1
|
Majeed A, Ibrahim AH, Al-Rawi SS, Iqbal MA, Kashif M, Yousif M, Abidin ZU, Ali S, Arbaz M, Hussain SA. Green Organo-Photooxidative Method for the Degradation of Methylene Blue Dye. ACS OMEGA 2024; 9:12069-12083. [PMID: 38496983 PMCID: PMC10938592 DOI: 10.1021/acsomega.3c09989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
This study used an organophoto-oxidative material to degrade the toxic azo dye, methylene blue (MB), due to its hazardous effects on aquatic life and humans. MB is traditionally degraded using metal-based catalysts, resulting in high costs. Several organic acids were screened for organo-photooxidative applications against various azo dyes, and ascorbic acid (AA), also known as vitamin C, was found to be best for degradation due to its high photooxidative activity. It is an eco-friendly, edible, and efficient photooxidative material. A photocatalytic box has been developed for the study of organo-photooxidative activity. It was found that when AA was added, degradation efficiency increased from 42 to 95% within 240 min. Different characterization techniques, such as HPLC and GC-MS, were used after degradation for the structural elucidation of degraded products. DFT study was done for the investigation of the mechanistic study behind the degradation process. A statistical tool, RSM, was used for the optimization of parameters (concentration of dye, catalyst, and time). This study develops sustainable and effective solutions for wastewater treatment.
Collapse
Affiliation(s)
- Adnan Majeed
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Ahmad H. Ibrahim
- Pharmacy
Department, Faculty of Pharmacy, Tishk International
University, 100Mt. St, Near Baz Intersection, Erbil, KRG, Iraq
| | - Sawsan S. Al-Rawi
- Biology
Education Department, Faculty of Education, Tishk International University, 100Mt. St, Near Baz Intersection, Erbil, KRG, Iraq
| | - Muhammad Adnan Iqbal
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
- Synthetic
Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Kashif
- Department
of Mathematics and Statistics, University
of Agriculture Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Yousif
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Zain Ul Abidin
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Shahzaib Ali
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Arbaz
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Syed Arslan Hussain
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| |
Collapse
|
2
|
Hazeri A, Sirousazar M, Kheiri F, Jalilnejad E, Gozalzadeh S. Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Polyvinyl Alcohol/Activated Carbon Nanocomposite Hydrogels. J MACROMOL SCI B 2023. [DOI: 10.1080/00222348.2023.2175516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Amir Hazeri
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Mohammad Sirousazar
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Farshad Kheiri
- Applied Chemistry Department, Urmia University of Technology, Urmia, Iran
| | - Elham Jalilnejad
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Sahel Gozalzadeh
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| |
Collapse
|
3
|
Hou Y, Ma S, Hao J, Lin C, Zhao J, Sui X. Construction and Ion Transport-Related Applications of the Hydrogel-Based Membrane with 3D Nanochannels. Polymers (Basel) 2022; 14:polym14194037. [PMID: 36235985 PMCID: PMC9571189 DOI: 10.3390/polym14194037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogel is a type of crosslinked three-dimensional polymer network structure gel. It can swell and hold a large amount of water but does not dissolve. It is an excellent membrane material for ion transportation. As transport channels, the chemical structure of hydrogel can be regulated by molecular design, and its three-dimensional structure can be controlled according to the degree of crosslinking. In this review, our prime focus has been on ion transport-related applications based on hydrogel materials. We have briefly elaborated the origin and source of hydrogel materials and summarized the crosslinking mechanisms involved in matrix network construction and the different spatial network structures. Hydrogel structure and the remarkable performance features such as microporosity, ion carrying capability, water holding capacity, and responsiveness to stimuli such as pH, light, temperature, electricity, and magnetic field are discussed. Moreover, emphasis has been made on the application of hydrogels in water purification, energy storage, sensing, and salinity gradient energy conversion. Finally, the prospects and challenges related to hydrogel fabrication and applications are summarized.
Collapse
|
4
|
Goodarzi R, Ghanbari H, Sarpoolaky H. An Eco‐Friendly Polyvinyl Alcohol/Graphene Oxide‐Based Hydrogel as a Methylene Blue Adsorbent. ChemistrySelect 2022. [DOI: 10.1002/slct.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reyhaneh Goodarzi
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| | - Hajar Ghanbari
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| | - Hossein Sarpoolaky
- School of Metallurgy & Materials Engineering Iran University of Science and Technology (IUST), Narmak Tehran Iran
| |
Collapse
|
5
|
Du W, Fan J, Ma R, Yang G, Liu J, Zhang S, Chen T. Radiation‐initiated chitosan‐based double network hydrogel: Synthesis, characterization, and adsorption of methylene blue. J Appl Polym Sci 2021. [DOI: 10.1002/app.51531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wenjie Du
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Jinxu Fan
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Rui Ma
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Gang Yang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Jiaqi Liu
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Shifan Zhang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology Hubei University of Science and Technology Xianning China
| |
Collapse
|
6
|
Wang H, Yang WL, Ma RH, Tang YM, Zhang CL. Study on synthesis of rare earth tungsten heteropoly acid glycine composite catalyst and degradation of dyes. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1999430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hao Wang
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Wan-Li Yang
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Rong-Hua Ma
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Yi-Min Tang
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Cheng-Li Zhang
- College of Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
7
|
Lu CH, Yeh YC. Fabrication of Multiresponsive Magnetic Nanocomposite Double-Network Hydrogels for Controlled Release Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105997. [PMID: 34791796 DOI: 10.1002/smll.202105997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Nanocomposite double-network hydrogels (ncDN hydrogels) have been demonstrated as promising biomaterials to present several desired properties (e.g., high mechanical strength, stimuli-responsiveness, and local therapy) for biomedicine. Here, a new type of ncDN hydrogels featuring definable microstructures and properties as well as multistimuli responsiveness for controlled release applications is developed. Amine-functionalized iron oxide nanoparticles (IOPs_NH2 ) are used as nanoparticle cross-linkers to simultaneously connect the dual networks of gelatin (Gel) and polydextran aldehyde (PDA) through hydrogen bonding, electrostatic interactions, and dynamic imine bonds. The pH- and temperature-responsive Gel/PDA/IOP_NH2 ncDN hydrogels present a fast release profile of proteins at acidic pH and high temperature. Besides, IOP_NH2 also contributes the magnetic-responsiveness to the ncDN hydrogels, allowing the use of magnetic field to generate heat to facilitate the structural change of hydrogels and the subsequent applications. Taken together, a versatile ncDN hydrogel platform capable of multistimuli responsiveness and local heating for controlled release is developed for advanced biomedical applications.
Collapse
Affiliation(s)
- Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|