1
|
Jiauddin M, Reddy K, Ravi HP, Ramachandran B. Druggable upregulated proteins in EWS-FLI-driven Ewing sarcoma as emerging new therapeutic targets. Am J Transl Res 2025; 17:1580-1603. [PMID: 40225989 PMCID: PMC11982847 DOI: 10.62347/ymeu1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
Ewing sarcoma (ES) is a highly aggressive soft tissue tumor that primarily affects the long bones of children and young adults. It is distinguished by a characteristic chromosomal translocation between the Ewing sarcoma breakpoint region 1 (EWS) gene and the erythroblast transformation-specific (ETS) family of genes, most commonly resulting in the EWS-friend leukemia integration 1 (EWS-FLI1) fusion gene. This translocation is observed in approximately 80%-85% of ES cases. This fusion gene encodes a non-physiological chimeric fusion protein that plays a central role in tumorigenesis by interacting with numerous partner proteins. Several studies have demonstrated the tumorigenic potential of the EWS-FLI1 protein when transfected into non-cancer cell lines. However, targeting EWS-FLI1 directly remains a significant challenge, as no drug to date has been reported to bind to and inhibit its activity effectively. An alternative therapeutic strategy involves targeting key overexpressed protein complexes implicated in ES tumorigenesis, many of which may be downstream interacting partners of EWS-FLI1. This review explores emerging protein targets as potential therapeutic avenues in ES treatment.
Collapse
Affiliation(s)
- Moinuddin Jiauddin
- Department of Molecular Oncology, Cancer Institute (W.I.A) No. 38, Sardar Patel Road, Adyar, Chennai 600036, India
| | - Kirtana Reddy
- Department of Molecular Oncology, Cancer Institute (W.I.A) No. 38, Sardar Patel Road, Adyar, Chennai 600036, India
| | - Hashiya Preeya Ravi
- Department of Molecular Oncology, Cancer Institute (W.I.A) No. 38, Sardar Patel Road, Adyar, Chennai 600036, India
| | - Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (W.I.A) No. 38, Sardar Patel Road, Adyar, Chennai 600036, India
| |
Collapse
|
2
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Dhir A, Hayashi M, Bodlak A, Oesterheld J, Loeb DM, Mascarenhas L, Isakoff MS, Sandler ES, Borinstein SC, Trucco M, Lagmay JP, Setty BA, Pratilas CA, Caywood E, Metts J, Yin H, Fridley B, Yin J, Laborde J, Reed DR, Adams DL, Wagner LM. Phase II Trial of Gemcitabine and Nab-Paclitaxel for Recurrent Osteosarcoma with Serial Monitoring Using Liquid Biopsy: A Report from the National Pediatric Cancer Foundation. Clin Cancer Res 2024; 30:5314-5322. [PMID: 39360936 DOI: 10.1158/1078-0432.ccr-24-1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE The combination of gemcitabine and docetaxel is often used to treat patients with recurrent osteosarcoma. Nab-paclitaxel has preclinical activity against osteosarcoma and is potentially less myelosuppressive than docetaxel. We conducted a prospective multi-institutional phase II trial combining gemcitabine and nab-paclitaxel for patients aged 12 to 30 years with recurrent osteosarcoma and measurable disease. PATIENTS AND METHODS A Simon's two-stage design was used to test a 4-month progression-free survival (PFS-4) of 10% vs. 35%. Patients received nab-paclitaxel 125 mg/m2 and gemcitabine 1,000 mg/m2 weekly × 3 in 4-week cycles. Immunohistochemical analysis of archival tissue and serial assessment of circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) using ultralow passage whole-genome sequencing were performed to identify potential biomarkers of response. RESULTS Eighteen patients received 56 total cycles (median 2, range 1-12). Two patients (11%) experienced confirmed partial response and six (33%) received >2 cycles. The PFS-4 was 28% (95% confidence interval, 13%-59%). Six patients required dose reductions and three patients were removed due to toxicities. All 18 patients had detectable CTCs and 10 had ctDNA identified. All eight patients with MYC amplification at study entry experienced disease progression. CONCLUSIONS Gemcitabine and nab-paclitaxel demonstrated similar clinical activity and toxicity compared to previous retrospective reports utilizing gemcitabine and docetaxel in patients with recurrent osteosarcoma. Serial analysis of CTC and ctDNA was feasible in this prospective multi-institution study and provides preliminary data on the use of these assays in patients with relapsed disease.
Collapse
Affiliation(s)
- Aditi Dhir
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders Children's Hospital Colorado, Aurora, Colorado
| | - Avery Bodlak
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders Children's Hospital Colorado, Aurora, Colorado
| | - Javier Oesterheld
- Cancer and Blood Disorders Program, Atrium Health Levine Children's Hospital, Charlotte, North Carolina
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Leo Mascarenhas
- Cedar-Sinai Medical Center, Guerin Children's and Cedar-Sinai Cancer, Los Angeles, California
| | - Michael S Isakoff
- Division of Hematology/Oncology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Eric S Sandler
- Division of Hematology/Oncology, Nemours Children's Health, Jacksonville, Florida
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matteo Trucco
- Department of Pediatric Hematology-Oncology and BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Joanne P Lagmay
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Shands Childrens Hospital, University of Florida, Gainesville, Florida
| | - Bhuvana A Setty
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Christine A Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Emi Caywood
- Division of Hematology/Oncology, Nemours Children's Health, Jacksonville, Florida
| | - Jonathan Metts
- Sarcoma Department, Moffitt Cancer Center, Tampa, Florida
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Peterburg, Florida
| | - Hong Yin
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Brooke Fridley
- Health Services and Outcomes Research, Children's Mercy Hospital, Kansas City, Missouri
| | - Jun Yin
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Jose Laborde
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Damon R Reed
- Moffitt Cancer Center, Department of Individualized Cancer Management, Tampa, Florida
| | | | - Lars M Wagner
- Division of Pediatric Hematology/Oncology, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Larrosa C, Mico S, Ramos M, Perez-Jaume S, Sánchez M, Castañeda A, Garraus M, Mora J. Radiation recall reaction induced by gemcitabine/docetaxel in children: A retrospective study on risk factors and outcomes. Pediatr Blood Cancer 2024; 71:e31221. [PMID: 39086114 DOI: 10.1002/pbc.31221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Radiation recall reaction (RRR) is a rare inflammatory reaction developing in a previously irradiated field after a triggering agent. In pediatric patients, it is poorly understood and deficiently studied. Gemcitabine-docetaxel (G/D) in childhood cancer is mainly used as a salvage regimen for sarcomas. We aim to describe RRR triggered by G/D in children. PATIENTS AND METHODS Retrospective review of 21 patients receiving G/D along with radiotherapy at two hospitals from 2010 until 2022. RRR was considered as any toxicity occurring after G/D administration in a previously irradiated field. RRR features were described. Fisher's and Mann-Whitney tests were utilized to analyze the risk factors involved. RESULTS Sixteen episodes of RRR developed in 16 (76.2%) patients. RRR mainly involved deep layers of the skin (58%) and occurred predominantly after two G/D cycles. The mean time between radiotherapy and chemotherapy was 28.5 days (0-1359 days), and the mean radiation volume 391 mL (157-1810 mL) for RRR. RRR treatment was mainly systemic steroids, with partial responses in six of 11 (58%) patients. Re-exposure to G/D was associated with a high rate of recurrence in nine of 15 (56.2%), prompting drug discontinuation. The major risk factors for RRR after G/D include, without statistical significance, a larger volume of the irradiated field and a shorter interval between chemotherapy and radiotherapy. CONCLUSIONS The incidence of RRR after G/D in the pediatric population is higher than previously reported. Drug re-exposure is usually followed by recurrence. Higher irradiated volumes and a shorter time to the start of chemotherapy could be related with an increased risk of RRR.
Collapse
Affiliation(s)
- Cristina Larrosa
- Extracranial Solid Tumors Unit, Pediatric Cancer Center Barcelona, Barcelona, Spain
| | - Soraya Mico
- Radiation Oncology Unit, Vall d'Hebron Hospital, Barcelona, Spain
| | - Mónica Ramos
- Radiation Oncology Unit, Vall d'Hebron Hospital, Barcelona, Spain
| | | | - Mónica Sánchez
- Oncology Pharmacy Unit, Pediatric Cancer Center Barcelona, Barcelona, Spain
| | - Alicia Castañeda
- Extracranial Solid Tumors Unit, Pediatric Cancer Center Barcelona, Barcelona, Spain
| | - Moira Garraus
- Extracranial Solid Tumors Unit, Pediatric Cancer Center Barcelona, Barcelona, Spain
| | - Jaume Mora
- Extracranial Solid Tumors Unit, Pediatric Cancer Center Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Ji Q, Zhu H, Qin Y, Zhang R, Wang L, Zhang E, Zhou X, Meng R. GP60 and SPARC as albumin receptors: key targeted sites for the delivery of antitumor drugs. Front Pharmacol 2024; 15:1329636. [PMID: 38323081 PMCID: PMC10844528 DOI: 10.3389/fphar.2024.1329636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Albumin is derived from human or animal blood, and its ability to bind to a large number of endogenous or exogenous biomolecules makes it an ideal drug carrier. As a result, albumin-based drug delivery systems are increasingly being studied. With these in mind, detailed studies of the transport mechanism of albumin-based drug carriers are particularly important. As albumin receptors, glycoprotein 60 (GP60) and secreted protein acidic and rich in cysteine (SPARC) play a crucial role in the delivery of albumin-based drug carriers. GP60 is expressed on vascular endothelial cells and enables albumin to cross the vascular endothelial cell layer, and SPARC is overexpressed in many types of tumor cells, while it is minimally expressed in normal tissue cells. Thus, this review supplements existing articles by detailing the research history and specific biological functions of GP60 or SPARC and research advances in the delivery of antitumor drugs using albumin as a carrier. Meanwhile, the deficiencies and future perspectives in the study of the interaction of albumin with GP60 and SPARC are also pointed out.
Collapse
Affiliation(s)
- Qingzhi Ji
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Yuting Qin
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Ruiya Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Lei Wang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Run Meng
- Department of Immunology, Medical School, Nantong University, Nantong, China
| |
Collapse
|
6
|
Duffaud F, Blay JY, Le Cesne A, Chevreau C, Boudou-Rouquette P, Kalbacher E, Penel N, Perrin C, Laurence V, Bompas E, Saada-Bouzid E, Delcambre C, Bertucci F, Cancel M, Schiffler C, Monard L, Bouvier C, Vidal V, Gaspar N, Chabaud S. Regorafenib in patients with advanced Ewing sarcoma: results of a non-comparative, randomised, double-blind, placebo-controlled, multicentre Phase II study. Br J Cancer 2023; 129:1940-1948. [PMID: 37914801 PMCID: PMC10703915 DOI: 10.1038/s41416-023-02413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/23/2023] [Accepted: 08/21/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND The REGOBONE multi-cohort study explored the efficacy and safety of regorafenib for patients with advanced bone sarcomas; this report details the Ewing sarcoma (ES) cohort. METHODS Patients with relapsed ES progressing despite prior standard therapy, were randomised (2:1) to receive regorafenib or placebo. Patients on placebo could crossover to receive regorafenib after centrally confirmed progression. The primary endpoint was the progression-free rate at 8 weeks. With one-sided α of 0.05, and 80% power, at least 14/24 progression-free patients at 8 weeks were needed for success. RESULTS From September 2014 to November 2019, 41 patients were accrued. 36 patients were evaluable for efficacy: 23 on regorafenib and 13 on placebo. Thirteen patients (56%; one-sided 95% CI [37.5%-[)) were progression-free at 8 weeks on regorafenib vs. 1 (7.7%; 95% CI [0.4%-[) on placebo. Median PFS was 11.4 weeks on regorafenib, and 3.9 weeks on placebo. Ten placebo patients crossed over to receive regorafenib after progression. The most common grade ≥3 regorafenib-related adverse events were pain (22%), asthenia (17%), thrombocytopenia (13%) and diarrhoea (13%). CONCLUSION Although the primary endpoint was not met statistically in this randomised cohort, there is evidence to suggest that regorafenib might modestly delay tumour progression in relapsed ES after failure of prior chemotherapy.
Collapse
Affiliation(s)
- Florence Duffaud
- APHM Hopital La Timone, Medical Oncology Unit, and Aix-Marseille University (AMU), Marseille, France.
| | - Jean-Yves Blay
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
| | - Axel Le Cesne
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - Christine Chevreau
- Medical Oncology Department, Institut Universitaire de Cancérologie de Toulouse, Oncopole, Toulouse, France
| | | | - Elsa Kalbacher
- Medical Oncology Department, CHU J Minjoz, Besançon, France
| | - Nicolas Penel
- Medical Oncology Department, Centre Oscar Lambret and Lille University Hospital, Lille, France
| | | | | | - Emmanuelle Bompas
- Medical Oncology Department, Centre René Gauduchau, Saint Herblain, France
| | - Esma Saada-Bouzid
- Medical Oncology Department, Centre Antoine Lacassagne, Nice, France
| | | | - François Bertucci
- Medical Oncology Department, Institut Paoli-Calmettes, Marseille, France
| | - Mathilde Cancel
- Medical Oncology Department, Centre Hospitalier Régional Universitaire Bretonneau, Tours, France
| | | | | | - Corinne Bouvier
- APHM Hopital La Timone, Pathology Department, and Aix-Marseille University, Marseille, France
| | - Vincent Vidal
- APHM Hopital La Timone, Radiology Department, and Aix-Marseille University Marseille, Marseille, France
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sylvie Chabaud
- Department of Statistics, Centre Léon Bérard, Lyon, France
| |
Collapse
|
7
|
Chen C, Xue N, Liu K, He Q, Wang C, Guo Y, Tian J, Liu X, Pan Y, Chen G. USP12 promotes nonsmall cell lung cancer progression through deubiquitinating and stabilizing RRM2. Mol Carcinog 2023; 62:1518-1530. [PMID: 37341611 DOI: 10.1002/mc.23593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
RRM2 is the catalytic subunit of ribonucleotide reductase (RNR), which catalyzes de novo synthesis of deoxyribonucleotide triphosphates (dNTPs) and plays critical roles in cancer cell proliferation. RRM2 protein level is controlled by ubiquitination mediated protein degradation system; however, its deubiquitinase has not been identified yet. Here we showed that ubiquitin-specific peptidase 12 (USP12) directly interacts with and deubiquitinates RRM2 in non-small cell lung cancer (NSCLC) cells. Knockdown of USP12 causes DNA replication stress and retards tumor growth in vivo and in vitro. Meanwhile, USP12 protein levels were positively correlated to RRM2 protein levels in human NSCLC tissues. In addition, high expression of USP12 was associated with poor prognosis in NSCLC patients. Therefore, our study reveals that USP12 is a RRM2 regulator and targeting USP12 could be considered as a potential therapeutical strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Congcong Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Ning Xue
- Department of Acupuncture, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, P.R. China
| | - Kangshou Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Qiang He
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yanguan Guo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Jiaxin Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Antibody Technique of National Health Commission of China, Nanjing Medical University, Nanjing, P.R. China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
8
|
Tian Z, Yao W. Chemotherapeutic drugs for soft tissue sarcomas: a review. Front Pharmacol 2023; 14:1199292. [PMID: 37637411 PMCID: PMC10450752 DOI: 10.3389/fphar.2023.1199292] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Despite the low incidence of soft tissue sarcomas (STSs), hundreds of thousands of new STS cases are diagnosed annually worldwide, and approximately half of them eventually progress to advanced stages. Currently, chemotherapy is the first-line treatment for advanced STSs. There are difficulties in selecting appropriate drugs for multiline chemotherapy, or for combination treatment of different STS histological subtypes. In this study, we first comprehensively reviewed the efficacy of various chemotherapeutic drugs in the treatment of STSs, and then described the current status of sensitive drugs for different STS subtypes. anthracyclines are the most important systemic treatment for advanced STSs. Ifosfamide, trabectedin, gemcitabine, taxanes, dacarbazine, and eribulin exhibit certain activities in STSs. Vinca alkaloid agents (vindesine, vinblastine, vinorelbine, vincristine) have important therapeutic effects in specific STS subtypes, such as rhabdomyosarcoma and Ewing sarcoma family tumors, whereas their activity in other subtypes is weak. Other chemotherapeutic drugs (methotrexate, cisplatin, etoposide, pemetrexed) have weak efficacy in STSs and are rarely used. It is necessary to select specific second- or above-line chemotherapeutic drugs depending on the histological subtype. This review aims to provide a reference for the selection of chemotherapeutic drugs for multi-line therapy for patients with advanced STSs who have an increasingly long survival.
Collapse
Affiliation(s)
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Wood GE, Graves LA, Rubin EM, Reed DR, Riedel RF, Strauss SJ. Bad to the Bone: Emerging Approaches to Aggressive Bone Sarcomas. Am Soc Clin Oncol Educ Book 2023; 43:e390306. [PMID: 37220319 DOI: 10.1200/edbk_390306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bone sarcomas are rare heterogeneous tumors that affect patients of all ages including children, adolescent young adults, and older adults. They include many aggressive subtypes and patient groups with poor outcomes, poor access to clinical trials, and lack of defined standard therapeutic strategies. Conventional chondrosarcoma remains a surgical disease, with no defined role for cytotoxic therapy and no approved targeted systemic therapies. Here, we discuss promising novel targets and strategies undergoing evaluation in clinical trials. Multiagent chemotherapy has greatly improved outcomes for patients with Ewing sarcoma (ES) and osteosarcoma, but management of those with high-risk or recurrent disease remains challenging and controversial. We describe the impact of international collaborative trials, such as the rEECur study, that aim to define optimal treatment strategies for those with recurrent, refractory ES, and evidence for high-dose chemotherapy with stem-cell support. We also discuss current and emerging strategies for other small round cell sarcomas, such as CIC-rearranged, BCOR-rearranged tumors, and the evaluation of emerging novel therapeutics and trial designs that may offer a new paradigm to improve survival in these aggressive tumors with notoriously bad (to the bone) outcomes.
Collapse
Affiliation(s)
- Georgina E Wood
- Department of Oncology, University College London Hospitals NHS Trust, UCL Cancer Institute, London, United Kingdom
| | - Laurie A Graves
- Division of Hematology/Oncology, Department of Pediatrics, Duke University, Durham, NC
| | - Elyssa M Rubin
- Division of Oncology, Children's Hospital of Orange County, Orange, CA
| | - Damon R Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| | - Richard F Riedel
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC
| | - Sandra J Strauss
- Department of Oncology, University College London Hospitals NHS Trust, UCL Cancer Institute, London, United Kingdom
| |
Collapse
|
10
|
Pascual-Pasto G, Resa-Pares C, Castillo-Ecija H, Aschero R, Baulenas-Farres M, Vila-Ubach M, Burgueño V, Balaguer-Lluna L, Cuadrado-Vilanova M, Olaciregui NG, Martinez-Velasco N, Perez-Jaume S, de Alava E, Tirado OM, Lavarino C, Mora J, Carcaboso AM. Low Bcl-2 is a robust biomarker of sensitivity to nab-paclitaxel in Ewing sarcoma. Biochem Pharmacol 2023; 208:115408. [PMID: 36603685 DOI: 10.1016/j.bcp.2022.115408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) shows potent preclinical anticancer activity in pediatric solid tumors such as Ewing sarcoma, rhabdomyosarcoma and neuroblastoma, but responses in clinical trials have been modest. In this work, we aimed to discover a rational biomarker-based approach to select the right candidate patients for this treatment. We assessed the efficacy of nab-paclitaxel in 27 patient-derived xenografts (PDX), including 14 Ewing sarcomas, five rhabdomyosarcomas and several other pediatric solid tumors. Response rate (partial or complete response) was remarkable in rhabdomyosarcomas (four of five) and Ewing sarcomas (four of 14). We addressed several predictive factors of response to nab-paclitaxel such as the expression of the secreted protein acidic and rich in cysteine (SPARC), chromosomal stability of cancer cells and expression of antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of proteins such as Bcl-2, Bcl-xL, Bcl-W and Mcl-1. Protein (immunoblotting) and gene expression of SPARC correlated positively, while immunoblotting and immunohistochemistry expression of Bcl-2 correlated negatively with the efficacy of nab-paclitaxel in Ewing sarcoma PDX. The negative correlation of Bcl-2 immunoblotting signal and activity was especially robust (r = 0.8352; P = 0.0007; Pearson correlation). Consequently, we evaluated pharmacological strategies to inhibit Bcl-2 during nab-paclitaxel treatment. We observed that the Bcl-2 inhibitor venetoclax improved the activity of nab-paclitaxel in highly resistant Bcl-2-expressing Ewing sarcoma PDX. Overall, our results suggest that low Bcl-2 expression could be used to select patients with Ewing sarcoma sensitive to nab-paclitaxel, and Bcl-2 inhibitors could improve the activity of this drug in Bcl-2-expressing Ewing sarcoma.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Claudia Resa-Pares
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Helena Castillo-Ecija
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Rosario Aschero
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Merce Baulenas-Farres
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Monica Vila-Ubach
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Victor Burgueño
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Maria Cuadrado-Vilanova
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Nagore G Olaciregui
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Nuria Martinez-Velasco
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Sara Perez-Jaume
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Enrique de Alava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013 Seville, Spain; Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Oncobell Program, Institut d'Investigació Biomédica de Bellvitge (IDIBELL)/CIBERONC, Barcelona, Spain
| | - Cinzia Lavarino
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Jaume Mora
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Angel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain.
| |
Collapse
|
11
|
Sánchez-Molina S, Figuerola-Bou E, Sánchez-Margalet V, de la Cruz-Merino L, Mora J, de Álava Casado E, García-Domínguez DJ, Hontecillas-Prieto L. Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers (Basel) 2022; 14:5473. [PMID: 36358891 PMCID: PMC9658520 DOI: 10.3390/cancers14215473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ewing Sarcoma (EWS) is an aggressive bone and soft tissue tumor that mainly affects children, adolescents, and young adults. The standard therapy, including chemotherapy, surgery, and radiotherapy, has substantially improved the survival of EWS patients with localized disease. Unfortunately, this multimodal treatment remains elusive in clinics for those patients with recurrent or metastatic disease who have an unfavorable prognosis. Consistently, there is an urgent need to find new strategies for patients that fail to respond to standard therapies. In this regard, in the last decade, treatments targeting epigenetic dependencies in tumor cells and the immune system have emerged into the clinical scenario. Additionally, recent advances in nanomedicine provide novel delivery drug systems, which may address challenges such as side effects and toxicity. Therefore, therapeutic strategies stemming from epigenetics, immunology, and nanomedicine yield promising alternatives for treating these patients. In this review, we highlight the most relevant EWS preclinical and clinical studies in epigenetics, immunotherapy, and nanotherapy conducted in the last five years.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique de Álava Casado
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel José García-Domínguez
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
12
|
Karlina I, Schroeder BA, Kirgizov K, Romantsova O, Istranov AL, Nedorubov A, Timashev P, Ulasov I. Latest developments in the pathobiology of Ewing sarcoma. J Bone Oncol 2022; 35:100440. [PMID: 35855933 PMCID: PMC9287185 DOI: 10.1016/j.jbo.2022.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kirill Kirgizov
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Olga Romantsova
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Andrey L. Istranov
- Department of Oncology, radiation therapy and plastic surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Andrey Nedorubov
- Center for Preclinical Research, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Corresponding author at: Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
13
|
Tian Z, Yao W. Albumin-Bound Paclitaxel: Worthy of Further Study in Sarcomas. Front Oncol 2022; 12:815900. [PMID: 35223497 PMCID: PMC8866444 DOI: 10.3389/fonc.2022.815900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Taxanes (paclitaxel and docetaxel) play an important role in the treatment of advanced sarcomas. Albumin-bound paclitaxel (nab-paclitaxel) is a new kind of taxane and has many advantages compared with paclitaxel and docetaxel. Nab-paclitaxel is currently approved for the treatment of advanced breast, non-small cell lung, and pancreatic cancers. However, the efficacy of nab-paclitaxel in sarcomas has not been reviewed. In this review, we first compare the similarities and differences among nab-paclitaxel, paclitaxel, and docetaxel and then summarize the efficacy of nab-paclitaxel against various non-sarcoma malignancies based on clinical trials with reported results. The efficacy and clinical research progress on nab-paclitaxel in sarcomas are also summarized. This review will serve as a good reference for the application of nab-paclitaxel in clinical sarcoma treatment studies and the design of clinical trials.
Collapse
Affiliation(s)
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Tian Z, Dong S, Yang Y, Gao S, Yang Y, Yang J, Zhang P, Wang X, Yao W. Nanoparticle albumin-bound paclitaxel and PD-1 inhibitor (sintilimab) combination therapy for soft tissue sarcoma: a retrospective study. BMC Cancer 2022; 22:56. [PMID: 35022029 PMCID: PMC8756702 DOI: 10.1186/s12885-022-09176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022] Open
Abstract
Background There is increasing evidence that combination therapy with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) and programmed cell death protein 1 (PD-1) inhibitor is safe and efficacious in treating many types of malignant tumors. However, clinical data demonstrating the effect of this treatment combination for patients with metastatic soft tissue sarcoma (STS) are currently limited. Methods The clinical data of patients with metastatic STS who received nab-paclitaxel plus PD-1 inhibitor (sintilimab) therapy between January 2019 and February 2021 were retrospectively analyzed. The effectiveness and safety of the combined treatment were evaluated in terms of the median progression-free survival (PFS), estimated using the Kaplan–Meier method. The univariate Cox proportional hazards model was used to analyze the relationship between clinicopathological parameters and PFS. All statistical analyses were two-sided; P < 0.05 was considered statistically significant. Results A total of 28 patients treated with nab-paclitaxel plus sintilimab were enrolled in this study. The objective response rate was 25%, the disease control rate was 50%, and the median PFS was 2.25 months (95% CI = 1.8–3.0 months). The most common grade 1 or 2 adverse events (AEs) were alopecia (89.3%; 25/28), leukopenia (25.0%; 7/28), fatigue (21.4%; 6/28), anemia (21.4%; 6/28), and nausea (21.4%; 6/28). The most common grade 3 AEs were neutropenia (10.7%; 3/28) and peripheral neuropathy (10.7%; 3/28). No grade 4 AEs were observed. Among the present study cohort, patients with angiosarcoma (n = 5) had significantly longer PFS (P = 0.012) than patients with other pathological subtypes, including undifferentiated pleomorphic sarcoma (n = 7), epithelioid sarcoma (n = 5), fibrosarcoma (n = 4), synovial sarcoma (n = 3), leiomyosarcoma (n = 2), pleomorphic liposarcoma (n = 1), and rhabdomyosarcoma (n = 1); those who experienced three or more AEs had significantly longer median PFS than those who experienced less than three AEs (P = 0.018). Conclusion Nab-paclitaxel plus PD-1 inhibitor is a promising treatment regimen for advanced STS. Randomized controlled clinical trials are required to further demonstrate its efficacy and optimal application scenario.
Collapse
|
15
|
SPARC-mediated long-term retention of nab-paclitaxel in pediatric sarcomas. J Control Release 2021; 342:81-92. [PMID: 34974029 DOI: 10.1016/j.jconrel.2021.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein overexpressed by several cancers. Because SPARC shows high binding affinity to albumin, we reasoned that pediatric sarcoma xenografts expressing SPARC would show enhanced uptake and accumulation of nanoparticle albumin-bound (nab)-paclitaxel, a potent anticancer drug formulation. We first evaluated the expression of SPARC in patient-derived xenografts (PDXs) of Ewing sarcoma, rhabdomyosarcoma and osteosarcoma, finding variable SPARC gene expression that correlated well with SPARC protein measured by immunoblotting. We revealed that the activity of the fusion gene chimera EWSR1-FLI1, the genetic driver of Ewing sarcoma, leads to lower expression of the gene SPARC in these tumors, likely due to enriched acetylation marks of the histone H3 lysine 27 at regions including the SPARC promoter and potential enhancers. Then, we used SPARC-edited Ewing sarcoma cells (A673 line) to demonstrate that SPARC knocked down (KD) cells accumulated significantly less amount of nab-paclitaxel in vitro than SPARC wild type (WT) cells. In vivo, SPARC KD and SPARC WT subcutaneous xenografts in mice achieved similar maximum intratumoral concentrations of nab-paclitaxel, though drug clearance from SPARC WT tumors was significantly slower. We confirmed such SPARC-mediated long-term intratumoral accumulation of nab-paclitaxel in Ewing sarcoma PDX with high expression of SPARC, which accumulated significantly more nab-paclitaxel than SPARC-low PDX. SPARC-high PDX responded better to nab-paclitaxel than SPARC-low tumors, although these results should be taken cautiously, given that the PDXs were established from different patients that could have specific determinants predisposing response to paclitaxel. In addition, SPARC KD Ewing sarcoma xenografts responded better to soluble docetaxel and paclitaxel than to nab-paclitaxel, while SPARC WT ones showed similar response to soluble and albumin-carried drugs. Overall, our results show that pediatric sarcomas expressing SPARC accumulate nab-paclitaxel for longer periods of time, which could have clinical implications for chemotherapy efficacy.
Collapse
|
16
|
Bioinformatics Analysis of ZBTB16 as a Prognostic Marker for Ewing's Sarcoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1989917. [PMID: 34660783 PMCID: PMC8514890 DOI: 10.1155/2021/1989917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022]
Abstract
Objective The purpose of this study is to identify novel biomarkers for the prognosis of Ewing's sarcoma based on bioinformatics analysis. Methods The GSE63157 and GSE17679 datasets contain patient and healthy control microarray data that were downloaded from the Gene Expression Omnibus (GEO) database and analyzed through R language software to obtain differentially expressed genes (DEGs). Firstly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment, protein-protein interaction (PPI) networks, and Cytoscape Molecular Complex Detection (MCODE) plug-in were then used to compute the highest scores of the module. After survival analysis, the hub genes were lastly obtained from the two module genes. Results A total of 1181 DEGs were identified from the two GSEs. Through MCODE and survival analysis, we obtain 53 DEGs from the module and 29 overall survival- (OS-) related genes. ZBTB16 was the only downregulated gene after Venn diagrams. Survival analysis indicates that there was a significant correlation between the high expression of ZBTB16 and the OS of Ewing's sarcoma (ES), and the low expression group had an unfavorable OS when compared to the high expression group. Conclusions High expression of ZBTB16 may serve as a predictor biomarker of poor prognosis in ES patients.
Collapse
|
17
|
Ohmura S, Marchetto A, Orth MF, Li J, Jabar S, Ranft A, Vinca E, Ceranski K, Carreño-Gonzalez MJ, Romero-Pérez L, Wehweck FS, Musa J, Bestvater F, Knott MML, Hölting TLB, Hartmann W, Dirksen U, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Translational evidence for RRM2 as a prognostic biomarker and therapeutic target in Ewing sarcoma. Mol Cancer 2021; 20:97. [PMID: 34315482 PMCID: PMC8314608 DOI: 10.1186/s12943-021-01393-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shunya Ohmura
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jing Li
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Susanne Jabar
- Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Andreas Ranft
- Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Endrit Vinca
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Katharina Ceranski
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Martha J Carreño-Gonzalez
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Laura Romero-Pérez
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Fabienne S Wehweck
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julian Musa
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Bestvater
- Light Microscopy Facility, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Münster, Münster, Germany
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen, Essen, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas G P Grünewald
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany. .,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ) & Hopp-Children's Cancer Center (KiTZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany. .,Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|