1
|
Tian J, Gao L. Evolutionary Dynamics and Expression Divergence of the MADS-Box Gene Family During Recent Speciation of AA-Genome Oryza Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:379. [PMID: 39942941 PMCID: PMC11820988 DOI: 10.3390/plants14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
To investigate the evolutionary trajectory during the recent speciation of AA-genome Oryza species, we conducted a comprehensive analysis of the MADS-box gene family across eight Oryza species. We identified 1093 MADS-box genes in total and systematically examined their evolutionary history, gene family expansion, and expression divergence. Our results revealed that extensive lineage-specific expansions occurred in AA-genome Oryza species, which were primarily generated by proximal and tandem duplications, with a particularly notable episode in Type-I genes. Despite the significant expansion, Type-I genes were generally expressed at low levels or not expressed across various organs. In contrast, the expansion of Type-II genes was primarily observed in the AG, AGL12, SOC1, GGM13, and MIKC* subfamilies, which exhibited high levels of expression in reproductive organs such as panicles and stigmas. Additionally, we found species-specific gene expression in the two out-crossing wild rice species, Oryza rufipogon and Oryza longistaminata. Notably, a unique MADS-box gene in O. longistaminata exhibited high expression levels in rhizomes and stems, which may be associated with the species' distinctive rhizomatous growth habit.
Collapse
Affiliation(s)
- Jiaqi Tian
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China;
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Lizhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China;
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhang F, Kang H, Gao L. Complete Mitochondrial Genome Assembly of an Upland Wild Rice Species, Oryza granulata and Comparative Mitochondrial Genomic Analyses of the Genus Oryza. Life (Basel) 2023; 13:2114. [PMID: 38004254 PMCID: PMC10672236 DOI: 10.3390/life13112114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Wild upland rice species, including Oryza granulata, possess unique characteristics that distinguish them from other Oryza species. For instance, O. granulata characteristically has a GG genome and is accordingly classified as a basal lineage of the genus Oryza. Here, we deployed a versatile hybrid approach by integrating Illumina and PacBio sequencing data to generate a high-quality mitochondrial genome (mitogenome) assembly for O. granulata. The mitogenome of O. granulata was 509,311 base pairs (bp) with sixty-seven genes comprising two circular chromosomes, five ribosomal RNA (rRNA) coding genes, twenty-five transfer RNA (tRNA) coding genes, and thirty-seven genes coding for proteins. We identified a total of 378 simple sequence repeats (SSRs). The genome also contained 643 pairs of dispersed repeats comprising 340 palindromic and 303 forward. In the O. granulata mitogenome, the length of 57 homologous fragments in the chloroplast genome occupied 5.96% of the mitogenome length. Collinearity analysis of three Oryza mitogenomes revealed high structural variability and frequent rearrangements. Phylogenetic analysis showed that, compared to other related genera, O. granulata had the closest genetic relationship with mitogenomes reported for all members of Oryza, and occupies a position at the base of the Oryza phylogeny. Comparative analysis of complete mitochondrial genome assemblies for Oryza species revealed high levels of mitogenomic diversity, providing a foundation for future conservation and utilization of wild rice biodiversity.
Collapse
Affiliation(s)
- Fen Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Haiqi Kang
- Tropical Biodiversity and Genomics Research Center, Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Hainan University, Haikou 570228, China;
| | - Lizhi Gao
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Tropical Biodiversity and Genomics Research Center, Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Hainan University, Haikou 570228, China;
| |
Collapse
|
3
|
Wu B, Meng J, Liu H, Mao D, Yin H, Zhang Z, Zhou X, Zhang B, Sherif A, Liu H, Li X, Xiao J, Yan W, Wang L, Li X, Chen W, Xie W, Yin P, Zhang Q, Xing Y. Suppressing a phosphohydrolase of cytokinin nucleotide enhances grain yield in rice. Nat Genet 2023; 55:1381-1389. [PMID: 37500729 DOI: 10.1038/s41588-023-01454-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
One-step and two-step pathways are proposed to synthesize cytokinin in plants. The one-step pathway is mediated by LONELY GUY (LOG) proteins. However, the enzyme for the two-step pathway remains to be identified. Here, we show that quantitative trait locus GY3 may boost grain yield by more than 20% through manipulating a two-step pathway. Locus GY3 encodes a LOG protein that acts as a 5'-ribonucleotide phosphohydrolase by excessively consuming the cytokinin precursors, which contrasts with the activity of canonical LOG members as phosphoribohydrolases in a one-step pathway. The residue S41 of GY3 is crucial for the dephosphorylation of iPRMP to produce iPR. A solo-LTR insertion within the promoter of GY3 suppressed its expression and resulted in a higher content of active cytokinins in young panicles. Introgression of GY302428 increased grain yield per plot by 7.4% to 16.3% in all investigated indica backgrounds, which demonstrates the great value of GY302428 in indica rice production.
Collapse
Affiliation(s)
- Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jianghu Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Donghai Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ahmed Sherif
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Liu
- Hubei collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
4
|
Gowda RSR, Sharma S, Gill RS, Mangat GS, Bhatia D. Genome wide association studies and candidate gene mining for understanding the genetic basis of straw silica content in a set of Oryza nivara (Sharma et Shastry) accessions. FRONTIERS IN PLANT SCIENCE 2023; 14:1174266. [PMID: 37324704 PMCID: PMC10266271 DOI: 10.3389/fpls.2023.1174266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023]
Abstract
Rice is a high-silica (SiO2·nH2O) accumulator. Silicon (Si) is designated as a beneficial element associated with multiple positive effects on crops. However, the presence of high silica content is detrimental to rice straw management, hampering its use as animal feed and as raw material in multiple industries. Rice straw management is a serious concern in north-western India, and it is eventually burned in situ by farmers, contributing to air pollution. A practical solution could lie in reducing the silica content in rice while also attaining sound plant growth. A set of 258 Oryza nivara accessions along with 25 cultivated varieties of Oryza sativa was used to assess the variation in straw silica content using the molybdenum blue colorimetry method. A large continuous variation was observed for straw silica content in O. nivara accessions, ranging from 5.08% to 16%, while it varied from 6.18% to 15.81% in the cultivated varieties. The O. nivara accessions containing 43%-54% lower straw silica content than the currently prominent cultivated varieties in the region were identified. A set of 22,528 high-quality single nucleotide polymorphisms (SNPs) among 258 O. nivara accessions was used for estimating population structure and genome-wide association studies (GWAS). A weak population structure with 59% admixtures was identified among O. nivara accessions. Further, multi-locus GWAS revealed the presence of 14 marker-trait associations (MTAs) for straw silica content, with six of them co-localizing with previously reported quantitative trait loci (QTL). Twelve out of 14 MTAs showed statistically significant allelic differences. Thorough candidate gene analyses revealed the presence of promising candidate genes, including those encoding the ATP-binding cassette (ABC) transporter, Casparian thickening, multi-drug and toxin extrusion (MATE) protein, F-box, and MYB-transcription factors. Besides, ortho-QTLs among rice and maize genomes were identified, which could open ways for further genetic analysis of this trait. The findings of the study could aid in further understanding and characterizing genes for Si transport and regulation in the plant body. The donors carrying the alleles for lower straw silica content can be used in further marker-assisted breeding programs to develop rice varieties with lower silica content and higher yield potential.
Collapse
Affiliation(s)
- Rakshith S. R. Gowda
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Ranvir Singh Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Gurjit Singh Mangat
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
5
|
Lu R, Liu J, Wang X, Song Z, Ji X, Li N, Ma G, Sun X. Chromosome-Level Genome Assembly of a Fragrant Japonica Rice Cultivar 'Changxianggeng 1813' Provides Insights into Genomic Variations between Fragrant and Non-Fragrant Japonica Rice. Int J Mol Sci 2022; 23:9705. [PMID: 36077110 PMCID: PMC9456513 DOI: 10.3390/ijms23179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
East Asia has an abundant resource of fragrant japonica rice that is gaining increasing interest among both consumers and producers. However, genomic resources and in particular complete genome sequences currently available for the breeding of fragrant japonica rice are still scarce. Here, integrating Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods, we presented a high-quality chromosome-level genome assembly (~378.78 Mb) for a new fragrant japonica cultivar ‘Changxianggeng 1813’, with 31,671 predicated protein-coding genes. Based on the annotated genome sequence, we demonstrated that it was the badh2-E2 type of deletion (a 7-bp deletion in the second exon) that caused fragrance in ‘Changxianggeng 1813’. Comparative genomic analyses revealed that multiple gene families involved in the abiotic stress response were expanded in the ‘Changxianggeng 1813’ genome, which further supported the previous finding that no generalized loss of abiotic stress tolerance associated with the fragrance phenotype. Although the ‘Changxianggeng 1813’ genome showed high genomic synteny with the genome of the non-fragrant japonica rice cultivar Nipponbare, a total of 289,970 single nucleotide polymorphisms (SNPs), 96,093 small insertion-deletion polymorphisms (InDels), and 8690 large structure variants (SVs, >1000 bp) were identified between them. Together, these genomic resources will be valuable for elucidating the mechanisms underlying economically important traits and have wide-ranging implications for genomics-assisted breeding in fragrant japonica rice.
Collapse
Affiliation(s)
- Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xuegang Wang
- Changshu Agricultural Science Research Institute, Changshu 215500, China
| | - Zhao Song
- Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Xiangdong Ji
- Changshu Agricultural Science Research Institute, Changshu 215500, China
| | - Naiwei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Gang Ma
- Changshu Agricultural Science Research Institute, Changshu 215500, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
6
|
Dai SF, Zhu XG, Hutang GR, Li JY, Tian JQ, Jiang XH, Zhang D, Gao LZ. Genome Size Variation and Evolution Driven by Transposable Elements in the Genus Oryza. FRONTIERS IN PLANT SCIENCE 2022; 13:921937. [PMID: 35874017 PMCID: PMC9301470 DOI: 10.3389/fpls.2022.921937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/16/2022] [Indexed: 05/08/2023]
Abstract
Genome size variation and evolutionary forces behind have been long pursued in flowering plants. The genus Oryza, consisting of approximately 25 wild species and two cultivated rice, harbors eleven extant genome types, six of which are diploid (AA, BB, CC, EE, FF, and GG) and five of which are tetraploid (BBCC, CCDD, HHJJ, HHKK, and KKLL). To obtain the most comprehensive knowledge of genome size variation in the genus Oryza, we performed flow cytometry experiments and estimated genome sizes of 166 accessions belonging to 16 non-AA genome Oryza species. k-mer analyses were followed to verify the experimental results of the two accessions for each species. Our results showed that genome sizes largely varied fourfold in the genus Oryza, ranging from 279 Mb in Oryza brachyantha (FF) to 1,203 Mb in Oryza ridleyi (HHJJ). There was a 2-fold variation (ranging from 570 to 1,203 Mb) in genome size among the tetraploid species, while the diploid species had 3-fold variation, ranging from 279 Mb in Oryza brachyantha (FF) to 905 Mb in Oryza australiensis (EE). The genome sizes of the tetraploid species were not always two times larger than those of the diploid species, and some diploid species even had larger genome sizes than those of tetraploids. Nevertheless, we found that genome sizes of newly formed allotetraploids (BBCC-) were almost equal to totaling genome sizes of their parental progenitors. Our results showed that the species belonging to the same genome types had similar genome sizes, while genome sizes exhibited a gradually decreased trend during the evolutionary process in the clade with AA, BB, CC, and EE genome types. Comparative genomic analyses further showed that the species with different rice genome types may had experienced dissimilar amplification histories of retrotransposons, resulting in remarkably different genome sizes. On the other hand, the closely related rice species may have experienced similar amplification history. We observed that the contents of transposable elements, long terminal repeats (LTR) retrotransposons, and particularly LTR/Gypsy retrotransposons varied largely but were significantly correlated with genome sizes. Therefore, this study demonstrated that LTR retrotransposons act as an active driver of genome size variation in the genus Oryza.
Collapse
Affiliation(s)
- Shuang-feng Dai
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Xun-ge Zhu
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ge-rang Hutang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jia-yue Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Jia-qi Tian
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Xian-hui Jiang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Dan Zhang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Li-zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Li-zhi Gao,
| |
Collapse
|
7
|
Hechanova SL, Bhattarai K, Simon EV, Clave G, Karunarathne P, Ahn EK, Li CP, Lee JS, Kohli A, Hamilton NRS, Hernandez JE, Gregorio GB, Jena KK, An G, Kim SR. Development of a genome-wide InDel marker set for allele discrimination between rice (Oryza sativa) and the other seven AA-genome Oryza species. Sci Rep 2021; 11:8962. [PMID: 33903715 PMCID: PMC8076200 DOI: 10.1038/s41598-021-88533-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Wild relatives of rice in the genus Oryza (composed of 24 species with 11 different genome types) have been significantly contributing to the varietal improvement of rice (Oryza sativa). More than 4000 accessions of wild rice species are available and they are regarded as a "genetic reservoir" for further rice improvement. DNA markers are essential tools in genetic analysis and breeding. To date, genome-wide marker sets for wild rice species have not been well established and this is one of the major difficulties for the efficient use of wild germplasm. Here, we developed 541 genome-wide InDel markers for the discrimination of alleles between the cultivated species O. sativa and the other seven AA-genome species by positional multiple sequence alignments among five AA-genome species with four rice varieties. The newly developed markers were tested by PCR-agarose gel analysis of 24 accessions from eight AA genome species (three accessions per species) along with two representative cultivars (O. sativa subsp. indica cv. IR24 and subsp. japonica cv. Nipponbare). Marker polymorphism was validated for 475 markers. The number of polymorphic markers between IR24 and each species (three accessions) ranged from 338 (versus O. rufipogon) to 416 (versus O. longistaminata) and the values in comparison with Nipponbare ranged from 179 (versus O. glaberrima) to 323 (versus O. glumaepatula). These marker sets will be useful for genetic studies and use of the AA-genome wild rice species.
Collapse
Affiliation(s)
- Sherry Lou Hechanova
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Kamal Bhattarai
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
- Institute of Crop Science (ICropS), College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, Los Baños, Laguna, Philippines
| | - Eliza Vie Simon
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
- Institute of Crop Science (ICropS), College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, Los Baños, Laguna, Philippines
| | - Graciana Clave
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Pathmasiri Karunarathne
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
- Institute of Crop Science (ICropS), College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, Los Baños, Laguna, Philippines
| | - Eok-Keun Ahn
- National Institute of Crop Science, Rural Development Administration (RDA), Suwon, 16429, Republic of Korea
| | - Charng-Pei Li
- Taiwan Agricultural Research Institute (TARI), Council of Agriculture, Taichung City, Taiwan
| | - Jeom-Sig Lee
- National Institute of Crop Science, Rural Development Administration (RDA), Suwon, 16429, Republic of Korea
| | - Ajay Kohli
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - N Ruaraidh Sackville Hamilton
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Jose E Hernandez
- Institute of Crop Science (ICropS), College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, Los Baños, Laguna, Philippines
| | - Glenn B Gregorio
- Institute of Crop Science (ICropS), College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, Los Baños, Laguna, Philippines
| | - Kshirod K Jena
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Sung-Ryul Kim
- Gene Identification and Validation Group, Genetic Design and Validation Unit, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines.
| |
Collapse
|
8
|
Peng X, Tun W, Dai SF, Li JY, Zhang QJ, Yin GY, Yoon J, Cho LH, An G, Gao LZ. Genome-Wide Analysis of CCT Transcript Factors to Identify Genes Contributing to Photoperiodic Flowering in Oryza rufipogon. FRONTIERS IN PLANT SCIENCE 2021; 12:736419. [PMID: 34819938 PMCID: PMC8606741 DOI: 10.3389/fpls.2021.736419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 05/03/2023]
Abstract
Photoperiod sensitivity is a dominant determinant for the phase transition in cereal crops. CCT (CONSTANS, CO-like, and TOC1) transcription factors (TFs) are involved in many physiological functions including the regulation of the photoperiodic flowering. However, the functional roles of CCT TFs have not been elucidated in the wild progenitors of crops. In this study, we identified 41 CCT TFs, including 19 CMF, 17 COL, and five PRR TFs in Oryza rufipogon, the presumed wild ancestor of Asian cultivated rice. There are thirty-eight orthologous CCT genes in Oryza sativa, of which ten pairs of duplicated CCT TFs are shared with O. rufipogon. We investigated daily expression patterns, showing that 36 OrCCT genes exhibited circadian rhythmic expression. A total of thirteen OrCCT genes were identified as putative flowering suppressors in O. rufipogon based on rhythmic and developmental expression patterns and transgenic phenotypes. We propose that OrCCT08, OrCCT24, and OrCCT26 are the strong functional alleles of rice DTH2, Ghd7, and OsPRR37, respectively. The SD treatment at 80 DAG stimulated flowering of the LD-grown O. rufipogon plants. Our results further showed that the nine OrCCT genes were significantly downregulated under the treatment. Our findings would provide valuable information for the construction of photoperiodic flowering regulatory network and functional characterization of the CCT TFs in both O. rufipogon and O. sativa.
Collapse
Affiliation(s)
- Xin Peng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Win Tun
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Shuang-feng Dai
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Jia-yue Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Qun-jie Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Guo-ying Yin
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Jinmi Yoon
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Lae-hyeon Cho
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Gynheung An
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- *Correspondence: Gynheung An,
| | - Li-zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
- Li-zhi Gao,
| |
Collapse
|