1
|
Wysham C, Bindal A, Levrat‐Guillen F, Kostadinova D, Poon Y. A systematic literature review on the burden of diabetic ketoacidosis in type 2 diabetes mellitus. Diabetes Obes Metab 2025; 27:2750-2767. [PMID: 40028663 PMCID: PMC11965021 DOI: 10.1111/dom.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 03/05/2025]
Abstract
AIM To understand the existing literature on the epidemiology and clinical, humanistic, and economic burden of diabetic ketoacidosis (DKA) in people living with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS MEDLINE, Embase and the Cochrane library were systematically searched for studies published between 1 January 2014 and 14 December 2023. Clinical trials and observational studies, conducted in people living with T2DM, were included if they provided data on DKA epidemiology, morbidity, mortality, hospitalizations or patient-reported outcomes. Studies of DKA-associated costs in T2DM were also included. Data were summarized descriptively. RESULTS Overall, 197 publications were included. We found wide variations in DKA prevalence (0.0%-50.0%; 5th-95th percentile: 0.02%-26%; 126 publications) and incidence (0.0-24.5 events per 1000 patient years; 5th-95th percentile: 0.004-7.6 events per 1000 patient years; 37 publications). Populations at increased risk of DKA included patients using sodium-glucose cotransporter-2 inhibitors, those using insulin and those with poor glycaemic control. The most common precipitating factors were infection and non-adherence to treatment. There was limited evidence on the humanistic burden of DKA, but the results highlighted a high burden of complications including acute kidney injury or failure. The length of hospital stay ranged from days to several weeks. CONCLUSIONS DKA is associated with a high clinical burden in people living with T2DM. Resources to screen for and potentially prevent DKA may reduce the burden of DKA for patients with T2DM and the healthcare system.
Collapse
Affiliation(s)
- Carol Wysham
- Section of Endocrinology and MetabolismMultiCare Rockwood ClinicSpokaneWashingtonUSA
| | | | | | | | | |
Collapse
|
2
|
Muñoz Moreno D, Pérez López G, Álvarez-Sala Walther LA, Rueda Camino JA, Martín Vallejo J, González Albarrán O. Clinical Profile and Management of Patients with Newly Diagnosed Type 2 Diabetes Mellitus in Hospital Setting. Clin Med Insights Endocrinol Diabetes 2025; 18:11795514251323831. [PMID: 40078450 PMCID: PMC11898092 DOI: 10.1177/11795514251323831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background New-onset type 2 diabetes mellitus (T2DM) is a common clinical scenario in the hospital settings. However, data on the baseline characteristics of these patients at diagnosis in Spain remain limited. Objectives This study aims to describe the characteristics of 165 patients admitted to a Spanish tertiary hospital with new-onset T2DM. We analysed the use of different treatment regimens at discharge and metabolic control during follow-up. Methods A retrospective, single-centre cohort study was conducted at General University Gregorio Marañón Hospital, between January 2018 and April 2021. Results A total of 165 patients participated, with a mean age of 56.4 years, 62.4% of whom were men. Diabetes-related complications were observed in 24.8% of patients at diagnosis. Combined antidiabetic treatment was required in 87% of cases. The mean baseline HbA1c was 10.8%, which decreased by 4.9% after 8 months of follow-up. Conclusion The clinical heterogeneity and severity of hyperglycaemia in this cohort presented management challenges, in contrast to outpatient settings. Monotherapy was rarely used, with higher adoption of SGLT-2 inhibitors and GLP-1 receptor agonists compared to other studies. Additional research is needed to refine treatment strategies and optimize care for patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Diego Muñoz Moreno
- Endocrinology and Nutrition Department, General University Gregorio Marañón Hospital, Madrid, Spain
- Universidad Europea de Madrid, Spain
| | - Gilberto Pérez López
- Endocrinology and Nutrition Department, General University Gregorio Marañón Hospital, Madrid, Spain
| | | | | | - Javier Martín Vallejo
- Department of Biostatistics Unit, Salamanca Biomedical Research Institute (IBSAL), Salamanca, Spain
| | - Olga González Albarrán
- Endocrinology and Nutrition Department, General University Gregorio Marañón Hospital, Madrid, Spain
| |
Collapse
|
3
|
Bilog M, Cersosimo J, Vigil I, Desamero RZB, Profit AA. Effect of a SARS-CoV-2 Protein Fragment on the Amyloidogenic Propensity of Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2024; 15:4431-4440. [PMID: 39582236 PMCID: PMC11660541 DOI: 10.1021/acschemneuro.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the onset of COVID-19 have been linked to an increased risk of developing type 2 diabetes. While a variety of mechanisms may ultimately be responsible for the onset of type 2 diabetes under these circumstances, one mechanism that has been postulated involves the increased aggregation of human islet amyloid polypeptide (hIAPP) through direct interaction with SARS-CoV-2 viral proteins. Previous computational studies investigating this possibility revealed that a nine-residue peptide fragment known as SK9 (SFYVYSRVK) from the SARS-CoV-2 envelope protein can stabilize the native conformation of hIAPP1-37 by interacting with the N-terminal region of amylin. One of the areas particularly stabilized through this interaction encompasses residues 15-28 of amylin. Given these findings, we investigated whether SK9 could interact with short amyloidogenic sequences derived from this region of amylin. Here, we employ docking studies, molecular dynamics simulations, and biophysical techniques to provide theoretical as well as direct experimental evidence that SK9 can interact with hIAPP12-18 and hIAPP20-29 peptides. Furthermore, we demonstrate that SK9 not only can interact with these sequences but also serves to prevent the self-assembly of these amyloidogenic peptides. In striking contrast, we also show that SK9 has little effect on the amyloidogenic propensity of full-length amylin. These findings are contrary to previous published simulations involving SK9 and hIAPP1-37. Such observations may assist in clarifying potential mechanisms of the SARS-CoV-2 interaction with hIAPP and its relevance to the onset of type 2 diabetes in the setting of COVID-19.
Collapse
Affiliation(s)
- Marvin Bilog
- PhD
Programs in Chemistry and Biochemistry, the Graduate Center of the
City University of New York, New
York, New York 10016, United States
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| | - Jennifer Cersosimo
- PhD
Programs in Chemistry and Biochemistry, the Graduate Center of the
City University of New York, New
York, New York 10016, United States
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| | - Iliana Vigil
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| | - Ruel Z. B. Desamero
- PhD
Programs in Chemistry and Biochemistry, the Graduate Center of the
City University of New York, New
York, New York 10016, United States
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| | - Adam A. Profit
- PhD
Programs in Chemistry and Biochemistry, the Graduate Center of the
City University of New York, New
York, New York 10016, United States
- Department
of Chemistry, York College of the City University
of New York, Jamaica, New York 11451, United States
| |
Collapse
|
4
|
Kim SH, Arora I, Hsia DS, Knowler WC, LeBlanc E, Mylonakis E, Pratley R, Pittas AG. New-Onset Diabetes After COVID-19. J Clin Endocrinol Metab 2023; 108:e1164-e1174. [PMID: 37207448 PMCID: PMC11009784 DOI: 10.1210/clinem/dgad284] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
There is evidence suggesting that infection with SARS-CoV-2 can lead to several long-term sequelae including diabetes. This mini-review examines the rapidly evolving and conflicting literature on new-onset diabetes after COVID-19, which we term NODAC. We searched PubMed, MEDLINE, and medRxiv from inception until December 1, 2022, using Medical Subject Headings (MeSH) terms and free text words including "COVID-19," "SARS-CoV-2," "diabetes," "hyperglycemia," "insulin resistance," and "pancreatic β-cell." We also supplemented searches by examining reference lists from retrieved articles. Current evidence suggests that COVID-19 increases the risk of developing diabetes, but the attributable risk is uncertain because of limitations of study designs and the evolving nature of the pandemic, including new variants, widespread population exposure to the virus, diagnostic options for COVID-19, and vaccination status. The etiology of diabetes after COVID-19 is likely multifactorial and includes factors associated with host characteristics (eg, age), social determinants of health (eg, deprivation index), and pandemic-related effects both at the personal (eg, psychosocial stress) and the societal-community level (eg, containment measures). COVID-19 may have direct and indirect effects on pancreatic β-cell function and insulin sensitivity related to the acute infection and its treatment (eg, glucocorticoids); autoimmunity; persistent viral residency in multiple organs including adipose tissue; endothelial dysfunction; and hyperinflammatory state. While our understanding of NODAC continues to evolve, consideration should be given for diabetes to be classified as a post-COVID syndrome, in addition to traditional classifications of diabetes (eg, type 1 or type 2), so that the pathophysiology, natural history, and optimal management can be studied.
Collapse
Affiliation(s)
- Sun H Kim
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ipsa Arora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - William C Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Erin LeBlanc
- Center for Health Research, Kaiser Permanente, Portland, OR 97227, USA
| | | | - Richard Pratley
- AdventHealth Translational Research Institute, Orlando, FL 32804, USA
| | - Anastassios G Pittas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
5
|
Akbari A, Hadizadeh A, Islampanah M, Salavati Nik E, Atkin SL, Sahebkar A. COVID-19, G protein-coupled receptor, and renin-angiotensin system autoantibodies: Systematic review and meta-analysis. Autoimmun Rev 2023; 22:103402. [PMID: 37490975 DOI: 10.1016/j.autrev.2023.103402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION There are an increasing number of reports of autoantibodies (AAbs) against host proteins such as G-protein coupled receptors (GPCRs) and the renin-angiotensin system (RAS) in COVID-19 disease. Here we have undertaken a systematic review and meta-analysis of all reports of AAbs against GPCRs and RAS in COVID-19 patients including those with long-COVID or post-COVID symptoms. METHODS PubMed, Embase, Web of Science, and Scopus databases were searched to find papers on the role of GPCR and RAS AAbs in the presence and severity of COVID-19 or post- COVID symptoms available through March 21, 2023. Data on the prevalence of AngII or ACE, comparing AngII or ACE between COVID-19 and non-COVID-19, or comparing AngII or ACE between COVID-19 patients with different disease stages were pooled and a meta-analysed using random- or fixed-effects models were undertaken. RESULTS The search yielded a total of 1042 articles, of which 68 studies were included in this systematic review and nine in the meta-analysis. Among 18 studies that investigated GPCRs and COVID-19 severity, 18 distinct AAbs were detected. In addition, nine AAbs were found in case reports that assessed post- COVID, and 19 AAbs were found in other studies that assessed post- COVID or long- COVID symptoms. Meta-analysis revealed a significantly higher number of seropositive ACE2 AAbs in COVID-19 patients (odds ratio = 7.766 [2.056, 29.208], p = 0.002) and particularly in severe disease (odds ratio = 11.49 [1.04, 126.86], p = 0.046), whereas AngII-AAbs seropositivity was no different between COVID-19 and control subjects (odds ratio = 2.890 [0.546-15.283], p = 0.21). CONCLUSIONS GPCR and RAS AAbs may play an important role in COVID-19 severity, the development of disease progression, long-term symptoms COVID and post- COVID symptoms.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hadizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ensie Salavati Nik
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, Bahrain, Adliya, PO Box 15503, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Chesney A, Maiti B, Hansmann UH. Human Amylin in the Presence of SARS-COV-2 Protein Fragments. ACS OMEGA 2023; 8:12501-12511. [PMID: 37033831 PMCID: PMC10077547 DOI: 10.1021/acsomega.3c00621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/30/2023]
Abstract
COVID-19 can lead to the onset of type-II diabetes, which is associated with the aggregation of islet amyloid polypeptides, also called amylin. Using molecular dynamics simulations, we investigate how the equilibrium between amylin monomers in its functional form and fibrils associated with diabetes is altered in the presence of SARS-COV-2 protein fragments. For this purpose, we study the interaction between the fragment SFYVYSRVK of the envelope protein or the fragment FKNIDGYFKI of the spike protein with the monomer and two amylin fibril models. Our results are compared with earlier work studying such interactions for the two different proteins.
Collapse
|
7
|
Chesney AD, Maiti B, Hansmann UHE. Human Amylin in the Presence of SARS-COV-2 Protein Fragments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526275. [PMID: 36778414 PMCID: PMC9915464 DOI: 10.1101/2023.01.30.526275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Covid-19 can lead to the onset of type-II diabetes which is associated with aggregation of islet amyloid polypeptides, also called amylin. Using molecular dynamics simulations, we investigate how the equilibrium, between amylin monomers in its functional form and fibrils associated with diabetes, is altered in presence of SARS-COV-2 protein fragments. For this purpose, we study the interaction between the fragment SFYVYSRVK of the Envelope protein or the fragment FKNIDGYFKI of the Spike protein with the monomer and two amylin fibril models. Our results are compared with earlier work studying such interactions for two different proteins.
Collapse
|