1
|
Roy S, Deshmukh RK, Tripathi S, Gaikwad KK, Das SS, Sharma D. Recent Advances in the Carotenoids Added to Food Packaging Films: A Review. Foods 2023; 12:4011. [PMID: 37959130 PMCID: PMC10647467 DOI: 10.3390/foods12214011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Food spoilage is one of the key concerns in the food industry. One approach is the improvement of the shelf life of the food by introducing active packaging, and another is intelligent packaging. Detecting packed food spoilage in real-time is key to stopping outbreaks caused by food-borne diseases. Using active materials in packaging can improve shelf life, while the nonharmful color indicator can be useful to trace the quality of the food through simple color detection. Recently, bio-derived active and intelligent packaging has gained a lot of interest from researchers and consumers. For this, the biopolymers and the bioactive natural ingredient are used as indicators to fabricate active packaging material and color-changing sensors that can improve the shelf life and detect the freshness of food in real-time, respectively. Among natural bioactive components, carotenoids are known for their good antimicrobial, antioxidant, and pH-responsive color-indicating properties. Carotenoids are rich in fruits and vegetables and fat-soluble pigments. Including carotenoids in the packaging system improves the film's physical and functional performance. The recent progress on carotenoid pigment-based packaging (active and intelligent) is discussed in this review. The sources and biological activity of the carotenoids are briefly discussed, and then the fabrication and application of carotenoid-activated packaging film are reviewed. The carotenoids-based packaging film can enhance packaged food's shelf life and indicate the freshness of meat and vegetables in real-time. Therefore, incorporating carotenoid-based pigment into the polymer matrix could be promising for developing novel packaging materials.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Shefali Tripathi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Devanshi Sharma
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujrat, India;
| |
Collapse
|
2
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
3
|
Nomicisio C, Ruggeri M, Bianchi E, Vigani B, Valentino C, Aguzzi C, Viseras C, Rossi S, Sandri G. Natural and Synthetic Clay Minerals in the Pharmaceutical and Biomedical Fields. Pharmaceutics 2023; 15:pharmaceutics15051368. [PMID: 37242610 DOI: 10.3390/pharmaceutics15051368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Clay minerals are historically among the most used materials with a wide variety of applications. In pharmaceutical and biomedical fields, their healing properties have always been known and used in pelotherapy and therefore attractive for their potential. In recent decades, the research has therefore focused on the systematic investigation of these properties. This review aims to describe the most relevant and recent uses of clays in the pharmaceutical and biomedical field, especially for drug delivery and tissue engineering purposes. Clay minerals, which are biocompatible and non-toxic materials, can act as carriers for active ingredients while controlling their release and increasing their bioavailability. Moreover, the combination of clays and polymers is useful as it can improve the mechanical and thermal properties of polymers, as well as induce cell adhesion and proliferation. Different types of clays, both of natural (such as montmorillonite and halloysite) and synthetic origin (layered double hydroxides and zeolites), were considered in order to compare them and to assess their advantages and different uses.
Collapse
Affiliation(s)
- Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
4
|
Dai M, Li S, Cui Y, Zhang W, Shi H, Pan K, Wei W, Liu X, Li X. Fabrication of electroactive poly(γ‐glutamic acid) coating for improving corrosion resistance and cytocompatibility of magnesium alloy. POLYM INT 2022. [DOI: 10.1002/pi.6428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Miao Dai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| | - Siyuan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| | - Yan Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| | - Wei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| | - Hui Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| | - Kai Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P.R. China
| |
Collapse
|
5
|
Jiang Z, Ma S, Zhang G, Song D, Wang Y, Lao F. Effect of a chitosan-based flame retardant with a caged structure on unsaturated polyester resin. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zicheng Jiang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
- School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Su Ma
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Gang Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Dongdong Song
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Yanlin Wang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Fujing Lao
- School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Tuwalska A, Grabska-Zielińska S, Sionkowska A. Chitosan/Silk Fibroin Materials for Biomedical Applications-A Review. Polymers (Basel) 2022; 14:polym14071343. [PMID: 35406217 PMCID: PMC9003105 DOI: 10.3390/polym14071343] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
This review provides a report on recent advances in the field of chitosan (CTS) and silk fibroin (SF) biopolymer blends as new biomaterials. Chitosan and silk fibroin are widely used to obtain biomaterials. However, the materials based on the blends of these two biopolymers have not been summarized in a review paper yet. As these materials can attract both academic and industrial attention, we propose this review paper to showcase the latest achievements in this area. In this review, the latest literature regarding the preparation and properties of chitosan and silk fibroin and their blends has been reviewed.
Collapse
Affiliation(s)
- Anna Tuwalska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
| | - Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
- Correspondence:
| |
Collapse
|
7
|
Special Issue: Sustainability. POLYM INT 2021. [DOI: 10.1002/pi.6199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|