1
|
Zhang Y, Zhang S, Lin Y, Wu S, Li X, Yang C. Simultaneous removal of heavy metals and antibiotics from anaerobically digested swine wastewater via functionalized covalent organic frameworks. ENVIRONMENTAL RESEARCH 2025; 272:121152. [PMID: 39983970 DOI: 10.1016/j.envres.2025.121152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The removal of heavy metal ions and antibiotics from livestock and poultry wastewater has gained significant attention. Developing dual-functional materials capable of simultaneously removing heavy metal ions and antibiotics from wastewater is a promising strategy. In this study, a functionalization approach was proposed to enhance active sites in covalent organic frameworks (COFs), thereby improving their adsorption performance and maintaining photocatalytic activity. Vinyl-functionalized covalent organic frameworks (COFs-V) were first synthesized in a room-temperature solution. Subsequently, 4-mercaptobenzoic acid was introduced into COFs-V via grafting and chelation to prepare COF@COOH, aiming to modify surface active sites. Fourier transform infrared spectroscopy (FTIR) and in-situ X-ray photoelectron spectroscopy (XPS) confirmed the successful introduction of carboxyl groups into COF@COOH, significantly increasing the number of active sites. The performance and mechanism of COF@COOH in the removal of Cu2+, Zn2+, and tetracycline hydrochloride (TC) from swine wastewater were systematically studied. The results revealed that the adsorption capacities of COF@COOH for Cu2+ and Zn2+ reached 19.27 mg/g and 12.95 mg/g, respectively, which were 58 and 29 times higher than those of the unmodified COFs. Additionally, COF@COOH completely degraded TC within 5 min, with 100% photocatalytic degradation efficiency and an apparent rate constant of 1.13 min-1. After five cycles, the adsorption capacities for Cu2+ and Zn2+ and the degradation efficiency of TC remained nearly unchanged, demonstrating the stability of the composite material. This study provides an effective approach for the simultaneous removal of heavy metal ions and antibiotics from swine wastewater.
Collapse
Affiliation(s)
- Yupei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shuai Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
2
|
Mohan B, Asif MB, Gupta RK, Pombeiro AJL, Yavuz CT, Ren P. Engineered covalent organic frameworks (COFs) for adsorption-based metal separation technologies: A critical review. Adv Colloid Interface Sci 2025; 342:103507. [PMID: 40233597 DOI: 10.1016/j.cis.2025.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/25/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Porous covalent organic frameworks (COFs) are promising materials used for separation and purification during environmental remediation. This critical review focuses on two key aspects. First, it critically examines strategies to improve COF design and structure and evaluates their impact on separation performance. Second, engineering approaches for enhancing the interactions between COF-based adsorbents and metals for enhanced separation and capture are elucidated. The latest body of research on separating metals (e.g., Li, K, Sr, Hg, Cd, Pb, Cr, Au, Ag, Pd, and U) using COF-based adsorbents is discussed to understand the factors that influence their performance. However, it is to be noted that COF-based adsorbents are still in their infancy and remain largley unexplored, mainly hindered by synthetic complexities and suboptimal crystalline structures. This highlights the need for further research and development to fully unlock the excellent potential of COFs for metal separation applications, particularly in environmental and energy applications.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001 Lisboa, Portugal
| | - Muhammad Bilal Asif
- Oxide & Organic Nanomaterials for Energy & Environment (ONE) Laboratory, Chemistry Program, Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Rakesh Kumar Gupta
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001 Lisboa, Portugal
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment (ONE) Laboratory, Chemistry Program, Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Peng Ren
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Du L, Li X, Lu X, Guo Y. The synthesis strategies of covalent organic frameworks and advances in their application for adsorption of heavy metal and radionuclide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173478. [PMID: 38815828 DOI: 10.1016/j.scitotenv.2024.173478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Covalent organic frameworks (COFs) are a novel type of porous materials, with unique properties, such as large specific surface areas, high porosity, pronounced crystallinity, tunable pore sizes, and easy functionalization, and thus have received considerable attention in recent years. COFs play an essential role in the catalytic degradation, adsorption, and separation of heavy metals, radionuclides. In recent years, considering several outstanding characteristics of COFs, including their good thermal/chemical stability, high crystallinity, and remarkable adsorption capacity, they have been widely used in the removal of various environment pollutants. This review primarily discusses the synthesis strategies of COFs along with their diverse synthesis methods, and provides a comprehensive summary and analysis of recent research advances in the use of COFs for removing heavy metal ions and radionuclides from water bodies. Additionally, the adsorption mechanism of COFs with regard to metal ions was determined by analyzing the structural characteristics of COFs. Finally, the future research directions on COFs adsorb rare earth element was discussed.
Collapse
Affiliation(s)
- Lili Du
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Zhao F, Bai Y, Zhou X, He L, Tao Y, Chen J, Zhang M, Guo Q, Ma Z, Chen L, Zhu L, Duan T, Chai Z, Wang S. An Aryl-ether-linked Covalent Organic Framework Modified with Thioamide Groups for Selective Extraction of Palladium from Strong Acid Solutions. Chemistry 2023; 29:e202302445. [PMID: 37803818 DOI: 10.1002/chem.202302445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Efficient adsorption of palladium ions from acid nuclear waste solution is crucial for ensuring the safety of vitrification process for radioactive waste. However, the limited stability and selectivity of most current adsorbents hinder their practical applications under strong acid and intense radiation conditions. Herein, to address these limitations, we designed and synthesized an aryl-ether-linked covalent organic framework (COF-316-DM) grafted dimethylthiocarbamoyl groups on the pore walls. This unique structure endows COF-316-DM with high stability and exceptional palladium capture capacity. The robust polyarylether linkage enables COF-316-DM to withstand irradiation doses of 200 or 400 kGy of β/γ ray. Furthermore, COF-316-DM demonstrates fast adsorption kinetics, high adsorption capacity (147 mg g-1 ), and excellent reusability in 4 M nitric acid. Moreover, COF-316-DM exhibits remarkable selectivity for palladium ions in the presence of 17 interference ions, simulating high level liquid waste scenario. The superior adsorption performance can be attributed to the strong binding affinity between the thioamide groups and Pd2+ ions, as confirmed by the comprehensive analysis of FT-IR and XPS spectra. Our findings highlight the potential of COFs with robust linkers and tailored functional groups for efficient and selective capture of metal ions, even in harsh environmental conditions.
Collapse
Affiliation(s)
- Fuqiang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yaoyao Bai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xiaoyuan Zhou
- Radioactive Waste Technology and Radiochemistry Research Department, China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen, 518000, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yunnan Tao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qi Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhonglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Long Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lin Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tao Duan
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Xia C, Joo SW, Hojjati-Najafabadi A, Xie H, Wu Y, Mashifana T, Vasseghian Y. Latest advances in layered covalent organic frameworks for water and wastewater treatment. CHEMOSPHERE 2023; 329:138580. [PMID: 37019401 DOI: 10.1016/j.chemosphere.2023.138580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
This review provides an overview of recent progress in the development of layered covalent organic frameworks (LCOFs) for the adsorption and degradation of pollutants in water and wastewater treatment. LCOFs have unique properties such as high surface area, porosity, and tunability, which make them attractive adsorbents and catalysts for water and wastewater treatment. The review covers the different synthesis methods for LCOFs, including self-assembly, co-crystallization, template-directed synthesis, covalent organic polymerization (COP), and solvothermal synthesis. It also covers the structural and chemical characteristics of LCOFs, their adsorption and degradation capacity for different pollutants, and their comparison with other adsorbents and catalysts. Additionally, it discussed the mechanism of adsorption and degradation by LCOFs, the potential applications of LCOFs in water and wastewater treatment, case studies and pilot-scale experiments, challenges, and limitations of using LCOFs, and future research directions. The current state of research on LCOFs for water and wastewater treatment is promising, however, more research is needed to improve their performance and practicality. The review highlights that LCOFs have the potential to significantly improve the efficiency and effectiveness of current water and wastewater treatment methods and can also have implications for policy and practice.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Akbar Hojjati-Najafabadi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tebogo Mashifana
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
6
|
Wang D, Wang R, Peng W, Wang Y, Zhang N, Duan Y, Wang S, Liu L. Adsorption of Cu(
II
) in aqueous solution by sodium dodecyl benzene sulfonate‐modified montmorillonite. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Danqi Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Ruicong Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Wencai Peng
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi China
| | - Yi Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Na Zhang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Yanan Duan
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Shiqin Wang
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Linye Liu
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| |
Collapse
|
7
|
Elewa AM, El-Mahdy AFM, Chou HH. Effective remediation of Pb 2+ polluted environment by adsorption onto recyclable hydroxyl bearing covalent organic framework. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32371-32382. [PMID: 36460890 DOI: 10.1007/s11356-022-24312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The removal of heavy metal ions from wastewater has attracted considerable interest because of their toxicity. Adsorption is one of the most promising methods for the removal of heavy metal ions due to its simplicity and effectiveness. Recently, covalent organic frameworks (COFs) have become promising adsorbents for effective wastewater remediation. However, many building blocks have been developed, and the design of COFs with high adsorption efficiency remains a challenge. Here, a covalent organic framework (DHTP-TPB COF) decorated with hydroxyl groups was developed for the efficient removal of Pb2+ ions. The DHTP-TPB COF showed excellent performance in adsorbing Pb2+ from aqueous solution. More importantly, DHTP-TPB COF exhibited high selectivity for Pb2+ compared to other competing ions, capturing Pb2+ ions with a removal efficiency of over 96% at pH 4. The results show that the DHTP-TPB COF exhibits excellent adsorption capacity at pH 4 of up to 154.3 mg/g for Pb2+ ions; the value is comparable to many previously reported COFs. Moreover, the adsorbed Pb2+ ions could be easily eluted with a 0.1 M EDTA solution, and the DHTP-TPB COF can be reused for more than five adsorption-desorption cycles without significant loss of adsorption capacity. Moreover, the adsorption mechanism was revealed using XPS analysis, indicating the formation of strong coordination-bonding interactions between hydroxyl and Pb2+ ions. Therefore, the DHTP-TPB COF prepared herein has high potential for the treatment of Pb2+-contaminated wastewater and is promising for the adsorption of Pb2+ ions in practical applications.
Collapse
Affiliation(s)
- Ahmed M Elewa
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, P.O. Box 13759, InshasCairo, Inshas, Egypt
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
8
|
Ha R, Liu F, Li J, He M, Lan J, Wang B, Sun J, Liu X, Ding X, Shi W. Calix[4]arene-Decorated Covalent Organic Framework Conjugates for Lithium Isotope Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5657-5666. [PMID: 36662029 DOI: 10.1021/acsami.2c20309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lithium isotope separation has attracted extensive interest due to its important role in fusion and fission reactions. Up to now, it is still a great challenge to separate lithium isotopes (6Li and 7Li) in an efficient manner due to the low capture ability for lithium ions of related materials and highly similar physicochemical properties between lithium isotopes. In this work, three calix[4]arene-decorated crystalline covalent organic frameworks (COFs) with wave-like extension and AA-stacking configuration were designed and utilized for lithium adsorption and its isotope separation. Experimental studies show that these COFs exhibit an outstanding lithium adsorption capacity up to 94.66 mg·g-1, which is about 2 times beyond that of adsorbents reported in the literature. The high adsorption capacity of COFs could be attributed to the abundant adsorption sites from calix[4]arene unit. More importantly, this study demonstrates for the first time that calixarene groups can separate lithium isotopes with an excellent separation factor up to 1.053 ± 0.002, comparable to the most successful solid-phase lithium separation adsorbent. The calculation based on density functional theory showed that calixarene played an important role in the lithium adsorption. Interestingly, the lithium isotope separation performance is mainly affected by the amine bridging units. This work demonstrated that calixarene COFs are promising adsorbents for lithium isotope separation.
Collapse
Affiliation(s)
- Rui Ha
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Jie Li
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Meng He
- College of New Energy, Xi'an Shiyou University, Xi'an710065P. R. China
| | - Jianhui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350P. R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Xue Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an710049P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049P. R. China
| |
Collapse
|
9
|
Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206041. [PMID: 36446638 DOI: 10.1002/smll.202206041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lei Xia
- Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, Leuven, B-3001, Belgium
| | - Shengji Xia
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
10
|
Lin J. Special issue: self‐assembly and bioapplications. POLYM INT 2022. [DOI: 10.1002/pi.6374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiaping Lin
- School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|