1
|
Epicoco L, Pellegrino R, Madaghiele M, Friuli M, Giannotti L, Di Chiara Stanca B, Palermo A, Siculella L, Savkovic V, Demitri C, Nitti P. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023; 15:2725. [PMID: 38140066 PMCID: PMC10747510 DOI: 10.3390/pharmaceutics15122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.
Collapse
Affiliation(s)
- Luana Epicoco
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
- Institute of Medical Physics and Biophysics, University of Leipzig, 04103 Leipzig, Germany
| | - Rebecca Pellegrino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Vuk Savkovic
- Clinic and Polyclinic for Oral and Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| |
Collapse
|
2
|
Pellegrino R, Villani S, Spagnolo D, Carofalo I, Carrino N, Calcagnile M, Alifano P, Madaghiele M, Demitri C, Nitti P. Development of PVA Electrospun Nanofibers for Fabrication of Bacteriological Swabs. BIOLOGY 2023; 12:1404. [PMID: 37998003 PMCID: PMC10669574 DOI: 10.3390/biology12111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
In recent years, the enormous demand for swabs for clinical use has promoted their relevance and, consequently, brought the environmental issues due to their single use and lack of biodegradability to the attention of the healthcare industry. Swabs consist of a stick that facilitates their easy handling and manoeuvrability even in complex districts and an absorbent tip designed to uptake and release biological samples. In this study, we focused on the fabrication of an innovative biodegradable poly(vinyl alcohol) (PVA) nanofiber swab tip using the electrospinning technique. The innovative swab tip obtained showed comparable uptake and release capacity of protein and bacterial species (Pseudomonas aeruginosa and Staphylococcus aureus) with those of the commercial foam-type swab. In this way, the obtained swab can be attractive and suitable to fit into this panorama due to its low-cost process, easy scalability, and good uptake and release capabilities.
Collapse
Affiliation(s)
- Rebecca Pellegrino
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (S.V.); (N.C.); (M.M.); (C.D.)
| | - Stefania Villani
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (S.V.); (N.C.); (M.M.); (C.D.)
| | - Daniela Spagnolo
- Microbiotech s.r.l., Via A. Tamborino s.n.c., 73024 Maglie, Italy; (D.S.); (I.C.)
| | - Irene Carofalo
- Microbiotech s.r.l., Via A. Tamborino s.n.c., 73024 Maglie, Italy; (D.S.); (I.C.)
| | - Nico Carrino
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (S.V.); (N.C.); (M.M.); (C.D.)
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (M.C.); (P.A.)
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (M.C.); (P.A.)
| | - Marta Madaghiele
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (S.V.); (N.C.); (M.M.); (C.D.)
| | - Christian Demitri
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (S.V.); (N.C.); (M.M.); (C.D.)
| | - Paola Nitti
- Department of Engineering for Innovation, Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (S.V.); (N.C.); (M.M.); (C.D.)
| |
Collapse
|
3
|
Nitti P, Narayanan A, Pellegrino R, Villani S, Madaghiele M, Demitri C. Cell-Tissue Interaction: The Biomimetic Approach to Design Tissue Engineered Biomaterials. Bioengineering (Basel) 2023; 10:1122. [PMID: 37892852 PMCID: PMC10604880 DOI: 10.3390/bioengineering10101122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The advancement achieved in Tissue Engineering is based on a careful and in-depth study of cell-tissue interactions. The choice of a specific biomaterial in Tissue Engineering is fundamental, as it represents an interface for adherent cells in the creation of a microenvironment suitable for cell growth and differentiation. The knowledge of the biochemical and biophysical properties of the extracellular matrix is a useful tool for the optimization of polymeric scaffolds. This review aims to analyse the chemical, physical, and biological parameters on which are possible to act in Tissue Engineering for the optimization of polymeric scaffolds and the most recent progress presented in this field, including the novelty in the modification of the scaffolds' bulk and surface from a chemical and physical point of view to improve cell-biomaterial interaction. Moreover, we underline how understanding the impact of scaffolds on cell fate is of paramount importance for the successful advancement of Tissue Engineering. Finally, we conclude by reporting the future perspectives in this field in continuous development.
Collapse
Affiliation(s)
- Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.N.); (R.P.); (S.V.); (M.M.); (C.D.)
| | | | | | | | | | | |
Collapse
|
4
|
Kim H, Shin MJ. Electrospun coaxial microfiber‐based water detecting sensor using expansion pressure mechanism. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Huiseon Kim
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| | - Min Jae Shin
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| |
Collapse
|