1
|
Singh I, Rainusso N, Kurenbekova L, Nirala BK, Dou J, Muruganandham A, Yustein JT. Intrinsic Epigenetic State of Primary Osteosarcoma Drives Metastasis. Mol Cancer Res 2024; 22:864-878. [PMID: 38842581 DOI: 10.1158/1541-7786.mcr-23-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/03/2023] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Osteosarcoma is the most common primary malignant bone tumor affecting the pediatric population with a high potential to metastasize. However, insights into the molecular features enabling its metastatic potential are limited. We mapped the active chromatin landscapes of osteosarcoma tumors by integrating histone H3 lysine-acetylated chromatin state (n = 13), chromatin accessibility profiles (n = 11), and gene expression (n = 13) to understand the differences in their active chromatin profiles and their impact on molecular mechanisms driving the malignant phenotypes. Primary osteosarcoma tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared with those without metastasis (localized). This difference shapes the transcriptional profile of osteosarcoma. We identified novel candidate genes, including PPP1R1B, PREX1, and IGF2BP1, that exhibit increased chromatin activity in primary met. Loss of PREX1 in primary met osteosarcoma cells significantly diminishes osteosarcoma proliferation, invasion, migration, and colony formation capacity. Differential chromatin activity in primary met is associated with genes regulating cytoskeleton organization, cellular adhesion, and extracellular matrix, suggesting their role in facilitating osteosarcoma metastasis. Chromatin profiling of tumors from metastatic lung lesions shows increased chromatin activity in genes involved in cell migration and Wnt pathway. These data demonstrate that metastatic potential is intrinsically present in primary met tumors, with cellular chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal site. Implications: Our study demonstrates that metastatic potential is intrinsic to primary metastatic osteosarcoma tumors, with chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal metastatic site.
Collapse
Affiliation(s)
- Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Lyazat Kurenbekova
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Bikesh K Nirala
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| | - Juan Dou
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| | - Abhinaya Muruganandham
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Jason T Yustein
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia
| |
Collapse
|
2
|
Giusti V, Miserocchi G, Sbanchi G, Pannella M, Hattinger CM, Cesari M, Fantoni L, Guerrieri AN, Bellotti C, De Vita A, Spadazzi C, Donati DM, Torsello M, Lucarelli E, Ibrahim T, Mercatali L. Xenografting Human Musculoskeletal Sarcomas in Mice, Chick Embryo, and Zebrafish: How to Boost Translational Research. Biomedicines 2024; 12:1921. [PMID: 39200384 PMCID: PMC11352184 DOI: 10.3390/biomedicines12081921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Musculoskeletal sarcomas pose major challenges to researchers and clinicians due to their rarity and heterogeneity. Xenografting human cells or tumor fragments in rodents is a mainstay for the generation of cancer models and for the preclinical trial of novel drugs. Lately, though, technical, intrinsic and ethical concerns together with stricter regulations have significantly curbed the employment of murine patient-derived xenografts (mPDX). In alternatives to murine PDXs, researchers have focused on embryonal systems such as chorioallantoic membrane (CAM) and zebrafish embryos. These systems are time- and cost-effective hosts for tumor fragments and near-patient cells. The CAM of the chick embryo represents a unique vascularized environment to host xenografts with high engraftment rates, allowing for ease of visualization and molecular detection of metastatic cells. Thanks to the transparency of the larvae, zebrafish allow for the tracking of tumor development and metastatization, enabling high-throughput drug screening. This review will focus on xenograft models of musculoskeletal sarcomas to highlight the intrinsic and technically distinctive features of the different hosts, and how they can be exploited to elucidate biological mechanisms beneath the different phases of the tumor's natural history and in drug development. Ultimately, the review suggests the combination of different models as an advantageous approach to boost basic and translational research.
Collapse
Affiliation(s)
- Veronica Giusti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Giulia Sbanchi
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Marilena Cesari
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Leonardo Fantoni
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Davide Maria Donati
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Monica Torsello
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| |
Collapse
|
3
|
Petrescu DI, Yustein JT, Dasgupta A. Preclinical models for the study of pediatric solid tumors: focus on bone sarcomas. Front Oncol 2024; 14:1388484. [PMID: 39091911 PMCID: PMC11291195 DOI: 10.3389/fonc.2024.1388484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Sarcomas comprise between 10-15% of all pediatric malignancies. Osteosarcoma and Ewing sarcoma are the two most common pediatric bone tumors diagnosed in children and young adults. These tumors are commonly treated with surgery and/or radiation therapy and combination chemotherapy. However, there is a strong need for the development and utilization of targeted therapeutic methods to improve patient outcomes. Towards accomplishing this goal, pre-clinical models for these unique malignancies are of particular importance to design and test experimental therapeutic strategies prior to being introduced to patients due to their origination site and propensity to metastasize. Pre-clinical models offer several advantages for the study of pediatric sarcomas with unique benefits and shortcomings dependent on the type of model. This review addresses the types of pre-clinical models available for the study of pediatric solid tumors, with special attention to the bone sarcomas osteosarcoma and Ewing sarcoma.
Collapse
Affiliation(s)
- D. Isabel Petrescu
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Atreyi Dasgupta
- The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Texas Children’s Cancer and Hematology Centers, Houston, TX, United States
| |
Collapse
|
4
|
Schott CR, Koehne AL, Sayles LC, Young EP, Luck C, Yu K, Lee AG, Breese MR, Leung SG, Xu H, Shah AT, Liu HY, Spillinger A, Behroozfard IH, Marini KD, Dinh PT, Pons Ventura MV, Vanderboon EN, Hazard FK, Cho SJ, Avedian RS, Mohler DG, Zimel M, Wustrack R, Curtis C, Sirota M, Sweet-Cordero EA. Osteosarcoma PDX-Derived Cell Line Models for Preclinical Drug Evaluation Demonstrate Metastasis Inhibition by Dinaciclib through a Genome-Targeted Approach. Clin Cancer Res 2024; 30:849-864. [PMID: 37703185 PMCID: PMC10870121 DOI: 10.1158/1078-0432.ccr-23-0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/26/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, multiple models are needed to fully elucidate key aspects of disease biology and to recapitulate clinically relevant phenotypes. EXPERIMENTAL DESIGN Matched patient samples, patient-derived xenografts (PDX), and PDX-derived cell lines were comprehensively evaluated using whole-genome sequencing and RNA sequencing. The in vivo metastatic phenotype of the PDX-derived cell lines was characterized in both an intravenous and an orthotopic murine model. As a proof-of-concept study, we tested the preclinical effectiveness of a cyclin-dependent kinase inhibitor on the growth of metastatic tumors in an orthotopic amputation model. RESULTS PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication in a subset of cell lines. The cell lines were heterogeneous in their metastatic capacity, and heterogeneous tissue tropism was observed in both intravenous and orthotopic models. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden. CONCLUSIONS The variation in metastasis predilection sites between osteosarcoma PDX-derived cell lines demonstrates their ability to recapitulate the spectrum of the disease observed in patients. We describe here a panel of new osteosarcoma PDX-derived cell lines that we believe will be of wide use to the osteosarcoma research community.
Collapse
Affiliation(s)
- Courtney R. Schott
- Department of Pediatrics, University of California San Francisco, San Francisco, California
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Amanda L. Koehne
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Leanne C. Sayles
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Elizabeth P. Young
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Cuyler Luck
- Department of Pediatrics, University of California San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California
| | - Katherine Yu
- Department of Pediatrics, University of California San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California
| | - Alex G. Lee
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Marcus R. Breese
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Stanley G. Leung
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Hang Xu
- Departments of Genetics and Medicine, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Avanthi Tayi Shah
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Heng-Yi Liu
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Aviv Spillinger
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Inge H. Behroozfard
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Kieren D. Marini
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Phuong T. Dinh
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - María V. Pons Ventura
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Emma N. Vanderboon
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Florette K. Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Soo-Jin Cho
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Raffi S. Avedian
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - David G. Mohler
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Melissa Zimel
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California
| | - Rosanna Wustrack
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California
| | - Christina Curtis
- Departments of Genetics and Medicine, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Marina Sirota
- Department of Pediatrics, University of California San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California
| | | |
Collapse
|
5
|
Singh I, Rainusso N, Kurenbekova L, Nirala BK, Dou J, Muruganandham A, Yustein JT. Intrinsic epigenetic state of primary osteosarcoma drives metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566446. [PMID: 38014160 PMCID: PMC10680799 DOI: 10.1101/2023.11.09.566446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor affecting the pediatric population with high potential to metastasize to distal sites, most commonly the lung. Insights into defining molecular features contributing to metastatic potential are lacking. We have mapped the active chromatin landscapes of OS tumors by integrating histone H3 lysine acetylated chromatin (H3K27ac) profiles (n=13), chromatin accessibility profiles (n=11) and gene expression (n=13) to understand the differences in their active chromatin profiles and its impact on molecular mechanisms driving the malignant phenotypes. Primary OS tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared to primary tumors from patients without metastatic disease (localized). The difference in chromatin activity shapes the transcriptional profile of OS. We identified novel candidate genes involved in OS pathogenesis and metastasis, including PPP1R1B, PREX1 and IGF2BP1, which exhibit increased chromatin activity in primary met along with higher transcript levels. Overall, differential chromatin activity in primary met occurs in proximity of genes regulating actin cytoskeleton organization, cellular adhesion, and extracellular matrix suggestive of their role in facilitating OS metastasis. Furthermore, chromatin profiling of tumors from metastatic lung lesions noted increases in chromatin activity in genes involved in cell migration and key intracellular signaling cascades, including the Wnt pathway. Thus, this data demonstrates that metastatic potential is intrinsically present in primary metastatic tumors and the cellular chromatin profiles further adapt to allow for successful dissemination, migration, and colonization at the distal metastatic site.
Collapse
Affiliation(s)
- Irtisha Singh
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77840, USA
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lyazat Kurenbekova
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Bikesh K. Nirala
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| | - Juan Dou
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| | - Abhinaya Muruganandham
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jason T. Yustein
- Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Brozovich AA, Lenna S, Paradiso F, Serpelloni S, McCulloch P, Weiner B, Yustein JT, Taraballi F. Osteogenesis in the presence of chemotherapy: A biomimetic approach. J Tissue Eng 2022; 13:20417314221138945. [PMID: 36451687 PMCID: PMC9703557 DOI: 10.1177/20417314221138945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/29/2022] [Indexed: 07/13/2024] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in pediatrics. After resection, allografts or metal endoprostheses reconstruct bone voids, and systemic chemotherapy is used to prevent recurrence. This urges the development of novel treatment options for the regeneration of bone after excision. We utilized a previously developed biomimetic, biodegradable magnesium-doped hydroxyapatite/type I collagen composite material (MHA/Coll) to promote bone regeneration in the presence of chemotherapy. We also performed experiments to determine if human mesenchymal stem cells (hMSCs) seeded on MHA/Coll scaffold migrate less toward OS cells, suggesting that hMSCs will not contribute to tumor growth and therefore the potential of oncologic safety in vitro. Also, hMSCs seeded on MHA/Coll had increased expression of osteogenic genes (BGLAP, SPP1, ALP) compared to hMSCs in the 2D condition, even when exposed to chemotherapeutics. This is the first study to demonstrate that a highly osteogenic scaffold can potentially be oncologically safe because hMSCs on MHA/Coll tend to differentiate and lose the ability to migrate toward tumor cells. Therefore, hMSCs on MHA/Coll could potentially be utilized for bone regeneration after OS excision.
Collapse
Affiliation(s)
- Ava A Brozovich
- Texas A&M College of Medicine, Bryan, TX, USA
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Stefano Serpelloni
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Politecnico di Milano, Department of Electronics, Informatics, and Bioengineering (DEIB), Milan, Italy
| | - Patrick McCulloch
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Bradley Weiner
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jason T Yustein
- Texas Children’s Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Whittle SB, Offer K, Roberts RD, LeBlanc A, London C, Majzner RG, Huang AY, Houghton P, Cordero EAS, Grohar PJ, Isakoff M, Bishop MW, Stewart E, Slotkin EK, Greengard E, Borinstein SC, Navid F, Gorlick R, Janeway KA, Reed DR, Hingorani P. Charting a path for prioritization of novel agents for clinical trials in osteosarcoma: A report from the Children's Oncology Group New Agents for Osteosarcoma Task Force. Pediatr Blood Cancer 2021; 68:e29188. [PMID: 34137164 PMCID: PMC8316376 DOI: 10.1002/pbc.29188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is the most common bone tumor in children and young adults. Metastatic and relapsed disease confer poor prognosis, and there have been no improvements in outcomes for several decades. The disease's biological complexity, lack of drugs developed specifically for osteosarcoma, imperfect preclinical models, and limits of existing clinical trial designs have contributed to lack of progress. The Children's Oncology Group Bone Tumor Committee established the New Agents for Osteosarcoma Task Force to identify and prioritize agents for inclusion in clinical trials. The group identified multitargeted tyrosine kinase inhibitors, immunotherapies targeting B7-H3, CD47-SIRPα inhibitors, telaglenastat, and epigenetic modifiers as the top agents of interest. Only multitargeted tyrosine kinase inhibitors met all criteria for frontline evaluation and have already been incorporated into an upcoming phase III study concept. The task force will continue to reassess identified agents of interest as new data become available and evaluate novel agents using this method.
Collapse
Affiliation(s)
- Sarah B. Whittle
- Texas Children’s Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Katharine Offer
- Joseph M. Sanzari Children’s Hospital, Hackensack Meridian Health, Hackensack, NJ
| | - Ryan D. Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children’s Hospital, Columbus, OH
| | - Amy LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cheryl London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Alex Y. Huang
- Case Western Reserve University School of Medicine and UH Rainbow Babies & Children’s Hospital, Cleveland, OH
| | - Peter Houghton
- Greehy Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX
| | - E. Alejandro Sweet Cordero
- Benioff Children’s Hospitals, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | | | - Michael Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT
| | - Michael W. Bishop
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Scott C. Borinstein
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Fariba Navid
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Damon R. Reed
- Johns Hopkins All Children’s Hospital, St. Petersburg, FL and Moffitt Cancer Center Department of Individualized Cancer Management, Tampa, FL
| | - Pooja Hingorani
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
8
|
Damerell V, Pepper MS, Prince S. Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduct Target Ther 2021; 6:246. [PMID: 34188019 PMCID: PMC8241855 DOI: 10.1038/s41392-021-00647-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/18/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.
Collapse
Affiliation(s)
- Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
9
|
Yu X, Yustein JT, Xu J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci 2021; 11:94. [PMID: 34022967 PMCID: PMC8141200 DOI: 10.1186/s13578-021-00600-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS has an annual incidence of 3.4 per million people and a 60-70% 5-year surviving rate. About 20% of OS patients have metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFβ, RANKL/NF-κB and IGF pathways have been linked to OS development. However, the agents targeting these pathways have yielded disappointing clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plasticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving OS treatment.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jason T Yustein
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
11
|
Fortuna-Costa A, Granato RA, Meohas W, Lopes ACDS, Caruso AC, Castro E Silva Pinheiro R, d'Eça PDG, Dias RB, Perini JA, Barbosa APF, Moreira de Sá RA, Guimarães JAM, Murray SS, Duarte MEL. An association between successful engraftment of osteosarcoma patient-derived xenografts and clinicopathological findings. Histol Histopathol 2020; 35:1295-1307. [PMID: 32964941 DOI: 10.14670/hh-18-256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although osteosarcoma is a rare disease, with a global incidence rate estimated at 5.0/million/year, it is the most frequent primary bone sarcoma in children and adolescents. In translational research, the patient-derived xenograft (PDX) model is considered an authentic in vivo model for several types of cancer, as tumorgrafts faithfully retain the biological characteristics of the primary tumors. Our goal was to investigate the association between PDX formation and clinical findings of osteosarcoma patients and the ability of the model to preserve in immunocompromized mice the characteristics of the parental tumor. A fresh sample of the patient tumor obtained from a representative biopsy or from surgical resection was implanted into nude mice. When tumor outgrowths reached ~1,500mm³, fresh PDX fragments were re-transplanted into new hosts. Engraftment in mice was obtained after a latency period of 19-225 days (median 92 days) in 40.54% of the implanted samples. We confirmed the histopathological fidelity between the patient tumor and their respective established PDXs, including the expression of biomarkers. PDX take rate was higher in surgical resection samples, in post-chemotherapy surgical samples and in samples from patients with metastatic disease at presentation. In conclusion, we have shown that the osteosarcoma PDX model reliably recapitulates the morphological aspects of the human disease after serial passage in mice. The observation that more aggressive forms of osteosarcoma, including those with metastatic disease at presentation, have a higher efficiency to generate PDXs provides a promising scenario to address several unanswered issues in clinical oncology.
Collapse
Affiliation(s)
- Anneliese Fortuna-Costa
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | | | - Walter Meohas
- Center of Orthopedic Oncology, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | - Ana Cristina de Sá Lopes
- Center of Orthopedic Oncology, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | - Anabela Cunha Caruso
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | | | - Pedro da Gama d'Eça
- Center of Orthopedic Oncology, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | - Rhayra Braga Dias
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil
| | | | | | | | - Samuel S Murray
- Department of Medicine, University of California, Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Maria Eugenia Leite Duarte
- Research Division, National Institute of Orthopedics and Traumatology (INTO), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Hattinger CM, Patrizio MP, Luppi S, Serra M. Pharmacogenomics and Pharmacogenetics in Osteosarcoma: Translational Studies and Clinical Impact. Int J Mol Sci 2020; 21:E4659. [PMID: 32629971 PMCID: PMC7369799 DOI: 10.3390/ijms21134659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.
Collapse
Affiliation(s)
| | | | | | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, 40136 Bologna, Italy; (C.M.H.); (M.P.P.); (S.L.)
| |
Collapse
|
13
|
Zucchini C, Manara MC, Cristalli C, Carrabotta M, Greco S, Pinca RS, Ferrari C, Landuzzi L, Pasello M, Lollini PL, Gambarotti M, Donati DM, Scotlandi K. ROCK2 deprivation leads to the inhibition of tumor growth and metastatic potential in osteosarcoma cells through the modulation of YAP activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:503. [PMID: 31878963 PMCID: PMC6933701 DOI: 10.1186/s13046-019-1506-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023]
Abstract
Background The treatment of metastatic osteosarcoma (OS) remains a challenge for oncologists, and novel therapeutic strategies are urgently needed. An understanding of the pathways that regulate OS dissemination is required for the design of novel treatment approaches. We recently identified Rho-associated coiled-coil containing protein kinase 2 (ROCK2) as a crucial driver of OS cell migration. In this study, we explored the impact of ROCK2 disruption on the metastatic capabilities of OS cells and analyzed its functional relationship with Yes-associated protein-1 (YAP), the main transcriptional mediator of mechanotransduction signaling. Methods The effects of ROCK2 depletion on metastasis were studied in NOD Scid gamma (NSG) mice injected with U-2OS cells in which ROCK2 expression had been stably silenced. Functional studies were performed in vitro in human U-2OS cells and in three novel cell lines derived from patient-derived xenografts (PDXs) by using standard methods to evaluate malignancy parameters and signaling transduction. The nuclear immunostaining of YAP and the evaluation of its downstream targets Cysteine Rich Angiogenic Inducer 6, Connective Tissue Growth Factor and Cyclin D1 by quantitative PCR were performed to analyze YAP activity. The effect of the expression and activity of ROCK2 and YAP on tumor progression was analyzed in 175 OS primary tumors. Results The silencing of ROCK2 markedly reduced tumor growth and completely abolished the metastatic ability of U-2OS cells. The depletion of ROCK2, either by pharmacological inhibition or silencing, induced a dose- and time-dependent reduction in the nuclear expression and transcriptional activity of YAP. The nuclear expression of YAP was observed in 80/175 (46%) tumor samples and was significantly correlated with worse patient prognosis and a higher likelihood of metastasis and death. The use of verteporfin, a molecule that specifically inhibits the TEAD–YAP association, remarkably impaired the growth and migration of OS cells in vitro. Moreover to inhibiting YAP activity, our findings indicate that verteporfin also affects the ROCK2 protein and its functions. Conclusions We describe the functional connection between ROCK2 and YAP in the regulation of OS cell migration and metastasis formation. These data provide support for the use of verteporfin as a possible therapeutic option to prevent OS cell dissemination.
Collapse
Affiliation(s)
- Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), University of Bologna, Via Massarenti 9, 40126, Bologna, BO, Italy.
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Camilla Cristalli
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Marianna Carrabotta
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Sara Greco
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Rosa Simona Pinca
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Cristina Ferrari
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Michela Pasello
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), University of Bologna, Via Massarenti 9, 40126, Bologna, BO, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of DIBINEM, University of Bologna, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
14
|
Nanni P, Landuzzi L, Manara MC, Righi A, Nicoletti G, Cristalli C, Pasello M, Parra A, Carrabotta M, Ferracin M, Palladini A, Ianzano ML, Giusti V, Ruzzi F, Magnani M, Donati DM, Picci P, Lollini PL, Scotlandi K. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep 2019; 9:12174. [PMID: 31434953 PMCID: PMC6704066 DOI: 10.1038/s41598-019-48634-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient’s tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Service of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Camilla Cristalli
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Veronica Giusti
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Davide Maria Donati
- Third Orthopedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|