1
|
Lv Y, Wang S, Wang Y, Zhang X, Jia Q, Han S, He L. Construction and application of covalently bonded CD147 cell membrane chromatography model based on polystyrene microspheres. Anal Bioanal Chem 2023; 415:1371-1383. [PMID: 36651973 DOI: 10.1007/s00216-023-04528-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
In this study, a novel cell membrane chromatography (CMC) model was developed to investigate cluster of differentiation 147 (CD147) targeted anti-tumor drug leads for specific screening and ligand-receptor interaction analysis by SNAP-tagged CD147 fusion protein conjugation and polystyrene microspheres (PS) modification. Traditional Chinese medicines (TCMs) are widely used in the treatment of cancer. CD147 plays important roles in tumor progression and acts as an attractive target for therapeutic intervention; therapeutic drugs for CD147-related cancers are limited to date. Thus, a screening method for active components in TCMs is crucial for the further research and development of CD147 antagonists. However, improvement is still needed to perform specific and accurate drug lead screening using the CMC-based method. Recently, our group developed a covalently immobilized receptor-SNAP-tag/CMC model using silica gel as carrier. Besides the carboxyl group on multi-step modified silica particles, the amino group of benzyl-guanine (BG, substrate of SNAP-tag) also possesses reactivity towards the carboxyl group on available carboxyl-modified PS. Herein, we used PS as carrier and an extended SNAP-tag with CD147 receptor to construct the PS-BG-CD147/CMC model for active compound investigation coupled with HPLC/MS and applied this coupled PS-BG-CD147/CMC-HPLC/MS two-dimensional system to drug lead screening from Nelumbinis Plumula extract (NPE) sample. In addition, to comprehensively verify the pharmacological effects of screened ingredients, a cell proliferation inhibition assay was performed, and the interaction between the ingredients and CD147 was studied by the frontal analysis method. This study developed a high-throughput PS-based CMC screening platform, which could be widely applied and utilized in chromatographic separation and drug lead discovery.
Collapse
Affiliation(s)
- Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
- Jiangsu Chia Tai-Tianqing Pharmaceutical Co., Ltd. Lianyungang, Jiangsu, 222062, People's Republic of China
| | - Yamin Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| | - Xin Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China.
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China.
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta Westroad, Xi'an, Shaanxi, 710061, People's Republic of China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, Shaanxi, 710115, People's Republic of China
| |
Collapse
|
2
|
Xue L, Li H, Pei X, Cui Z, Song B. Pickering Emulsions Synergistically Stabilized by Aliphatic Primary Amines and Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14109-14117. [PMID: 36349864 DOI: 10.1021/acs.langmuir.2c02072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Innovation in emulsion compositions is necessary to enrich emulsion formulations and applications. Herein, Pickering emulsions were prepared using silica nanoparticles and aliphatic primary amines with an oil-water ratio of 1:1 (v/v). Contact angle experiments revealed that the in situ hydrophobization of nanoparticles was caused by the surface adsorption of amine molecules. Notably, the interactions between amine compounds and the surface of silica nanoparticles were electrostatic attractions and mutual hydrogen bonding. The existence of hydrogen bonds was further confirmed by demulsification experiments using a chaotropic agent DMF and increasing temperatures. The hydrophobicity of silica nanoparticles can be effectively improved using most commercially available aliphatic primary amines such as n-hexylamine, n-octylamine, n-decylamine, dodecylamine, and tetradecylamine. The minimum concentrations of the aforementioned amines necessary for stabilizing the emulsions with 0.3 wt % silica nanoparticles are 3, 0.6, 0.3, 0.06, and 0.03 mM, respectively, decreasing significantly with increasing alkyl chain length. With the increase of the amine concentrations, the hydrophobicity of silica particles monotonically increased and finally resulted in the inversion of emulsions. The amine concentrations for emulsion phase inversion were 150, 40, 30, 20, and 20 mM, respectively, in the presence of 0.3 wt % silica nanoparticles. In this work, silica nanoparticles were hydrophobized using aliphatic primary amines. The composite stabilizers developed are useful for developing novel stimuli-responsive Pickering emulsions, while the synergistic effects introduced herein are also helpful in expanding the hydrophobization methods available for nanoparticles.
Collapse
Affiliation(s)
- Linyu Xue
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongye Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Mirica AC, Stan D, Chelcea IC, Mihailescu CM, Ofiteru A, Bocancia-Mateescu LA. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front Bioeng Biotechnol 2022; 10:922772. [PMID: 35774059 PMCID: PMC9237331 DOI: 10.3389/fbioe.2022.922772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023] Open
Abstract
LFIA is one of the most successful analytical methods for various target molecules detection. As a recent example, LFIA tests have played an important role in mitigating the effects of the global pandemic with SARS-COV-2, due to their ability to rapidly detect infected individuals and stop further spreading of the virus. For this reason, researchers around the world have done tremendous efforts to improve their sensibility and specificity. The development of LFIA has many sensitive steps, but some of the most important ones are choosing the proper labeling probes, the functionalization method and the conjugation process. There are a series of labeling probes described in the specialized literature, such as gold nanoparticles (GNP), latex particles (LP), magnetic nanoparticles (MNP), quantum dots (QDs) and more recently carbon, silica and europium nanoparticles. The current review aims to present some of the most recent and promising methods for the functionalization of the labeling probes and the conjugation with biomolecules, such as antibodies and antigens. The last chapter is dedicated to a selection of conjugation protocols, applicable to various types of nanoparticles (GNPs, QDs, magnetic nanoparticles, carbon nanoparticles, silica and europium nanoparticles).
Collapse
Affiliation(s)
- Andreea-Cristina Mirica
- R&D Department, DDS Diagnostic, Bucharest, Romania
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest, Bucharest, Romania
| | - Dana Stan
- R&D Department, DDS Diagnostic, Bucharest, Romania
| | | | - Carmen Marinela Mihailescu
- Microsystems in Biomedical and Environmental Applications, National Institute for Research and Development in Microtechnologies, Bucharest, Romania
- Pharmaceutical Faculty, Titu Maiorescu University, Bucharest, Romania
| | | | | |
Collapse
|
4
|
Ramirez Arenas L, Ramseier Gentile S, Zimmermann S, Stoll S. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152623. [PMID: 34963580 DOI: 10.1016/j.scitotenv.2021.152623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 05/21/2023]
Abstract
Occurrence of microplastics and nanoplastics in aquatic systems, as well as in water compartments used to produce drinking water have become a major concern due to their impact on the environment and public health. Nanoplastics in particular, in regard to their fate and removal efficiency in drinking water treatment plants (DWTP), which ensure water quality and supply drinking water for human consumption have been, by far, rarely investigated. This study investigates the removal efficiency of polystyrene (PS) nanoplastics in a conventional water treatment plant providing drinking water for 500'000 consumers. For that purpose, a pilot-scale DWTP, located within the main treatment plant station, reproducing at a reduced scale the different processes and conditions of the main treatment plant is used. The results show that filtration process through sand and granular activated carbon (GAC) filters in the absence of coagulation achieves an overall nanoplastic removal of 88.1%. The removal efficiency of filtration processes is mainly attributed to physical retention and adsorption mechanisms. On the other hand, it is found that coagulation process greatly improves the removal efficiency of nanoplastics with a global removal efficiency equal to 99.4%. The effective removal efficiency of sand filtration increases considerably from 54.3% to 99.2% in the presence of coagulant, indicating that most of PS nanoplastics are removed during sand filtration process. The higher removal efficiency with the addition of coagulant is related to nanoplastics surface charge reduction and aggregation thus significantly increasing their retention in the filter media.
Collapse
Affiliation(s)
- Lina Ramirez Arenas
- Group of Environmental Physical Chemistry, Department F.-A. Forel for environmental and aquatic sciences, University of Geneva, Uni Carl Vogt, 66, boulevard Carl-Vogt, CH-1211 Geneva 4, Switzerland.
| | | | - Stéphane Zimmermann
- SIG, Industrial Boards of Geneva, Ch. du Château-Bloch, Le Lignon, 1211 Genève 2, Switzerland
| | - Serge Stoll
- Group of Environmental Physical Chemistry, Department F.-A. Forel for environmental and aquatic sciences, University of Geneva, Uni Carl Vogt, 66, boulevard Carl-Vogt, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
5
|
Levourch G, Lebaz N, Elaissari A. Hydrophilic Submicron Nanogel Particles for Specific Recombinant Proteins Extraction and Purification. Polymers (Basel) 2020; 12:polym12061413. [PMID: 32599858 PMCID: PMC7362017 DOI: 10.3390/polym12061413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022] Open
Abstract
In biomedical diagnosis and bionanotechnologies, the extraction and purification of proteins and protein derivatives are of great interest. In fact, to purify recombinant proteins for instance, new methodologies and well appropriate material supports need to be established and also to be evaluated. In this work, hydrophilic nanohydrogel particles were prepared for recombinant proteins extraction for purification purpose. The prepared nanohydrogel polymer-based particles are hydrophilic below the volume phase transition temperature (TVPT) and dehydrated above the TVPT, due to the thermally sensitive poly(N-alkyl acrylamide) and poly(N-alkyl methacrylamide) derivatives. Then, the use of heavy metal ions in the presence of such functional particles should specifically capture recombinant proteins (i.e., proteins bearing a poly(histidine) part). In order to understand and to optimize the specific capture and the purification of recombinant proteins, various parameters have been investigated as a systematic study. Firstly, the adsorption was investigated as a function of pH and protein concentration. According to high hydration of the prepared nanohydrogel, no marked adsorption was observed. Secondly, the effect of pH was investigated and found to be the driven parameter affecting the metal ions immobilization and the recombinant proteins complexation. As a result, high protein complexation was observed at basic pH compared to non-complexation at acidic pH medium. The immobilized proteins via complexation were released by changing the pH. This decomplexation seems to be effective but depends on fixation conditions and particle surface structure.
Collapse
Affiliation(s)
- Gaëlle Levourch
- Unité mixte CNRS-BioMérieux, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France;
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP, UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France;
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP, UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France;
- Correspondence:
| |
Collapse
|