1
|
Molina LM, Bailey N, Jawad M, Patwardhan PP, Friehling E, Bailey K, Windreich RM, Al-Attar A, Davis K, Gestrich CK. A Rare Case of Concurrent Neuroblastoma and Acute Myeloid Leukemia With CBFA2T3::GLIS2 Fusion: A Diagnostic and Therapeutic Dilemma. Pediatr Blood Cancer 2025:e31815. [PMID: 40390182 DOI: 10.1002/pbc.31815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Affiliation(s)
- Laura M Molina
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Division of Pulmonology, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nathanael Bailey
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Majd Jawad
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pranav P Patwardhan
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Erika Friehling
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kelly Bailey
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Randy M Windreich
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ahmad Al-Attar
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katelynn Davis
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Catherine K Gestrich
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Pediatric Pathology, Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Thomas X. Rare Genetic and Uncommon Morphological Entities in Adults with Acute Myeloid Leukemia. Curr Oncol Rep 2025:10.1007/s11912-025-01678-y. [PMID: 40293670 DOI: 10.1007/s11912-025-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE OF REVIEW Despite differences in the various classification systems of acute myeloid leukemia (AML), rare entities can be identified according to clinical, biological or morphological characteristics. Uncommon AML defined on specific morphological criteria and/or genetic abnormalities were considered if occurring with a frequency of ≤ 5% in adult patients with AML. RECENT FINDINGS Most of uncommon AML are characterized by a poor outcome with the standard treatment approaches. During the last decade, several therapeutic drugs with promising investigational approaches have been used in therapeutic regimens in both frontline and relapsed/refractory AML and represent a positive potential benefit for some rare entities displaying specific molecular lesions. Several rare subtypes can be identified in adult patients with AML. In this descriptive review, we assess the available information for these rare entities and summarized treatments that could be proposed especially according to their genetic characterization.
Collapse
Affiliation(s)
- Xavier Thomas
- Department of Clinical Hematology, Hospices Civils de Lyon Service d'Hématologie Clinique Centre Hospitalier Lyon Sud, Pierre-Bénite, 69495-cedex, France.
| |
Collapse
|
3
|
Boudia F, Baille M, Babin L, Aid Z, Robert E, Rivière J, Galant K, Alonso-Pérez V, Anselmi L, Arkoun B, Abermil N, Marzac C, Bertuccio SN, de Prémesnil A, Lopez CK, Eeckhoutte A, Naimo A, Leite B, Catelain C, Metereau C, Gonin P, Gaspar N, Schwaller J, Bernard OA, Raslova H, Gaudry M, Marchais A, Lapillonne H, Petit A, Pflumio F, Arcangeli ML, Brunet E, Mercher T. Progressive chromatin rewiring by ETO2::GLIS2 revealed in a genome-edited human iPSC model of pediatric leukemia initiation. Blood 2025; 145:1510-1525. [PMID: 39656971 DOI: 10.1182/blood.2024024505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.
Collapse
MESH Headings
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Chromatin/metabolism
- Chromatin/genetics
- Animals
- Mice
- Gene Editing
- Child
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Fabien Boudia
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Marie Baille
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Loélia Babin
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Zakia Aid
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Elie Robert
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Julie Rivière
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Klaudia Galant
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Verónica Alonso-Pérez
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Laura Anselmi
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- University of Bologna, Bologna, Italy
| | - Brahim Arkoun
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Nassera Abermil
- Laboratoire d'Hématologie Biologique, Hôpital Universitaire Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christophe Marzac
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | | | - Alexia de Prémesnil
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Université Paris Cité, Paris, France
| | - Cécile K Lopez
- Department of Haematology, University of Cambridge, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Alexandre Eeckhoutte
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Audrey Naimo
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Betty Leite
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Cyril Catelain
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Christophe Metereau
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Patrick Gonin
- Gustave Roussy Cancer Center, Université Paris-Saclay, UMS AMMICA, Villejuif, France
| | - Nathalie Gaspar
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Jürg Schwaller
- University Children's Hospital Beider Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier A Bernard
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Hana Raslova
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Muriel Gaudry
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Antonin Marchais
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Hélène Lapillonne
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Françoise Pflumio
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
- OPALE Carnot Institute, Paris, France
| | - Marie-Laure Arcangeli
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Erika Brunet
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Thomas Mercher
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- OPALE Carnot Institute, Paris, France
| |
Collapse
|
4
|
Gündoğdu F, Agaimy A, Aytaç S, Hazar V, Üner A, Kösemehmetoğlu K. Myeloid sarcoma with RBM15::MRTFA (MKL1) mimicking vascular neoplasm. Virchows Arch 2025; 486:405-410. [PMID: 38374236 PMCID: PMC11876237 DOI: 10.1007/s00428-024-03766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Extramedullary involvement of acute myeloid leukemia (AML), aka myeloid sarcoma, is a rare phenomenon in acute megakaryoblastic leukemia with RBM15:: MRTFA(MKL1) fusion, which might mimic non-hematologic malignancies. A 7-month-old infant presented with leukocytosis, hepatosplenomegaly, multiple lymphadenopathies, and a solid mass in the right thigh. Initially, the patient was diagnosed with a malignant vascular tumor regarding the expression of vascular markers from the biopsy of the right thigh lesion that was performed after the inconclusive bone marrow biopsy. The second bone marrow biopsy, which was performed due to the partial response to sarcoma treatment, showed hypercellular bone marrow with CD34 and CD61-positive spindle cell infiltration and > 20% basophilic blasts with cytoplasmic blebs. RNA sequencing of soft tissue biopsy revealed the presence of RBM15::MRTFA(MKL1) fusion. Based on these findings, myeloid sarcoma/AML with RBM15::MRTFA(MKL1) fusion diagnosis was made. AML with RBM15::MRTFA(MKL1) fusion can initially present as extramedullary lesions and might cause misdiagnosis of non-hematologic malignancies.
Collapse
MESH Headings
- Humans
- Infant
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Diagnosis, Differential
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Oncogene Proteins, Fusion/genetics
- RNA-Binding Proteins/genetics
- Sarcoma, Myeloid/genetics
- Sarcoma, Myeloid/pathology
- Sarcoma, Myeloid/diagnosis
- Trans-Activators/genetics
- Vascular Neoplasms/diagnosis
- Vascular Neoplasms/genetics
- Vascular Neoplasms/pathology
- Carrier Proteins
- Nuclear Proteins
Collapse
Affiliation(s)
- Fatma Gündoğdu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Abbas Agaimy
- Department of Pathology, Erlangen University, Erlangen, Germany
| | - Selin Aytaç
- Department of Pediatric Hematology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Volkan Hazar
- Department of Pediatric Oncology, Akdeniz University, Antalya, Türkiye
| | - Ayşegül Üner
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Kemal Kösemehmetoğlu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Türkiye.
| |
Collapse
|
5
|
Landherr M, Hilgers M, Pond D, Miller LH, Gossai N. Acute megakaryoblastic leukemia associated with Sotos syndrome: A case report and review of evolving genetic associations. Pediatr Blood Cancer 2024; 71:e31267. [PMID: 39118241 DOI: 10.1002/pbc.31267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Maria Landherr
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan Hilgers
- Center for Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Dinel Pond
- Department of Genetics and Genomics, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Lane H Miller
- Center for Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Nathan Gossai
- Center for Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Arad-Cohen N, Attias O, Zohar Y, Messinger YH. Liver fibrosis among infants with t(1;22)(p13;q13) acute megakaryoblastic leukemia: a case report and literature review. Front Oncol 2024; 14:1441318. [PMID: 39281382 PMCID: PMC11401043 DOI: 10.3389/fonc.2024.1441318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 09/18/2024] Open
Abstract
This case report describes a 2-month-old girl with acute megakaryoblastic leukemia (AMKL) harboring the t(1;22)(p13;q13) translocation, resulting in the RBM15::MRTFA fusion gene. She presented with massive hepatosplenomegaly and liver fibrosis and achieved complete remission with chemotherapy; the liver fibrosis resolved within 2.5 months. After 12 years of follow-up, the patient remained in good health, without relapse. Reviewing the literature on eight additional similar cases of liver fibrosis, this subtype of AMKL predominantly affects female patients below 3 months of age, with a median onset at 6 weeks. High rates of severe complications were observed, with five of nine patients dying within 10 weeks of diagnosis. The authors hypothesized that the proliferation of abnormal megakaryoblasts within the liver leads to the release of profibrotic cytokines, such as TGF-β1, which induces liver fibrosis similar to that observed in transient abnormal myelopoiesis in Down syndrome. Careful monitoring of liver functions and reduced-intensity chemotherapy are recommended for this very young patient population. Nonetheless, long-term survival can be achieved with aggressive supportive care and treatment.
Collapse
Affiliation(s)
- Nira Arad-Cohen
- Pediatric Hematology-Oncology Department, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Ori Attias
- Pediatric Intensive Care Unit, Ruth Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Yaniv Zohar
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Yoav H Messinger
- Cancer and Blood Disorders, Pediatric Hematology/Oncology Department, Children's Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Rørvik SD, Torkildsen S, Bruserud Ø, Tvedt THA. Acute myeloid leukemia with rare recurring translocations-an overview of the entities included in the international consensus classification. Ann Hematol 2024; 103:1103-1119. [PMID: 38443661 PMCID: PMC10940453 DOI: 10.1007/s00277-024-05680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Two different systems exist for subclassification of acute myeloid leukemia (AML); the World Health Organization (WHO) Classification and the International Consensus Classification (ICC) of myeloid malignancies. The two systems differ in their classification of AML defined by recurrent chromosomal abnormalities. One difference is that the ICC classification defines an AML subset that includes 12 different genetic abnormalities that occur in less than 4% of AML patients. These subtypes exhibit distinct clinical traits and are associated with treatment outcomes, but detailed description of these entities is not easily available and is not described in detail even in the ICC. We searched in the PubMed database to identify scientific publications describing AML patients with the recurrent chromosomal abnormalities/translocations included in this ICC defined patient subset. This patient subset includes AML with t(1;3)(p36.3;q21.3), t(3;5)(q25.3;q35.1), t(8;16)(p11.2;p13.3), t(1;22)(p13.3;q13.1), t(5;11)(q35.2;p15.4), t(11;12)(p15.4;p13.3) (involving NUP98), translocation involving NUP98 and other partner, t(7;12)(q36.3;p13.2), t(10;11)(p12.3;q14.2), t(16;21)(p11.2;q22.2), inv(16)(p13.3q24.3) and t(16;21)(q24.3;q22.1). In this updated review we describe the available information with regard to frequency, biological functions of the involved genes and the fusion proteins, morphology/immunophenotype, required diagnostic procedures, clinical characteristics (including age distribution) and prognostic impact for each of these 12 genetic abnormalities.
Collapse
Affiliation(s)
- Synne D Rørvik
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Synne Torkildsen
- Department of Haematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
8
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Gress V, Roussy M, Boulianne L, Bilodeau M, Cardin S, El-Hachem N, Lisi V, Khakipoor B, Rouette A, Farah A, Théret L, Aubert L, Fatima F, Audemard É, Thibault P, Bonneil É, Chagraoui J, Laramée L, Gendron P, Jouan L, Jammali S, Paré B, Simpson SM, Tran TH, Duval M, Teira P, Bittencourt H, Santiago R, Barabé F, Sauvageau G, Smith MA, Hébert J, Roux PP, Gruber TA, Lavallée VP, Wilhelm BT, Cellot S. CBFA2T3::GLIS2 pediatric acute megakaryoblastic leukemia is sensitive to BCL-XL inhibition by navitoclax and DT2216. Blood Adv 2024; 8:112-129. [PMID: 37729615 PMCID: PMC10787250 DOI: 10.1182/bloodadvances.2022008899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
ABSTRACT Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.
Collapse
Affiliation(s)
- Verena Gress
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roussy
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Luc Boulianne
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Mélanie Bilodeau
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Sophie Cardin
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Nehme El-Hachem
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Véronique Lisi
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Banafsheh Khakipoor
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alexandre Rouette
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Azer Farah
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Louis Théret
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Furat Fatima
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Éric Audemard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
| | - Louise Laramée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Loubna Jouan
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Safa Jammali
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Bastien Paré
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Shawn M Simpson
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Thai Hoa Tran
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Michel Duval
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Teira
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Henrique Bittencourt
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Raoul Santiago
- Division of Hematology-Oncology, Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
| | - Frédéric Barabé
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Guy Sauvageau
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
| | - Martin A Smith
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Philippe P Roux
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Vincent-Philippe Lavallée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sonia Cellot
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Cooper TM, Alonzo TA, Tasian SK, Kutny MA, Hitzler J, Pollard JA, Aplenc R, Meshinchi S, Kolb EA. Children's Oncology Group's 2023 blueprint for research: Myeloid neoplasms. Pediatr Blood Cancer 2023; 70 Suppl 6:e30584. [PMID: 37480164 PMCID: PMC10614720 DOI: 10.1002/pbc.30584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
During the past decade, the outcomes of pediatric patients with acute myeloid leukemia (AML) have plateaued with 5-year event-free survival (EFS) and overall survival (OS) of approximately 46 and 64%, respectively. Outcomes are particularly poor for those children with high-risk disease, who have 5-year OS of 46%. Substantial survival improvements have been observed for a subset of patients treated with targeted therapies. Specifically, children with KMT2A-rearranged AML and/or FLT3 internal tandem duplication (FLT3-ITD) mutations benefitted from the addition of gemtuzumab ozogamicin, an anti-CD33 antibody-drug conjugate, in the AAML0531 clinical trial (NCT00372593). Sorafenib also improved response and survival in children with FLT3-ITD AML in the AAML1031 clinical trial (NCT01371981). Advances in characterization of prognostic cytomolecular events have helped to identify patients at highest risk of relapse and facilitated allocation to consolidative hematopoietic stem cell transplant (HSCT) in first remission. Some patients clearly have improved survival with HSCT, although the benefit is largely unknown for most patients. Finally, data-driven refinements in supportive care recommendations continue to evolve with meaningful and measurable reductions in toxicity and improvements in EFS and OS. As advances in application of targeted therapies, risk stratification, and improved supportive care measures are incorporated into current trials and become standard-of-care, there is every expectation that we will see improved survival with a reduction in toxic morbidity and mortality. The research agenda of the Children's Oncology Group's Myeloid Diseases Committee continues to build upon experience and outcomes with an overarching goal of curing more children with AML.
Collapse
Affiliation(s)
- Todd M Cooper
- Seattle Children’s Hospital Cancer and Blood Disorders Service, University of Washington School of Medicine; Seattle, Washington
| | | | - Sarah K Tasian
- Children’s Hospital of Philadelphia Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Matthew A Kutny
- University of Alabama at Birmingham, Department of Pediatrics, Division of Hematology/Oncology, Birmingham, Alabama
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, ON, Canada; Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jessica A Pollard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Richard Aplenc
- Children’s Hospital of Philadelphia Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Soheil Meshinchi
- Seattle Children’s Hospital Cancer and Blood Disorders Service, University of Washington School of Medicine; Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours Children’s Health, Wilmington, DE
| |
Collapse
|