastic leukemia (ALL). In the present study, genotypes of TPMT and NUDT15 were investigated in 178 Thai pediatric patients with ALL by the TaqMan SNP genotyping assay and DNA sequencing. The frequency of TPMT*3C was 0.034. Among NUDT15 variants, NUDT15*3 is the most common variant with the allele frequency of 0.073, whereas those of NUDT15*2 , NUDT15*5 , and NUDT15*6 variants were 0.022, 0.011, and 0.039. These data suggest that a high proportion of Thai pediatric ALL patients may be at risk of thiopurine-induced myelosuppression.
Collapse
|
4
|
Maamari D, El-Khoury H, Saifi O, Muwakkit SA, Zgheib NK. Implementation of Pharmacogenetics to Individualize Treatment Regimens for Children with Acute Lymphoblastic Leukemia. Pharmgenomics Pers Med 2020; 13:295-317. [PMID: 32848445 PMCID: PMC7429230 DOI: 10.2147/pgpm.s239602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Despite major advances in the management and high cure rates of childhood acute lymphoblastic leukemia (ALL), patients still suffer from many drug-induced toxicities, sometimes necessitating dose reduction, or halting of cytotoxic drugs with a secondary risk of disease relapse. In addition, investigators have noted significant inter-individual variability in drug toxicities and disease outcomes, hence the role of pharmacogenetics (PGx) in elucidating genetic polymorphisms in candidate genes for the optimization of disease management. In this review, we present the PGx data in association with main toxicities seen in children treated for ALL in addition to efficacy, with a focus on the most plausible germline PGx variants. We then follow with a summary of the highest evidence drug-gene annotations with suggestions to move forward in implementing preemptive PGx for the individualization of treatment regimens for children with ALL.
Collapse
Affiliation(s)
- Dimitri Maamari
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib El-Khoury
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omran Saifi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar A Muwakkit
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
5
|
Alsous M, Yousef AM, Abdel Jalil M, Zawiah M, Yacoub S, Momani D, Gharabli A, Omar S, Rihani R. Genetic Polymorphism of Thiopurine S-methyltransferase in Children with Acute Lymphoblastic Leukemia in Jordan. Asian Pac J Cancer Prev 2018; 19:199-205. [PMID: 29373914 PMCID: PMC5844618 DOI: 10.22034/apjcp.2018.19.1.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background and Aims: It has been demonstrated that homozygote and heterozygote mutant allele carriers for thiopurine S-methyltransferase (TPMT) are at high risk of developing myelosuppression after receiving standard doses of 6-mercaptopurine (6-MP). The aim of this study was to determine the frequency of TPMT deficient alleles in children with acute lymphoblastic leukemia (ALL) in Jordan and to compare it with other ethnic groups. Methods: We included 52 ALL childhood cases from King Hussein Cancer Research Center in Jordan. Genotyping of the rs1800460, rs1800462, and rs1142345 SNPs was performed by polymerase chain reaction (PCR) followed by sequencing. Comparisons were made with historical data for controls and for both volunteers and cases from other middle-eastern countries. Results: Mutant TPMT alleles were present in 3.8% (2/52) of patients. Allelic frequencies were 1.0% for both TPMT*B and TPMT*C. None of the patients were heterozygous or homozygous for TPMT*3A or TPMT *2. We did not find statistically significant differences in the distribution of mutant alleles between Jordan and other middle-eastern countries for both healthy volunteers or ALL patients. Conclusions: The overall frequency of TPMT mutant alleles was low and did not exhibit differences compared to other middle-eastern countries, including Jordanian studies assessing TPMT mutant alleles in healthy volunteers. The current results question the value of TPMT genotyping in the Jordanian population.
Collapse
Affiliation(s)
- Mervat Alsous
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim GJ, Lee SY, Park JH, Ryu BY, Kim JH. Role of Preemptive Genotyping in Preventing Serious Adverse Drug Events in South Korean Patients. Drug Saf 2017; 40:65-80. [PMID: 27638658 DOI: 10.1007/s40264-016-0454-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Preemptive and multi-variant genotyping is suggested to improve the safety of patient drug therapy. The number of South Koreans who would benefit from this approach is unknown. OBJECTIVE We aimed to quantify the number of patients who may experience serious adverse drug events (ADEs) due to high-risk pharmacogenetic variants and who may benefit from preemptive genotyping. METHODS The health claims dataset of the Korean Health Insurance Review and Assessment service for 3 % of the South Korean population for year 2011 was used to calculate the number of patients exposed to 84 drugs covered by National Health Insurance with pharmacogenomic biomarkers. The product of ADE risk-conferring genotype prevalence, ADE prevalence rates, and genotype effect sizes in South Koreans or East Asians derived from published literature and the 1000 Genomes Project, and the drug exposure data were solved to estimate the number of South Koreans in whom preemptive genotyping may prevent serious ADEs. RESULTS Among 1,341,077 patients in the dataset with prescriptions, 47.4 % were prescribed a drug whose response was affected by genetic variants and 31.9 % were prescribed at least one drug with serious ADEs modulated by these variants. Without genetic testing, the number of South Korean patients predicted to experience serious ADEs due to their higher ADE risk genotypes was estimated at 729. Extrapolating this to the total South Korean population indicated that approximately 24,300 patients in 2011 might have benefitted from preemptive genotyping. CONCLUSIONS This study quantified the number of South Korean patients predicted to have serious ADEs and demonstrated the need for preemptive genotyping to assist safer drug therapy in South Korea.
Collapse
Affiliation(s)
- Grace Juyun Kim
- Seoul National University Biomedical Informatics (SNUBI), 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea
| | - Soo Youn Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University College of Natural Sciences, 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea
| | - Ji Hye Park
- Interdisciplinary Program in Bioinformatics, Seoul National University College of Natural Sciences, 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea
| | - Brian Y Ryu
- Interdisciplinary Program in Bioinformatics, Seoul National University College of Natural Sciences, 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea. .,Division of Biomedical Informatics, Systems Biomedical Informatics National Core Research Center (SBI-NCRC), Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea.
| |
Collapse
|
7
|
Jiménez-Morales S, Ramírez-Florencio M, Mejía-Aranguré JM, Núñez-Enríquez JC, Bekker-Mendez C, Torres-Escalante JL, Flores-Lujano J, Jiménez-Hernández E, Del Carmen Rodríguez-Zepeda M, Leal YA, González-Montalvo PM, Pantoja-Guillen F, Peñaloza-Gonzalez JG, Gutiérrez-Juárez EI, Núñez-Villegas NN, Pérez-Saldivar ML, Guerra-Castillo FX, Flores-Villegas LV, Ramos-Cervantes MT, Fragoso JM, García-Escalante MG, Del Carmen Pinto-Escalante D, Ramírez-Bello J, Hidalgo-Miranda A. Analysis of Thiopurine S-Methyltransferase Deficient Alleles in Acute Lymphoblastic Leukemia Patients in Mexican Patients. Arch Med Res 2017; 47:615-622. [PMID: 28476189 DOI: 10.1016/j.arcmed.2016.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS It has been demonstrated that heterozygote and homozygote thiopurine S-methyltransferase (TPMT) mutant allele carriers are at high risk to develop severe and potentially fatal hematopoietic toxicity after treatment with standard doses of 6-mercaptopurine (6-MP) and methotrexate (MX). Those drugs are the backbone of acute lymphoblastic leukemia (ALL) and several autoimmune disease treatments. We undertook this study to determine the frequency of the TPMT deficient alleles in children with ALL and non-ALL subjects from Mexico City and Yucatan, Mexico. METHODS We included 849 unrelated subjects, of which 368 ALL children and 342 non-ALL subjects were from Mexico City, and 60 ALL cases and 79 non-ALL individuals were from Yucatan. Genotyping of the rs1800462, rs1800460 and rs1142345 SNPs was performed by 5'exonuclease technique using TaqMan probes (Life Technologies Foster City, CA). RESULTS The mutant TPMT alleles were present in 4.8% (81/1698 chromosomes) and only 0.2% were homozygote TPMT*3A/TPMT*3A. We did not find statistically significant differences in the distribution of the mutant alleles between patients from Mexico City and Yucatan in either ALL cases or non-ALL. Nonetheless, the TPMT*3C frequency in ALL patients was higher than non-ALL subjects (p = 0.03). To note, the null homozygous TPMT*3A/TPMT*3A genotype was found in 2.5% of the non-ALL subjects. CONCLUSIONS TPMT mutant alleles did not exhibit differential distribution between both evaluated populations; however, TPMT*3C is overrepresented in ALL cases in comparison with non-ALL group. Assessing the TPMT mutant alleles could benefit the ALL children and those undergoing 6-MP and MX treatment.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, México.
| | - Mireya Ramírez-Florencio
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, México
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México; Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | - Carolina Bekker-Mendez
- Unidad de Investigación en Inmunología e Infectología Hospital de Infectologia, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, México
| | - José Luis Torres-Escalante
- Servicio de Pediatría de la UMAE, IMSS, Yucatán, Mexico; Facultad de Medicina, Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General "Gaudencio González Garza", CMN "La Raza", IMSS, Ciudad de México, México
| | | | - Yelda A Leal
- Unidad de Investigación Médica Yucatán (UIMY), Registro de Cáncer Unidad Médica de Alta Especialidad UMAE-IMSS, Yucatán, México
| | - Pablo Miguel González-Montalvo
- Facultad de Medicina, Universidad Autónoma de Yucatán, Yucatán, Mexico; Servicio de Oncología Pediátrica del Hospital ÓHorán, SS, Yucatán, Mexico
| | - Francisco Pantoja-Guillen
- Facultad de Medicina, Universidad Autónoma de Yucatán, Yucatán, Mexico; Servicio de Oncología Pediátrica del Hospital ÓHorán, SS, Yucatán, Mexico
| | | | | | - Nora Nancy Núñez-Villegas
- Servicio de Hematología Pediátrica, Hospital General "Gaudencio González Garza", CMN "La Raza", IMSS, Ciudad de México, México
| | - Maria Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, México
| | - Francisco Xavier Guerra-Castillo
- Unidad de Investigación en Inmunología e Infectología Hospital de Infectologia, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, México
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, CMN "20 de Noviembre", Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Ciudad de México, México
| | - María Teresa Ramos-Cervantes
- Unidad de Investigación en Inmunología e Infectología Hospital de Infectologia, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, México
| | - José Manuel Fragoso
- Departamento de Biología Molecular, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, Mexico
| | - María Guadalupe García-Escalante
- Laboratorio de Genética, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Yucatán, México
| | - Doris Del Carmen Pinto-Escalante
- Laboratorio de Genética, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Yucatán, México
| | - Julián Ramírez-Bello
- Laboratorio de la Unidad de Investigación en Enfermedades Metabólicas y Endócrinas del Hospital Juárez de México, Ciudad de México, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, México.
| |
Collapse
|
8
|
Abaji R, Krajinovic M. Thiopurine S-methyltransferase polymorphisms in acute lymphoblastic leukemia, inflammatory bowel disease and autoimmune disorders: influence on treatment response. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:143-156. [PMID: 28507448 PMCID: PMC5428801 DOI: 10.2147/pgpm.s108123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thiopurine S-methyltransferase (TPMT) gene encodes for the TPMT enzyme that plays a crucial role in the metabolism of thiopurine drugs. Genetic polymorphisms in this gene can affect the activity of the TPMT enzyme and have been correlated with variability in response to treatment with thiopurines. Advances in the pharmacogenetics of TPMT allowed the development of dosing recommendations and treatment strategies to optimize and individualize prescribing thiopurine in an attempt to enhance treatment efficacy while minimizing toxicity. The influence of genetic polymorphisms in the TPMT gene on clinical outcome has been well-documented and replicated in many studies. In this review, we provide an overview of the evolution, results, conclusions and recommendations of selected studies that investigated the influence of TPMT pharmacogenetics on thiopurine treatment in acute lymphoblastic leukemia, inflammatory bowel disease and autoimmune disorders. We focus mainly on prospective studies that explored the impact of individualized TPMT-based dosing of thiopurines on clinical response. Together, these studies demonstrate the importance of preemptive TPMT genetic screening and subsequent dose adjustment in mitigating the toxicity associated with thiopurine treatment while maintaining treatment efficacy and favorable long-term outcomes. In addition, we briefly address the cost-effectiveness of this pharmacogenetics approach and its impact on clinical practice as well as the importance of recent breakthrough advances in sequencing and genotyping techniques in refining the TPMT genetic screening process.
Collapse
Affiliation(s)
| | - Maja Krajinovic
- Departments of Pediatrics and Pharmacology, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Int J Mol Sci 2016; 17:ijms17091502. [PMID: 27618021 PMCID: PMC5037779 DOI: 10.3390/ijms17091502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
During the 3rd congress of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) in Budapest in 2015, a preliminary meeting was held aimed at establishing a pediatric individualized treatment in oncology and hematology committees. The main purpose was to facilitate the transfer and harmonization of pharmacogenetic testing from research into clinics, to bring together basic and translational research and to educate health professionals throughout Europe. The objective of this review was to provide the attendees of the meeting as well as the larger scientific community an insight into the compiled evidence regarding current pharmacogenomics knowledge in pediatric oncology. This preliminary evaluation will help steer the committee’s work and should give the reader an idea at which stage researchers and clinicians are, in terms of personalizing medicine for children with cancer. From the evidence presented here, future recommendations to achieve this goal will also be suggested.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | - Patricia Huezo-Diaz Curtis
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | | | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Centre hospitalier universitaire Sainte-Justine, 4515 Rue de Rouen, Montreal, QC H1V 1H1, Canada.
- Department of Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
| | - Marc Ansari
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Pediatric Department, Onco-Hematology Unit, Geneva University Hospital, Rue Willy-Donzé 6, 1205 Geneva, Switzerland.
| |
Collapse
|
10
|
Abdelaziz DH, Elhosseiny NM, Khaleel SA, Sabry NA, Attia AS, El-Sayed MH. Association Between Combined Presence of Hepatitis C Virus and Polymorphisms in Different Genes With Toxicities of Methotrexate and 6-Mercaptopurine in Children With Acute Lymphoblastic Leukemia. Pediatr Blood Cancer 2016; 63:1539-45. [PMID: 27163515 DOI: 10.1002/pbc.26045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/06/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND The aim of the present study is to determine the correlation of hepatitis C virus (HCV) infection and polymorphisms in different genes with toxicity of either methotrexate (MTX) or 6-mercaptopurine (6-MP) administered to children with acute lymphoblastic leukemia (ALL). PROCEDURE One hundred children with low-risk ALL, who were treated according to the St. Jude Total therapy XV, were recruited. The recruited children were receiving MTX and 6-MP during maintenance phase. Patients were excluded from the study if they had other types of leukemia. Genotyping analyses for the thiopurine methyltransferase (TPMT), methylenetetrahydrofolate reductase (MTHFR), and glutathione S-transferase (GST) genes were performed using a combination of polymerase chain reaction (PCR) and PCR-RFLP (where RFLP is restriction fragment length polymorphism) protocols. Relevant clinical data on adverse drug reactions were collected objectively (blinded to genotypes) from the patient medical records. RESULTS There was a significant correlation between the combined presence of HCV and TPMT*3B G460A gene polymorphisms and grades 2-4 hepatotoxicity as aspartate aminotransferase (AST) elevation (P < 0.04). The same observation was seen when comparing either the presence of HCV alone or the presence of the gene polymorphism alone. A significant association between the combined presence of HCV and MTHFR C677T polymorphism and grades 2-4 hepatotoxicity as alanine aminotransferase (ALT), AST, and alkaline phosphatase (ALP) elevation was observed (P values <0.001, 0.02, and 0.001, respectively). The presence of HCV infection had a significant negative effect on hepatic transaminases. CONCLUSIONS The present data support a role for combining analysis of genetic variation in drug-metabolizing enzymes and the presence of HCV in the assessment of specific drugs toxicities in multiagent chemotherapeutic treatment regimens.
Collapse
Affiliation(s)
- Doaa H Abdelaziz
- Department of Clinical Pharmacy, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sahar A Khaleel
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nirmeen A Sabry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manal H El-Sayed
- Department of Pediatrics, Hematology-Oncology Division, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
11
|
El-Rashedy FH, Ragab SM, Dawood AA, Temraz SA. Clinical implication of thiopurine methyltransferase polymorphism in children with acute lymphoblastic leukemia: A preliminary Egyptian study. Indian J Med Paediatr Oncol 2016; 36:265-70. [PMID: 26811598 PMCID: PMC4711227 DOI: 10.4103/0971-5851.171553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: 6-mercaptopurine (6-MP) is an essential component of pediatric acute lymphoblastic leukemia (ALL) maintenance therapy. Individual variability in this drug-related toxicity could be attributed in part to genetic polymorphism thiopurine methyltransferase (TPMT). Aim: To investigate the frequency of common TPMT polymorphisms in a cohort of Egyptian children with ALL and the possible relation between these polymorphisms and 6-MP with short-term complications. Materials and Methods: This study included 25 children. Data related to 6-MP toxicity during the maintenance phase were collected from the patients’ files. DNA was isolated and genotyping for TPMT G460A, and A719G mutations were performed by polymerase chain reaction-restriction fragment length polymorphism. Results: Twenty (80%) of the included 25 patients had a polymorphic TPMT allele. TPMT*3A was the most frequent (14/25, 56%), 8 patients were homozygous and 6 were heterozygous. TPMT*3C mutant allele was found in 4 patients (16%) in the heterozygous state while 2 patients (8%) were found to be heterozygous for TPMT*3B mutant allele. TPMT mutant patients, especially homozygous, were at greater risk of 6-MP hematological toxicity without significant difference regarding hepatic toxicity. Conclusions: TPMT polymorphism was common among the studied group and was associated with increased risk of drug toxicity. A population-based multi-center study is required to confirm our results.
Collapse
Affiliation(s)
- Farida H El-Rashedy
- Department of Pediatrics, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Menoufia, Egypt
| | - Seham Mohammed Ragab
- Department of Pediatrics, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Menoufia, Egypt
| | - Ashraf A Dawood
- Department of Biochemistry, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Menoufia, Egypt
| | - Shaymaa A Temraz
- Department of Pediatrics, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Menoufia, Egypt
| |
Collapse
|
12
|
Lennard L, Cartwright CS, Wade R, Vora A. Thiopurine methyltransferase and treatment outcome in the UK acute lymphoblastic leukaemia trial ALL2003. Br J Haematol 2015; 170:550-8. [PMID: 25940902 PMCID: PMC4687427 DOI: 10.1111/bjh.13469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/15/2015] [Indexed: 11/29/2022]
Abstract
The influence of thiopurine methyltransferase (TPMT) genotype on treatment outcome was investigated in the United Kingdom childhood acute lymphoblastic leukaemia trial ALL2003, a trial in which treatment intensity was adjusted based on minimal residual disease (MRD). TPMT genotype was measured in 2387 patients (76% of trial entrants): 2190 were homozygous wild-type, 189 were heterozygous for low activity TPMT alleles (166 TPMT*1/*3A, 19 TPMT*1/*3C, 3 TPMT*1/*2 and 1 TPMT*1/*9) and 8 were TPMT deficient. In contrast to the preceding trial ALL97, there was no difference in event-free survival (EFS) between the TPMT genotypes. The 5-year EFS for heterozygous TPMT*1/*3A patients was the same in both trials (88%), but for the homozygous wild-type TPMT*1/*1 patients, EFS improved from 80% in ALL97% to 88% in ALL2003. Importantly, the unexplained worse outcome for heterozygous TPMT*1/*3C patients observed in ALL97 (5-year EFS 53%) was not seen in ALL2003 (5-year EFS 94%). In a multivariate Cox regression analysis the only significant factor affecting EFS was MRD status (hazard ratio for high-risk MRD patients 4·22, 95% confidence interval 2·97–5·99, P < 0·0001). In conclusion, refinements in risk stratification and treatment have reduced the influence of TPMT genotype on treatment outcome in a contemporary protocol.
Collapse
Affiliation(s)
- Lynne Lennard
- Department of Human Metabolism, University of Sheffield, Sheffield, UK
| | - Cher S Cartwright
- Department of Human Metabolism, University of Sheffield, Sheffield, UK
| | | | - Ajay Vora
- Department of Paediatric Haematology, Children's Hospital, Sheffield, UK
| |
Collapse
|
13
|
Lennard L, Cartwright CS, Wade R, Vora A. Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics. Br J Haematol 2014; 169:228-40. [PMID: 25441457 PMCID: PMC4737107 DOI: 10.1111/bjh.13240] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/04/2014] [Indexed: 12/02/2022]
Abstract
The impact of thiopurine methyltransferase (TPMT) genotype on thiopurine dose intensity, myelosuppression and treatment outcome was investigated in the United Kingdom childhood acute lymphoblastic leukaemia (ALL) trial ALL97. TPMT heterozygotes had significantly more frequent cytopenias and therefore required dose adjustments below target levels significantly more often than TPMT wild‐type patients although the average dose range was similar for both genotypes. Event‐free survival (EFS) for patients heterozygous for the more common TPMT*1/*3A variant allele (n = 99, 5‐year EFS 88%) was better than for both wild‐type TPMT*1/*1 (n = 1206, EFS 80%, P = 0·05) and TPMT*1/*3C patients (n = 17, EFS 53%, P = 0·002); outcomes supported by a multivariate Cox regression analysis. Poor compliance without subsequent clinician intervention was associated with a worse EFS (P = 0·02) and such non‐compliance may have contributed to the poorer outcome for TPMT*1/*3C patients. Patients prescribed escalated doses had a worse EFS (P = 0·04), but there was no difference in EFS by dose intensity or duration of cytopenias. In contrast to reports from some USA and Nordic trials, TPMT heterozygosity was not associated with a higher rate of second cancers. In conclusion, TPMT*1/*3A heterozygotes had a better EFS than TPMT wild‐type patients. Thiopurine induced cytopenias were not detrimental to treatment outcome.
Collapse
Affiliation(s)
- Lynne Lennard
- Academic Unit of Clinical Pharmacology, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
14
|
Multidrug resistance protein 4 (MRP4) polymorphisms impact the 6-mercaptopurine dose tolerance during maintenance therapy in Japanese childhood acute lymphoblastic leukemia. THE PHARMACOGENOMICS JOURNAL 2014; 15:380-4. [PMID: 25403995 DOI: 10.1038/tpj.2014.74] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 01/10/2023]
Abstract
Multidrug resistance protein 4 (MRP4) is involved in the efflux of nucleoside derivatives and has a role in the determination of drug sensitivity. We investigated the relationship between MRP4 genetic polymorphisms and doses of the 6-mercaptopurine (6-MP) and methotrexate. Further, we evaluated the frequency of therapeutic interruption during maintenance therapy in Japanese children with acute lymphoblastic leukemia (ALL). Ninety-four patients received an initial 6-MP dose in the range of 30-50 mg m(-2) in this analysis. Patients with homozygous variant allele in any of MRP4 G2269A, C912A and G559T required high frequency of 6-MP dose reduction compared with non-homozygous individuals. Average 6-MP dose for patients with homozygous variant allele on either MRP4 or inosine triphosphate pyrophosphatase was significantly lower than that for patients with non-homozygous variant allele during maintenance therapy (30.5 versus 40.0 mg m(-2), P=0.024). Therefore, MRP4 genotyping may be useful for personalizing the therapeutic dose of 6-MP during the ALL maintenance therapy in Japanese.
Collapse
|
15
|
Lopez-Lopez E, Gutierrez-Camino A, Bilbao-Aldaiturriaga N, Pombar-Gomez M, Martin-Guerrero I, Garcia-Orad A. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics 2014; 15:1383-98. [DOI: 10.2217/pgs.14.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the major pediatric cancer in developed countries. Although treatment outcome has improved owing to advances in chemotherapy, there is still a group of patients for which therapy fails while some patients experience severe toxicity. In the last few years, several pharmacogenetic studies have been performed to search for markers of outcome and toxicity in pediatric ALL. However, to date, TPMT is the only pharmacogenetic marker in ALL with clinical guidelines for drug dosing. In this article, we will provide an overview of the most important findings carried out in pharmacogenetics for pediatric ALL, such as the interest drawn by methotrexate transporters in the context of methotrexate treatment. Even if most of the studies are centered on coding genes, we will also point to new approaches focusing on noncoding regions and epigenetic variation that could be interesting for consideration in the near future.
Collapse
Affiliation(s)
- Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Nerea Bilbao-Aldaiturriaga
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Maria Pombar-Gomez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- BioCruces Health Research Institute, Leioa, Spain
| |
Collapse
|
16
|
Farfan MJ, Salas C, Canales C, Silva F, Villarroel M, Kopp K, Torres JP, Santolaya ME, Morales J. Prevalence of TPMT and ITPA gene polymorphisms and effect on mercaptopurine dosage in Chilean children with acute lymphoblastic leukemia. BMC Cancer 2014; 14:299. [PMID: 24774509 PMCID: PMC4012712 DOI: 10.1186/1471-2407-14-299] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/23/2014] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Mercaptopurine (6-MP) plays a pivotal role in treatment of childhood acute lymphoblastic leukemia (ALL); however, interindividual variability in toxicity of this drug due to genetic polymorphism in 6-MP metabolizing enzymes has been described. We determined the prevalence of the major genetic polymorphisms in 6-MP metabolizing enzymes in Chilean children with ALL. METHODS 103 Chilean pediatric patients with a confirmed diagnosis of ALL were enrolled. DNA was isolated from whole blood and genetic polymorphism in thiopurine S-methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) coding genes were detected by polymorphism chain reaction-restriction fragment length (PCR-RFLP) assay. RESULTS The total frequency of variant TPMT alleles was 8%. TPMT*2, TPMT*3A and TPMT*3B alleles were found in 0%, 7%, and 1% of patients, respectively. For ITPA, the frequency of P32T allele was 3%. We did not observe any homozygous variant for TPMT and ITPA alleles. We also analyzed a subgroup of 40 patients who completed the maintenance phase of ALL treatment, and we found that patients carrying a TPMT gene variant allele required a significantly lower median cumulative dosage and median daily dosage of 6-MP than patients carrying wild type alleles. CONCLUSION TMPT genotyping appears an important tool to further optimize 6-MP treatment design in Chilean patients with ALL.
Collapse
Affiliation(s)
- Mauricio J Farfan
- Departamento de Pediatría, Centro de Estudios Moleculares, Facultad de Medicina, Universidad de Chile, Antonio Varas 360, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ayesh BM, Harb WM, Abed AA. Thiopurine methyltransferase genotyping in Palestinian childhood acute lymphoblastic leukemia patients. BMC HEMATOLOGY 2013; 13:3. [PMID: 24499706 PMCID: PMC3816621 DOI: 10.1186/2052-1839-13-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The genetic polymorphism of thiopurine methyltransferase (TPMT) is well characterized in most populations. Four common polymorphic alleles are associated with impaired activity of the enzyme. These are TPMT*2 (238G>C), TPMT*3B (c.460G>A), TPMT*3A (c.460G>A and c.719A>G) and TPMT*3C (c.719A>G). The aim of the present study was to determine the frequency of TPMT polymorphisms and their association with the occurrence of adverse events, during 6-mercaptopurine therapy in pediatric acute lymphoblastic leukemic (ALL) patients in Gaza Strip. METHODS A total of 56 DNA samples from all pediatric ALL patients admitted to the pediatric hematology departments of Gaza strip hospitals were analyzed. Genomic DNA from peripheral blood leukocytes was isolated and the TPMT*2, TPMT*3B TPMT*3A and TPMT*3C allelic polymorphism was determined by PCR-RFLP and allele specific PCR technique. RESULTS No TPMT*2, *3B or *3C alleles were detected. Only one, out of 56 patients, was found heterozygous for the TPMT*3A allele. Thus, the frequency of TPMT*3A allele was calculated to be 0.89%. Fourteen patients of ALL were suffering from myelotoxicity during 6-MP therapy. From our results, no significant association could be established between clinical and laboratory data and/or the presence of the mutation in TPMT gene. CONCLUSION TPMT*3A was the only deficiency allele detected in our population with an allelic frequency of 0.89%. Other polymorphic alleles in TPMT gene, or factors other than TPMT polymorphisms may be responsible for the development of myelosuppression in cases that don't carry the investigated TPMT alleles (*2, *3A, *3B and *3C). Therefore, more studies are recommended to study such factors.
Collapse
Affiliation(s)
| | | | - Abdalla Assaf Abed
- Biology Department, Islamic University of Gaza, Gaza, Palestinian authority
| |
Collapse
|
18
|
Garrido C, Santizo VG, Müllers P, Soriano DR, Avila GB, Dean M, Jimenez-Morales S. Frequency of thiopurine S-methyltransferase mutant alleles in indigenous and admixed Guatemalan patients with acute lymphoblastic leukemia. Med Oncol 2013; 30:474. [PMID: 23377985 DOI: 10.1007/s12032-013-0474-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 12/11/2022]
Abstract
Thiopurine S-methyltransferase (TPMT) polymorphisms affect the enzyme's activity and are predictive for the efficacy and toxicity of thiopurine treatment of acute lymphoblastic leukemia (ALL), autoimmune diseases and organ transplants. Because inter-ethnic differences in the distribution of these polymorphisms have been documented, we sequenced the TMPT gene in 95 Guatemalans, yet identified no new alleles. We also determined the frequency of the TPMT 2, 3A, 3B and 3C alleles in 270 admixed and 177 indigenous pediatric patients with ALL and healthy subjects from Guatemala using TaqMan assays and DNA sequencing. Among the 447 subjects genotyped, 10.0 % of the ALL cases and 13.6 % of the healthy controls were heterozygous for one of the four TPMT variants screened. The genotype frequencies in ALL and control populations were 0.7 and 1.7 % for TPMT 1/ 2, 7.4 and 10 % for TPMT 1/3A, 0.3 and 0 % for TPMT 1/B, and 1.5 and 1.1 % for TPMT 1/C, respectively (p = 0.30). No statistically significant differences between admixed and indigenous ALL (p = 0.67) or controls (p = 0.41) groups were detected; however, 17 % of the admixed healthy group bore one TPMT mutant allele, and they have one of the highest reported frequencies of TPMT mutant allele carriers. Because of the clinical implications of these variants for therapeutic response, TPMT allele testing should be considered in all Guatemalan patients to reduce adverse side-effects from thiopurine drug treatments.
Collapse
Affiliation(s)
- Claudia Garrido
- Unidad Nacional de Oncología Pediátrica, Guatemala City, Guatemala
| | | | | | | | | | | | | |
Collapse
|
19
|
Skrzypczak-Zielinska M, Borun P, Milanowska K, Jakubowska-Burek L, Zakerska O, Dobrowolska-Zachwieja A, Plawski A, Froster UG, Szalata M, Slomski R. High-resolution melting analysis of the TPMT gene: a study in the Polish population. Genet Test Mol Biomarkers 2012; 17:153-9. [PMID: 23252704 DOI: 10.1089/gtmb.2012.0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The thiopurine S-methyltransferase (TPMT) gene encoding thiopurine methyltransferase is a crucial enzyme in metabolism of thiopurine drugs: azathioprine and 6-mercoptopurine, which are used in the treatment of leukemia or inflammatory bowel diseases. Genetic polymorphism of the TPMT gene correlates with activity of this enzyme, individual reaction, and dosing of thiopurines. Thirty-one variants of the TPMT gene with low enzymatic activity have been described with three major alleles: TPMT*2 (c.238G>C), *3A (c.460 G>A, c.719A>G), and *3C (c.719A>G), accounting for 80% to 95% of inherited TPMT deficiency in different populations in the world. The aim of the study was to establish a rapid and highly sensitive method of analysis for the complete coding sequence of the TPMT gene and to determine the spectrum and prevalence of the TPMT gene sequence variations in the Polish population. Recently, high-resolution melting analysis (HRMA) has become a highly sensitive, automated, and economical technique for mutation screening or genotyping. We applied HRMA for the first time to TPMT gene scanning. In total, we analyzed 548 alleles of the Polish population. We found 11 different sequence variations, where two are novel changes: c.200T>C (p.P67S, TPMT*30) and c.595G>A (p.V199I, TPMT*31). Detection of these new rare alleles TPMT*30 and *31 in the Polish population suggests the need to analyze the whole TPMT gene and maybe also the extension of routinely used tests containing three major alleles, TPMT*2, *3A, and *3C. Identification of sequence variants using HRMA is highly sensitive and less time consuming compared to standard sequencing. We conclude that HRMA can be easy integrated into genetic testing of the TPMT gene in patients treated with thiopurines.
Collapse
|