1
|
Szlasa W, Sauer N, Baczyńska D, Ziętek M, Haczkiewicz-Leśniak K, Karpiński P, Fleszar M, Fortuna P, Kulus MJ, Piotrowska A, Kmiecik A, Barańska A, Michel O, Novickij V, Tarek M, Kasperkiewicz P, Dzięgiel P, Podhorska-Okołów M, Saczko J, Kulbacka J. Pulsed electric field induces exocytosis and overexpression of MAGE antigens in melanoma. Sci Rep 2024; 14:12546. [PMID: 38822068 PMCID: PMC11143327 DOI: 10.1038/s41598-024-63181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Nanosecond pulsed electric field (nsPEF) has emerged as a promising approach for inducing cell death in melanoma, either as a standalone treatment or in combination with chemotherapeutics. However, to date, there has been a shortage of studies exploring the impact of nsPEF on the expression of cancer-specific molecules. In this investigation, we sought to assess the effects of nsPEF on melanoma-specific MAGE (Melanoma Antigen Gene Protein Family) expression. To achieve this, melanoma cells were exposed to nsPEF with parameters set at 8 kV/cm, 200 ns duration, 100 pulses, and a frequency of 10 kHz. We also aimed to comprehensively describe the consequences of this electric field on melanoma cells' invasion and proliferation potential. Our findings reveal that following exposure to nsPEF, melanoma cells release microvesicles containing MAGE antigens, leading to a simultaneous increase in the expression and mRNA content of membrane-associated antigens such as MAGE-A1. Notably, we observed an unexpected increase in the expression of PD-1 as well. While we did not observe significant differences in the cells' proliferation or invasion potential, a remarkable alteration in the cells' metabolomic and lipidomic profiles towards a less aggressive phenotype was evident. Furthermore, we validated these results using ex vivo tissue cultures and 3D melanoma culture models. Our study demonstrates that nsPEF can elevate the expression of membrane-associated proteins, including melanoma-specific antigens. The mechanism underlying the overexpression of MAGE antigens involves the initial release of microvesicles containing MAGE antigens, followed by a gradual increase in mRNA levels, ultimately resulting in elevated expression of MAGE antigens post-experiment. These findings shed light on a novel method for modulating cancer cells to overexpress cancer-specific molecules, thereby potentially enhancing their sensitivity to targeted anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Medical University Hospital, Borowska 213, 50-556, Wrocław, Poland.
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Surgical Oncology, Wroclaw Comprehensive Cancer Center, Wroclaw, Poland
| | | | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
- Omics Research Center, Wroclaw Medical University, Wrocław, Poland
| | - Paulina Fortuna
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
- Omics Research Center, Wroclaw Medical University, Wrocław, Poland
| | - Michał J Kulus
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Agnieszka Barańska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, 54000, Nancy, France
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania
| |
Collapse
|
2
|
Jones L, Blair J, Hawcutt DB, Lip GYH, Shantsila A. Hypertension in Turner syndrome: a review of proposed mechanisms, management and new directions. J Hypertens 2023; 41:203-211. [PMID: 36583347 DOI: 10.1097/hjh.0000000000003321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acquired cardiovascular diseases account for much of the increased risk of premature death in patients with Turner syndrome (TS). Hypertension is a major modifiable cardiovascular risk factor. It has a high prevalence in TS developing at an early age and thus leading to prolonged exposure to high blood pressure. The aetiology for hypertension in TS is largely unknown. It is likely multifactorial, and recent hypotheses include altered sympathetic tone, vasculopathy and endocrine factors. In this review article we aim to provide a comprehensive review of data on mechanisms of hypertension in TS and their implication for diagnostics and optimal choice of antihypertensive treatments. Ultimately this knowledge should help prevent hypertension-related complications, and improve quality of life and life expectancy for patients with TS.
Collapse
Affiliation(s)
- Lily Jones
- Department of Women's and Children's Health, University of Liverpool
| | - Joanne Blair
- Department of Endocrinology, Alder Hey Children's NHS Foundation Trust
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Alena Shantsila
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| |
Collapse
|
3
|
Lee GK, Perrault DP, Bouz A, Pourmoussa AJ, Yu R, Kim SJ, Gardner D, Johnson M, Park SY, Park EK, Seong YJN, Lee S, Jung E, Choi D, Hong YK, Wong AK. Prolymphangiogenic Effects of 9- cis Retinoic Acid Are Enhanced at Sites of Lymphatic Injury and Dependent on Treatment Duration in Experimental Postsurgical Lymphedema. Lymphat Res Biol 2022; 20:640-650. [PMID: 35584281 PMCID: PMC9810351 DOI: 10.1089/lrb.2021.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Patients undergoing surgical treatment for solid tumors are at risk for development of secondary lymphedema due to intraoperative lymphatic vessel injury. The damaged lymphatic vessels fail to adequately regenerate and lymphatic obstruction leads to fluid and protein accumulation in the interstitial space and chronic lymphedema develops as a result. There are currently no effective pharmacological agents that reduce the risk of developing lymphedema or treat pre-existing lymphedema, and management is largely palliative. The present study investigated the efficacy of various 9-cis retinoic acid (9-cis RA) dosing strategies in reducing postsurgical lymphedema by utilizing a well-established mouse tail lymphedema model. Methods and Results: Short-duration treatment with 9-cis RA did not demonstrate a significant reduction in postoperative tail volume, nor an improvement in lymphatic clearance. However, long-term treatment with 9-cis RA resulted in decreased overall tail volume, dermal thickness, and epidermal thickness, with an associated increase in functional lymphatic clearance and lymphatic vessel density, assessed by LYVE-1 immunostaining, compared with control. These effects were seen at the site of lymphatic injury, with no significant changes observed in uninjured sites such as ear skin and the diaphragm. Conclusions: Given the reported results indicating that 9-cis RA is a potent promoter of lymphangiogenesis and improved lymphatic clearance at sites of lymphatic injury, investigation of postoperative 9-cis RA administration to patients at high risk of developing lymphedema may demonstrate positive efficacy and reduced rates of postsurgical lymphedema.
Collapse
Affiliation(s)
- Gene K. Lee
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - David P. Perrault
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
| | - Antoun Bouz
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
| | - Austin J. Pourmoussa
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
| | - Roy Yu
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
| | - Soo Jung Kim
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Daniel Gardner
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
| | - Maxwell Johnson
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
| | - Sun Young Park
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
| | - Eun Kyung Park
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Young Jin N. Seong
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Sunju Lee
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Eunson Jung
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
| | - Dongwon Choi
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alex K. Wong
- Division of Plastic and Reconstructive Surgery and Keck School of Medicine of USC, Los Angeles, California, USA
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
4
|
Engelbrecht E, Metzler MA, Sandell LL. Retinoid signaling regulates angiogenesis and blood-retinal barrier integrity in neonatal mouse retina. Microcirculation 2022; 29:e12752. [PMID: 35203102 DOI: 10.1111/micc.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The neonatal mouse retina is a well-characterized experimental model for investigating factors impacting retinal angiogenesis and inner blood-retinal barrier (BRB) integrity. Retinoic acid (RA) is an essential signaling molecule. RA is needed for vasculogenic development in embryos and endothelial barrier integrity in zebrafish retina and adult mouse brain, however the function of this signaling molecule in developing mammalian retinal vasculature remains unknown. This study aims to investigate the role of RA signaling in angiogenesis and inner BRB integrity in mouse neonatal retina. METHODS RA distribution in the developing neurovascular retina was assessed in mice carrying an RA-responsive transgene. RA function in retinal angiogenesis was determined by treating C57BL/6 neonatal pups with a pharmacological inhibitor of RA signaling BMS493 or control vehicle. BRB integrity assessed by monitoring leakage of injected tracer into extravascular retinal tissue. RESULTS RA signaling activity is present in peripheral astrocytes in domains corresponding to RA activity of the underlying neural retina. RA inhibition impaired retinal angiogenesis and reduced endothelial cell proliferation. RA inhibition also compromised BRB integrity. Vascular leakage was not associated with altered expression of CLDN5, PLVAP, LEF1 or VEcad. CONCLUSIONS RA signaling is needed for angiogenesis and integrity of the BRB in the neonatal mouse retina.
Collapse
Affiliation(s)
- Eric Engelbrecht
- University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| |
Collapse
|
5
|
Bianchi DW, Deprest J, Levy B, Chitty LS, Ghidini A, Hui L, van Mieghem T, George ST. The 2019 Malcolm Ferguson-Smith Young Investigator Award. Prenat Diagn 2020; 40:763-765. [PMID: 32597540 DOI: 10.1002/pd.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jan Deprest
- Departments of Obstetrics and Gynaecology, University Hospitals, Leuven, Belgium
| | - Brynn Levy
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Lyn S Chitty
- Genetic and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Alessandro Ghidini
- Antenatal Testing Center, Inova Alexandria Hospital, Alexandria, VA, USA
| | - Lisa Hui
- Departments of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
6
|
Lioux G, Liu X, Temiño S, Oxendine M, Ayala E, Ortega S, Kelly RG, Oliver G, Torres M. A Second Heart Field-Derived Vasculogenic Niche Contributes to Cardiac Lymphatics. Dev Cell 2020; 52:350-363.e6. [PMID: 31928974 DOI: 10.1016/j.devcel.2019.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
The mammalian heart contains multiple cell types that appear progressively during embryonic development. Advance in determining cardiac lineage diversification has often been limited by the unreliability of genetic tracers. Here we combine clonal analysis, genetic lineage tracing, tissue transplantation, and mutant characterization to investigate the lineage relationships between epicardium, arterial mesothelial cells (AMCs), and the coronary vasculature. We report a contribution of the second heart field (SHF) to a vasculogenic niche composed of AMCs and sub-mesothelial cells at the base of the pulmonary artery. Sub-mesothelial cells from this niche differentiate into lymphatic endothelial cells and, in close association with AMC-derived cells, contribute to and are essential for the development of ventral cardiac lymphatics. In addition, regionalized epicardial/mesothelial retinoic acid signaling regulates lymphangiogenesis, contributing to the niche properties. These results uncover a SHF vasculogenic contribution to coronary lymphatic development through a local niche at the base of the great arteries.
Collapse
Affiliation(s)
- Ghislaine Lioux
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Susana Temiño
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Michael Oxendine
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Estefanía Ayala
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain.
| |
Collapse
|
7
|
Bianchi DW, Ghidini A, Levy B, Deprest J, van Mieghem T, Chitty LS, Hui L, McLean-Inglis A. The 2018 Malcolm Ferguson-Smith Young Investigator Award. Prenat Diagn 2019; 39:835-837. [PMID: 31414475 DOI: 10.1002/pd.5533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Ghidini
- Department of Obstetrics and Gynecology, Inova Alexandria Hospital, Alexandria, VA, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jan Deprest
- Academic Department of Development and Regeneration, Woman and Child, Biomedical Sciences, and Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Tim van Mieghem
- Departments of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Canada
| | - Lyn S Chitty
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lisa Hui
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
8
|
Qu X, Harmelink C, Baldwin HS. Tie2 regulates endocardial sprouting and myocardial trabeculation. JCI Insight 2019; 5:96002. [PMID: 31112136 DOI: 10.1172/jci.insight.96002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ang1-Tie2 pathway is required for normal vascular development, but its molecular effectors are not well-defined during cardiac ontogeny. Here we show that endocardial specific attenuation of Tie2 results in mid-gestation lethality due to heart defects associated with a hyperplastic but simplified trabecular meshwork (fewer but thicker trabeculae). Reduced proliferation and production of endocardial cells (ECs) following endocardial loss of Tie2 results in decreased endocardial sprouting required for trabecular assembly and extension. The hyperplastic trabeculae result from enhanced proliferation of trabecular cardiomyocyte (CMs), which is associated with upregulation of Bmp10, increased retinoic acid (RA) signaling, and Erk1/2 hyperphosphorylation in the myocardium. Intriguingly, myocardial phenotypes in Tie2-cko hearts could be partially rescued by inhibiting in utero RA signaling with pan-retinoic acid receptor antagonist BMS493. These findings reveal two complimentary functions of endocardial Tie2 during ventricular chamber formation: ensuring normal trabeculation by supporting EC proliferation and sprouting, and preventing hypertrabeculation via suppression of RA signaling in trabecular CMs.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology) and
| | | | - H Scott Baldwin
- Department of Pediatrics (Cardiology) and.,Department of Cell and Development Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Pawlikowski B, Wragge J, Siegenthaler JA. Retinoic acid signaling in vascular development. Genesis 2019; 57:e23287. [PMID: 30801891 DOI: 10.1002/dvg.23287] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Formation of the vasculature is an essential developmental process, delivering oxygen and nutrients to support cellular processes needed for tissue growth and maturation. Retinoic acid (RA) and its downstream signaling pathway is vital for normal pre- and post-natal development, playing key roles in the specification and formation of many organs and tissues. Here, we review the role of RA in blood and lymph vascular development, beginning with embryonic yolk sac vasculogenesis and remodeling and discussing RA's organ-specific roles in angiogenesis and vessel maturation. In particular, we highlight the multi-faceted role of RA signaling in CNS vascular development and acquisition of blood-brain barrier properties.
Collapse
Affiliation(s)
- Brad Pawlikowski
- Department of Molecular, Cell and Developmental Biology, University of Colorado-Boulder, Boulder, Colorado
| | - Jacob Wragge
- Department of Pediatrics-Section of Developmental Biology, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Siegenthaler
- Department of Pediatrics-Section of Developmental Biology, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Bianchi DW, Ghidini A, Levy B, Deprest J, Van Mieghem T, Chitty LS, McLean-Inglis AJL. The 2017 Malcolm Ferguson-Smith Young Investigator Award. Prenat Diagn 2018; 38:545-546. [PMID: 29952009 DOI: 10.1002/pd.5289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jan Deprest
- Academic Department of Development and Regeneration, Woman and Child, Biomedical Sciences, and Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Tim Van Mieghem
- Departments of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Canada
| | - Lyn S Chitty
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | | |
Collapse
|
11
|
Ghidini A, Bianchi DW, Levy B, Deprest J, van Mieghem T, Chitty LS, McLean-Inglis A. The 2016 Malcolm Ferguson-Smith Young Investigator Award. Prenat Diagn 2017. [DOI: 10.1002/pd.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Brynn Levy
- Clinical Cytogenetics Laboratory; Columbia University; New York NY USA
| | - Jan Deprest
- Clinical Department of Obstetrics and Gynaecology; University Hospitals Leuven & Academic Department Development and Regeneration, Cluster Woman & Child, Biomedical Sciences; KU Leuven Leuven Belgium
| | | | - Lyn S. Chitty
- University College London NHS Foundation Trust; London UK
| | | |
Collapse
|
12
|
Buettner M, Lochner M. Development and Function of Secondary and Tertiary Lymphoid Organs in the Small Intestine and the Colon. Front Immunol 2016; 7:342. [PMID: 27656182 PMCID: PMC5011757 DOI: 10.3389/fimmu.2016.00342] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 01/25/2023] Open
Abstract
The immune system of the gut has evolved a number of specific lymphoid structures that contribute to homeostasis in the face of microbial colonization and food-derived antigenic challenge. These lymphoid organs encompass Peyer’s patches (PP) in the small intestine and their colonic counterparts that develop in a programed fashion before birth. In addition, the gut harbors a network of lymphoid tissues that is commonly designated as solitary intestinal lymphoid tissues (SILT). In contrast to PP, SILT develop strictly after birth and consist of a dynamic continuum of structures ranging from small cryptopatches (CP) to large, mature isolated lymphoid follicles (ILF). Although the development of PP and SILT follow similar principles, such as an early clustering of lymphoid tissue inducer (LTi) cells and the requirement for lymphotoxin beta (LTβ) receptor-mediated signaling, the formation of CP and their further maturation into ILF is associated with additional intrinsic and environmental signals. Moreover, recent data also indicate that specific differences exist in the regulation of ILF formation between the small intestine and the colon. Importantly, intestinal inflammation in both mice and humans is associated with a strong expansion of the lymphoid network in the gut. Recent experiments in mice suggest that these structures, although they resemble large, mature ILF in appearance, may represent de novo-induced tertiary lymphoid organs (TLO). While, so far, it is not clear whether intestinal TLO contribute to the exacerbation of inflammatory pathology, it has been shown that ILF provide the critical microenvironment necessary for the induction of an effective host response upon infection with enteric bacterial pathogens. Regarding the importance of ILF for intestinal immunity, interfering with the development and maturation of these lymphoid tissues may offer novel means for manipulating the immune response during intestinal infection or inflammation.
Collapse
Affiliation(s)
- Manuela Buettner
- Central Animal Facility, Institute of Laboratory Animal Science, Hannover Medical School , Hannover , Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI) , Hannover , Germany
| |
Collapse
|
13
|
Harper AR, Wang X, Moiseyev G, Ma JX, Summers JA. Postnatal Chick Choroids Exhibit Increased Retinaldehyde Dehydrogenase Activity During Recovery From Form Deprivation Induced Myopia. Invest Ophthalmol Vis Sci 2016; 57:4886-4897. [PMID: 27654415 PMCID: PMC5032914 DOI: 10.1167/iovs.16-19395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Increases in retinaldehyde dehydrogenase 2 (RALDH2) transcript in the chick choroid suggest that RALDH2 may be responsible for increases observed in all-trans-retinoic acid (atRA) synthesis during recovery from myopic defocus. The purpose of the present study was to examine RALDH2 protein expression, RALDH activity, and distribution of RALDH2 cells in control and recovering chick ocular tissues. Methods Myopia was induced in White Leghorn chicks for 10 days, followed by up to 15 days of unrestricted vision (recovery). Expression of RALDH isoforms in chick ocular tissues was evaluated by Western blot. Catalytic activity of RALDH was measured in choroidal cytosol fractions using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Distribution of RALDH2 cells throughout the choroid was evaluated by immunohistochemistry. Results RALDH2 was expressed predominately in the chick choroid (P < 0.001) and increased after 24 hours and 4 days of recovery (76%, 74%, and 165%, respectively; P < 0.05). Activity of RALDH was detected solely in the choroid and was elevated at 3 and 7 days of recovery compared to controls (70% and 48%, respectively; P < 0.05). The number of RALDH2 immunopositive cells in recovering choroids was increased at 24 hours and 4 to 15 days of recovery (P < 0.05) and were concentrated toward the RPE side compared to controls. Conclusions The results of this study suggest that RALDH2 is the major RALDH isoform in the chick choroid and is responsible for the increased RALDH activity seen during recovery.
Collapse
Affiliation(s)
- Angelica R Harper
- Department of Cell Biology University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xiang Wang
- Department of Cell Biology University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jody A Summers
- Department of Cell Biology University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
14
|
Ghidini A, Bianchi DW, Levy B, Deprest J, van Mieghem T, Chitty LS, McLean-Inglis A. The 2015 Malcolm Ferguson-Smith Young Investigator Award. Prenat Diagn 2016; 36:599-600. [PMID: 27381265 DOI: 10.1002/pd.4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Brynn Levy
- Clinical Cytogenetics Laboratory, Columbia University, New York, USA
| | | | | | - Lyn S Chitty
- University College London NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
15
|
Burger NB, Matias A, Kok E, de Groot CJM, Christoffels VM, Bekker MN, Haak MC. Absence of an anatomical origin for altered ductus venosus flow velocity waveforms in first-trimester human fetuses with increased nuchal translucency. Prenat Diagn 2016; 36:537-44. [PMID: 27060369 DOI: 10.1002/pd.4820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To perform a morphological evaluation of the ductus venosus, heart and jugular lymphatic sac (JLS) in first-trimester human fetuses with normal and abnormal ductus venosus flow velocity waveforms (DV-FVWs) and normal and increased nuchal translucency (NT). METHOD Postmortem examination was performed on fetuses with increased NT or structural malformations with previous NT and DV-FVW measurements. Ductus venosus morphology was examined using markers for endothelium, smooth muscle actin (SMA), nerves and elastic fibers. Fetal hearts were studied by microscopy. The nuchal region was analyzed using markers for lymphatic vessels, endothelium, SMA and nerves. RESULTS Two trisomy 21 and two trisomy 18 fetuses with increased NT and abnormal DV-FVWs were analyzed. As a control, one euploid anencephalic fetus with normal NT, cardiac anatomy and DV-FVWs was examined. Similar endothelial and SMA expression was observed in the ductus venosus in all fetuses. Nerve and elastic fiber expression were not detected. Three trisomic fetuses showed cardiac defects, one trisomic fetus demonstrated normal cardiac anatomy. The JLS was abnormally enlarged or contained red blood cells in all trisomic fetuses. The control fetus showed a normal JLS. CONCLUSION Abnormal DV-FVWs are not justified by alterations in ductus venosus morphology. DV-FVWs most probably reflect intracardiac pressure. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicole B Burger
- Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexandra Matias
- Department of Obstetrics and Gynecology, University Hospital Sao João, Porto, Portugal
| | - Evelien Kok
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Christianne J M de Groot
- Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireille N Bekker
- Department of Obstetrics and Gynecology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique C Haak
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Patel S, Vajdy M. Induction of cellular and molecular immunomodulatory pathways by vitamin A and flavonoids. Expert Opin Biol Ther 2015; 15:1411-28. [PMID: 26185959 DOI: 10.1517/14712598.2015.1066331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. AREAS COVERED Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of vitamin A and select flavonoids in induction of innate and adaptive B- and T-cell responses, including TH1, TH2 and regulatory T cells (Treg). EXPERT OPINION While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immunomodulatory compounds.
Collapse
Affiliation(s)
- Sapna Patel
- a EpitoGenesis, Inc. , 1392 Storrs Rd Unit 4213, ATL Building, Rm 101, Storrs, CT 06269, USA
| | - Michael Vajdy
- a EpitoGenesis, Inc. , 1392 Storrs Rd Unit 4213, ATL Building, Rm 101, Storrs, CT 06269, USA
| |
Collapse
|
17
|
Bianchi DW, Chitty LS, Deprest J, Faas BHW, Ghidini A, Cousens RKJ. The 2014 Malcolm Ferguson-Smith Young Investigator Award. Prenat Diagn 2015; 35:515-6. [PMID: 26041253 DOI: 10.1002/pd.4612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Lyn S Chitty
- University College London NHS Foundation Trust, London, UK
| | - Jan Deprest
- University Hospital Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
18
|
Burger NB, Bekker MN, de Groot CJM, Christoffels VM, Haak MC. Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms. Prenat Diagn 2015; 35:517-28. [DOI: 10.1002/pd.4586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/09/2014] [Accepted: 02/21/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Nicole B. Burger
- Department of Obstetrics and Gynaecology; VU University Medical Center; Amsterdam The Netherlands
| | - Mireille N. Bekker
- Department of Obstetrics and Gynaecology; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Vincent M. Christoffels
- Department of Anatomy, Embryology & Physiology; Academic Medical Center; Amsterdam The Netherlands
| | - Monique C. Haak
- Department of Obstetrics; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
19
|
Faas BH, Ghidini A, Van Mieghem T, Chitty LS, Deprest J, Bianchi DW. In case you missed it: thePrenatal Diagnosiseditors bring you the most significant advances of 2014. Prenat Diagn 2015; 35:29-34. [DOI: 10.1002/pd.4551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Brigitte H. Faas
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Alessandro Ghidini
- Obstetrics and Gynecology; Georgetown University Hospital; Washington DC USA
| | - Tim Van Mieghem
- Obstetrics and Gynaecology; University Hospitals Leuven; Leuven Belgium
- Academic Department Development and Regeneration; Biomedical Sciences; KU Leuven Leuven Belgium
| | - Lyn S. Chitty
- UCL Institute of Child Health; Great Ormond Street Hospital for Children and UCLH NHS Foundation Trusts; London England UK
| | - Jan Deprest
- Obstetrics and Gynaecology; University Hospitals Leuven; Leuven Belgium
- Academic Department Development and Regeneration; Biomedical Sciences; KU Leuven Leuven Belgium
| | - Diana W. Bianchi
- Mother Infant Research Institute; Tufts Medical Center; Boston MA USA
- Floating Hospital for Children; Boston MA USA
| |
Collapse
|