1
|
Yuen N, Lemaire M, Wilson SL. Cell-free placental DNA: What do we really know? PLoS Genet 2024; 20:e1011484. [PMID: 39652523 PMCID: PMC11627368 DOI: 10.1371/journal.pgen.1011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cell-free placental DNA (cfpDNA) is present in maternal circulation during gestation. CfpDNA carries great potential as a research and clinical tool as it provides a means to investigate the placental (epi)genome across gestation, which previously required invasive placenta sampling procedures. CfpDNA has been widely implemented in the clinical setting for noninvasive prenatal testing (NIPT). Despite this, the basic biology of cfpDNA remains poorly understood, limiting the research and clinical utility of cfpDNA. This review will examine the current knowledge of cfpDNA, including origins and molecular characteristics, highlight gaps in knowledge, and discuss future research directions.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Lemaire
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Samantha L. Wilson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Li D, Qian X, Wang Y, Yin Y, Sun H, Zhao H, Wu J, Qiu L. Molecular characterization and functional roles of circulating cell-free extrachromosomal circular DNA. Clin Chim Acta 2024; 556:117822. [PMID: 38325714 DOI: 10.1016/j.cca.2024.117822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Circular DNA segments isolated from chromosomes are known as extrachromosomal circular DNA (eccDNA). Its distinct structure and characteristics, along with the variations observed in different disease states, makes it a promising biomarker. Recent studies have revealed the presence of eccDNAs in body fluids, indicating their involvement in various biological functions. This finding opens up avenues for utilizing eccDNAs as convenient and real-time biomarkers for disease diagnosis, treatment monitoring, and prognosis assessment through noninvasive analysis of body fluids. In this comprehensive review, we focused on elucidating the size profiles, potential mechanisms of formation and clearance, detection methods, and potential clinical applications of eccDNAs. We aimed to provide a valuable reference resource for future research in this field.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Xia Qian
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Yicong Yin
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Huishan Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Jie Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College (CAMS & PUMC), Beijing 100730, China.
| |
Collapse
|
3
|
Luo Y, Zhang H, Li L, Lin Y, Wang X, Chen W, Tao Y, Ou R, Zhou W, Zheng F, Jin Y, Cheng F, Zhu H, Zhang Y, Jin X. Heat inactivation does not alter host plasma cell-free DNA characteristics in infectious disease research. Clin Chim Acta 2024; 553:117751. [PMID: 38163539 DOI: 10.1016/j.cca.2023.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a promising analyte for non-invasive liquid biopsy, carrying abundant signatures for disease diagnosis and monitoring. In infectious disease researches, blood plasma samples are routinely heat-inactivated before proceeding with downstream analyses. However, the effects of heat inactivation on cfDNA fragmentomic analysis remain largely unclear, potentially introducing biases or altering the characteristics of cfDNA. METHODS We performed a comprehensive investigation of cfDNA concentrations and fragmentomics in 21 plasma samples from 7 healthy individuals, by comparing the sample group without the heat inactivation to those exposed to once or twice heat-inactivation at 56 °C for 30 min and following freeze-thaw. RESULTS Plasma samples with once and twice heat inactivation displayed no significant deviations in primary characteristics, including cfDNA concentrations, size profiles, end motif features, and genome-wide distributions, compared to samples without heat treatment. CONCLUSIONS Heat-inactivated cfDNA can be utilized for liquid biopsy in infectious disease researches, without substantial impact on cfDNA concentrations and fragmentomic properties. This study provides essential insights into the effects of heat inactivation on cfDNA properties and will contribute to the development of reliable non-invasive biomarkers for infectious disease.
Collapse
Affiliation(s)
- Yuxue Luo
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | | | - Lingguo Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Xinxin Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Rijing Ou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Wenwen Zhou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Fang Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yan Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Fanjun Cheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | | | - Yan Zhang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China.
| |
Collapse
|
4
|
Torres G, Mourad M, Iqbal S, Moses-Fynn E, Pandita A, Siddhartha SS, Sood RA, Srinivasan K, Subbaiah RT, Tiwari A, Leheste JR. Conceptualizing Epigenetics and the Environmental Landscape of Autism Spectrum Disorders. Genes (Basel) 2023; 14:1734. [PMID: 37761876 PMCID: PMC10531442 DOI: 10.3390/genes14091734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Complex interactions between gene variants and environmental risk factors underlie the pathophysiological pathways in major psychiatric disorders. Autism Spectrum Disorder is a neuropsychiatric condition in which susceptible alleles along with epigenetic states contribute to the mutational landscape of the ailing brain. The present work reviews recent evolutionary, molecular, and epigenetic mechanisms potentially linked to the etiology of autism. First, we present a clinical vignette to describe clusters of maladaptive behaviors frequently diagnosed in autistic patients. Next, we microdissect brain regions pertinent to the nosology of autism, as well as cell networks from the bilateral body plan. Lastly, we catalog a number of pathogenic environments associated with disease risk factors. This set of perspectives provides emerging insights into the dynamic interplay between epigenetic and environmental variation in the development of Autism Spectrum Disorders.
Collapse
Affiliation(s)
- German Torres
- Department of Counseling and Clinical Psychology, Medaille College, Buffalo, NY 14214, USA;
| | - Mervat Mourad
- Department of Clinical Specialties, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA;
| | - Saba Iqbal
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Emmanuel Moses-Fynn
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Ashani Pandita
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Shriya S. Siddhartha
- Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX 75275, USA;
| | - Riya A. Sood
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Kavya Srinivasan
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Riya T. Subbaiah
- Department of Arts and Sciences, Georgetown University, Washington, DC 20057, USA;
| | - Alisha Tiwari
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| | - Joerg R. Leheste
- Department of Biomedical Sciences, New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA; (S.I.); (E.M.-F.); (A.P.); (R.A.S.); (K.S.); (A.T.)
| |
Collapse
|
5
|
The amniotic fluid proteome changes with term labor and informs biomarker discovery in maternal plasma. Sci Rep 2023; 13:3136. [PMID: 36823217 PMCID: PMC9950459 DOI: 10.1038/s41598-023-28157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
The intra-uterine components of labor, namely, myometrial contractility, cervical ripening, and decidua/membrane activation, have been extensively characterized and involve a local pro-inflammatory milieu of cellular and soluble immune mediators. Targeted profiling has demonstrated that such processes extend to the intra-amniotic space, yet unbiased analyses of the proteome of human amniotic fluid during labor are lacking. Herein, we utilized an aptamer-based platform to characterize 1,310 amniotic fluid proteins and found that the proteome undergoes substantial changes with term labor (251 proteins with differential abundance, q < 0.1, and fold change > 1.25). Proteins with increased abundance in labor are enriched for immune and inflammatory processes, consistent with prior reports of labor-associated changes in the intra-uterine space. By integrating the amniotic fluid proteome with previously generated placental-derived single-cell RNA-seq data, we demonstrated the labor-driven upregulation of signatures corresponding to stromal-3 and decidual cells. We also determined that changes in amniotic fluid protein abundance are reflected in the maternal plasma proteome. Collectively, these findings provide novel insights into the amniotic fluid proteome in term labor and support its potential use as a source of biomarkers to distinguish between true and false labor by using maternal blood samples.
Collapse
|
6
|
Huang Q, Liu Y, Lei W, Liang J, Wang Y, Zheng M, Huang X, Liu Y, Huang K, Huang M. Detecting mitochondrial mutations associated with aminoglycoside ototoxicity by noninvasive prenatal testing. J Clin Lab Anal 2022; 37:e24827. [PMID: 36579624 PMCID: PMC9833975 DOI: 10.1002/jcla.24827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Numerous diseases and disorders are associated with mitochondrial DNA (mtDNA) mutations, among which m.1555A > G and m.1494C > T mutations in the 12 S ribosomal RNA gene contribute to aminoglycoside-induced and nonsyndromic hearing loss worldwide. METHODS A total of 76,842 qualified non-invasive prenatal (NIPT) samples were subjected to mtDNA mutation and haplogroup analysis. RESULTS We detected 181 m.1555A > G and m.1494C > T mutations, 151 of which were subsequently sequenced for full-length mitochondrial genome verification. The positive predictive values for the m.1555A > G and m.1494C > T mutations were 90.78% and 90.00%, respectively, a performance comparable to that attained with newborn hearing screening. Furthermore, mitochondrial haplogroup analysis revealed that the 12 S rRNA 1555A > G mutation was enriched in sub-haplotype D5[p = 0, OR = 4.6706(2.81-7.78)]. CONCLUSIONS Our findings indicate that the non-invasive prenatal testing of cell-free DNA obtained from maternal plasma can successfully detect m.1555A > G and m.1494C > T mutations.
Collapse
Affiliation(s)
- Quanfei Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yanhui Liu
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Wei Lei
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Jiajie Liang
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Yang Wang
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Minhua Zheng
- Dongguan Maternal and Child Health HospitalDongguanChina,Dongguan maternal and Child Health Hospital Affiliated to Southern Medical UniversityDongguanChina
| | - Xiaoyan Huang
- CapitalBio Genomics Co., Ltd.DongguanChina,CapitalBio Technology Co., Ltd.BeijingChina
| | - Yuanru Liu
- CapitalBio Technology Co., Ltd.BeijingChina,Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Kaisheng Huang
- CapitalBio Technology Co., Ltd.BeijingChina,Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Hu X, Ding SC, Jiang P. Emerging frontiers of cell-free DNA fragmentomics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:380-392. [PMID: 39697357 PMCID: PMC11648524 DOI: 10.20517/evcna.2022.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/20/2024]
Abstract
Analysis of cell-free DNA (cfDNA) in the blood has shown promise for monitoring a variety of biological processes. Plasma cfDNA is a mixture comprising DNA molecules released from various bodily tissues, mediated by characteristic DNA fragmentations occurring during cell death. Fragmentation of cfDNA is non-random and contains tissue-of-origin information, which has been demonstrated in circulating fetal, tumoral, and transplanted organ-derived cfDNA molecules. Many studies have elucidated a plurality of fragmentomic markers for noninvasive prenatal, cancer, and organ transplantation assessment, such as fragment sizes, fragment ends, end motifs, and nucleosome footprints. Recently, researchers have further revealed the large population of previously unidentified long cfDNA molecules (kilobases in size) in the plasma DNA pool. This review focuses on the emerging biological properties of cfDNA, together with a discussion on its potential clinical implications.
Collapse
Affiliation(s)
- Xi Hu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Spencer C. Ding
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
8
|
Che H, Stanley K, Jatsenko T, Thienpont B, Vermeesch JR. Expanded knowledge of cell-free DNA biology: potential to broaden the clinical utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:216-234. [PMID: 39697489 PMCID: PMC11648412 DOI: 10.20517/evcna.2022.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/20/2024]
Abstract
Noninvasive sampling of an individual's body fluids is an easy means to capture circulating cell-free DNA (cfDNA). These small fragments of DNA carry information on the contributing cell's genome, epigenome, and nuclease content. Analysis of cfDNA for the assessment of genetic risk has already revolutionized clinical practice, and a compendium of increasingly higher-resolution approaches based on epigenetic and fragmentomic cfDNA signatures continues to expand. Profiling cfDNA has unlocked a wealth of molecular information that can be translated to the clinic. This review covers the biological characteristics of cfDNA, recent advances in liquid biopsy and the clinical utility of cfDNA.
Collapse
Affiliation(s)
- Huiwen Che
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Kate Stanley
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Tatjana Jatsenko
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Laboratory for Functional Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
9
|
Cell-Free DNA Fragmentomics in Liquid Biopsy. Diagnostics (Basel) 2022; 12:diagnostics12040978. [PMID: 35454026 PMCID: PMC9027801 DOI: 10.3390/diagnostics12040978] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) in bodily fluids has rapidly transformed the development of noninvasive prenatal testing, cancer liquid biopsy, and transplantation monitoring. Plasma cfDNA consists of a mixture of molecules originating from various bodily tissues. The study of the fragmentation patterns of cfDNA, also referred to as ‘fragmentomics’, is now an actively pursued area of biomarker research. Clues that cfDNA fragmentation patterns might carry information concerning the tissue of origin of cfDNA molecules have come from works demonstrating that circulating fetal, tumor-derived, and transplanted liver-derived cfDNA molecules have a shorter size distribution than the background mainly of hematopoietic origin. More recently, an improved understanding of cfDNA fragmentation has provided many emerging fragmentomic markers, including fragment sizes, preferred ends, end motifs, single-stranded jagged ends, and nucleosomal footprints. The intrinsic biological link between activities of various DNA nucleases and characteristic fragmentations has been demonstrated. In this review, we focus on the biological properties of cell-free DNA unveiled recently and their potential clinical applications.
Collapse
|
10
|
Pique-Regi R, Romero R, Garcia-Flores V, Peyvandipour A, Tarca AL, Pusod E, Galaz J, Miller D, Bhatti G, Para R, Kanninen T, Hadaya O, Paredes C, Motomura K, Johnson JR, Jung E, Hsu CD, Berry SM, Gomez-Lopez N. A single-cell atlas of the myometrium in human parturition. JCI Insight 2022; 7:153921. [PMID: 35260533 PMCID: PMC8983148 DOI: 10.1172/jci.insight.153921] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
Parturition is a well-orchestrated process characterized by increased uterine contractility, cervical ripening, and activation of the chorioamniotic membranes; yet, the transition from a quiescent to a contractile myometrium heralds the onset of labor. However, the cellular underpinnings of human parturition in the uterine tissues are still poorly understood. Herein, we performed a comprehensive study of the human myometrium during spontaneous term labor using single-cell RNA sequencing (scRNA-Seq). First, we established a single-cell atlas of the human myometrium and unraveled the cell type–specific transcriptomic activity modulated during labor. Major cell types included distinct subsets of smooth muscle cells, monocytes/macrophages, stromal cells, and endothelial cells, all of which communicated and participated in immune (e.g., inflammation) and nonimmune (e.g., contraction) processes associated with labor. Furthermore, integrating scRNA-Seq and microarray data with deconvolution of bulk gene expression highlighted the contribution of smooth muscle cells to labor-associated contractility and inflammatory processes. Last, myometrium-derived single-cell signatures can be quantified in the maternal whole-blood transcriptome throughout pregnancy and are enriched in women in labor, providing a potential means of noninvasively monitoring pregnancy and its complications. Together, our findings provide insights into the contributions of specific myometrial cell types to the biological processes that take place during term parturition.
Collapse
Affiliation(s)
- Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Detroit Medical Center, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Azam Peyvandipour
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Tomi Kanninen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Ola Hadaya
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Carmen Paredes
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | | | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Physiology and
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
11
|
Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 2021; 372:372/6538/eaaw3616. [PMID: 33833097 DOI: 10.1126/science.aaw3616] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Liquid biopsies that analyze cell-free DNA in blood plasma are used for noninvasive prenatal testing, oncology, and monitoring of organ transplant recipients. DNA molecules are released into the plasma from various bodily tissues. Physical and molecular features of cell-free DNA fragments and their distribution over the genome bear information about their tissues of origin. Moreover, patterns of DNA methylation of these molecules reflect those of their tissue sources. The nucleosomal organization and nuclease content of the tissue of origin affect the fragmentation profile of plasma DNA molecules, such as fragment size and end motifs. Besides double-stranded linear fragments, other topological forms of cell-free DNA also exist-namely circular and single-stranded molecules. Enhanced by these features, liquid biopsies hold promise for the noninvasive detection of tissue-specific pathologies with a range of clinical applications.
Collapse
Affiliation(s)
- Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. .,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,State Key Laboratory in Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Diana S C Han
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
12
|
Chiu RWK, Lo YMD. Cell-free fetal DNA coming in all sizes and shapes. Prenat Diagn 2021; 41:1193-1201. [PMID: 33882153 PMCID: PMC8518878 DOI: 10.1002/pd.5952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
Cell‐free fetal DNA analysis has an established role in prenatal assessments. It serves as a source of fetal genetic material that is accessible non‐invasively from maternal blood. Through the years, evidence has accumulated to show that cell‐free fetal DNA molecules are derived from placental tissues, are mainly of short DNA fragments and have rapid post‐delivery clearance profiles. But questions regarding how they come to being short molecules from placental cells and in which physical forms do they exist remained largely unanswered until recently. We now know that the distributions of ending sites of cell‐free DNA molecules are non‐random across the genome and bear correlations with the chromatin structures of cells from which they have originated. Such an insight offers ways to deduce the tissue‐of‐origin of these molecules. Besides, the physical nature and sequence characteristics of the ends of each cell‐free DNA molecule provide tell‐tale signs of how the DNA fragmentation processes are orchestrated by nuclease enzymes. These realizations offered opportunities to develop methods for enriching cell‐free fetal DNA to facilitate non‐invasive prenatal diagnostics. Here we aimed to collate what is known about the biological and physical characteristics of cell‐free fetal DNA into one article and explain the implications of these observations.
What’s already known about this topic?
Cell‐free fetal DNA originates from placental tissues and circulates in maternal plasma as a minor population in the form of short fragments which disappears from maternal circulation rapidly after delivery.
What does this study add?
Cell‐free DNA studies at the per molecule per nucleotide level documented the detailed genomic distributions, fragment end characteristics and physical forms of cell‐free DNA unveiling the fine feature differences between maternal and fetal DNA as well as their intricate relationships with the chromatin structure of the cells‐of‐origin. These studies have substantially bridged the knowledge gaps in the biology of cell‐free fetal DNA and may provide insights on how to enhance prenatal tests based on their analyses.
Collapse
Affiliation(s)
- Rossa W K Chiu
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
13
|
Swanson K, Einerson BD. When a pregnant patient is not the mother: Language use in studies on gestational surrogacy-A reply to "fetal mitochondrial deoxyribonucleic acid in maternal plasma in surrogate pregnancies: Detection and topology". Prenat Diagn 2021; 41:478. [PMID: 33539556 DOI: 10.1002/pd.5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Kate Swanson
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, San Francisco, California, USA.,Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Brett D Einerson
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|